/external/eigen/failtest/ |
map_nonconst_ctor_on_const_ptr_2.cpp | 11 void foo(CV_QUALIFIER float *ptr, DenseIndex rows, DenseIndex cols){
|
map_nonconst_ctor_on_const_ptr_3.cpp | 11 void foo(CV_QUALIFIER float *ptr, DenseIndex rows, DenseIndex cols){
|
map_nonconst_ctor_on_const_ptr_4.cpp | 11 void foo(const float *ptr, DenseIndex rows, DenseIndex cols){
|
map_nonconst_ctor_on_const_ptr_1.cpp | 11 void foo(CV_QUALIFIER float *ptr, DenseIndex size){
|
/external/eigen/unsupported/Eigen/CXX11/src/Tensor/ |
TensorDimensionList.h | 39 template<DenseIndex n, typename Index, std::size_t Rank> const Index array_get(DimensionList<Index, Rank>&) { 42 template<DenseIndex n, typename Index, std::size_t Rank> const Index array_get(const DimensionList<Index, Rank>&) { 50 EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) { 56 EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex) { 89 static constexpr bool run(const DenseIndex i, const DenseIndex value) { 95 EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) { 102 EIGEN_DEVICE_FUNC static constexpr bool run(const DenseIndex i, const DenseIndex value) [all...] |
TensorIndexList.h | 40 template <DenseIndex n> 42 static const DenseIndex value = n; 43 EIGEN_DEVICE_FUNC constexpr operator DenseIndex() const { return n; } 44 EIGEN_DEVICE_FUNC void set(DenseIndex val) { 51 template <DenseIndex f, DenseIndex s> 53 static const DenseIndex first = f; 54 static const DenseIndex second = s; 56 constexpr EIGEN_DEVICE_FUNC operator IndexPair<DenseIndex>() const { 57 return IndexPair<DenseIndex>(f, s) [all...] |
TensorDimensions.h | 106 template <typename DenseIndex> 107 explicit EIGEN_DEVICE_FUNC Sizes(const array<DenseIndex, Base::count>& /*indices*/) { 111 template <typename... DenseIndex> EIGEN_DEVICE_FUNC Sizes(DenseIndex...) { } 126 template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE 127 size_t IndexOfColMajor(const array<DenseIndex, Base::count>& indices) const { 128 return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, false>::run(indices, *static_cast<const Base*>(this)); 130 template <typename DenseIndex> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE 131 size_t IndexOfRowMajor(const array<DenseIndex, Base::count>& indices) const { 132 return internal::fixed_size_tensor_index_linearization_helper<DenseIndex, Base::count, Base::count, true>::run(indices, *static_cast<const Base*>(this)) [all...] |
TensorImagePatch.h | 30 template<DenseIndex Rows, DenseIndex Cols, typename XprType> 43 template<DenseIndex Rows, DenseIndex Cols, typename XprType> 49 template<DenseIndex Rows, DenseIndex Cols, typename XprType> 57 template<DenseIndex Rows, DenseIndex Cols, typename XprType> 68 EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorImagePatchOp(const XprType& expr, DenseIndex patch_rows, DenseIndex patch_cols [all...] |
TensorVolumePatch.h | 25 template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> 38 template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> 44 template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> 52 template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType [all...] |
TensorForwardDeclarations.h | 26 template<typename Scalar_, int NumIndices_, int Options_ = 0, typename IndexType = DenseIndex> class Tensor; 27 template<typename Scalar_, typename Dimensions, int Options_ = 0, typename IndexType = DenseIndex> class TensorFixedSize; 45 template<DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorImagePatchOp; 46 template<DenseIndex Planes, DenseIndex Rows, DenseIndex Cols, typename XprType> class TensorVolumePatchOp; 48 template<DenseIndex DimId, typename XprType> class TensorChippingOp;
|
/external/tensorflow/tensorflow/contrib/image/kernels/ |
image_ops.h | 34 using Eigen::DenseIndex; 53 operator()(const array<DenseIndex, 4>& coords) const { 92 nearest_interpolation(const DenseIndex batch, const float y, const float x, 93 const DenseIndex channel, const T fill_value) const { 94 return read_with_fill_value(batch, DenseIndex(std::round(y)), 95 DenseIndex(std::round(x)), channel, fill_value); 99 bilinear_interpolation(const DenseIndex batch, const float y, const float x, 100 const DenseIndex channel, const T fill_value) const { 108 (x_ceil - x) * read_with_fill_value(batch, DenseIndex(y_floor), 109 DenseIndex(x_floor), channel [all...] |
/external/tensorflow/tensorflow/core/kernels/ |
conv_ops_gpu_2.cu.cc | 30 Eigen::DenseIndex>; 33 Eigen::DenseIndex>;
|
split_lib.h | 30 const Eigen::DSizes<Eigen::DenseIndex, 2>& slice_indices, 31 const Eigen::DSizes<Eigen::DenseIndex, 2>& slice_sizes); 38 const Eigen::DSizes<Eigen::DenseIndex, 3>& slice_indices, 39 const Eigen::DSizes<Eigen::DenseIndex, 3>& slice_sizes); 47 const Eigen::DSizes<Eigen::DenseIndex, 3>& slice_indices, 48 const Eigen::DSizes<Eigen::DenseIndex, 3>& slice_sizes); 57 const Eigen::DSizes<Eigen::DenseIndex, 3>& slice_indices, 58 const Eigen::DSizes<Eigen::DenseIndex, 3>& slice_sizes);
|
eigen_pooling.h | 64 SpatialMaxPooling(const Input& input, DenseIndex patchRows, 65 DenseIndex patchCols, DenseIndex strideRows, 66 DenseIndex strideCols, const PaddingType padding_type, 67 DenseIndex in_strideRows = 1, DenseIndex in_strideCols = 1) { 77 const DenseIndex patchRowsEff = 79 const DenseIndex patchColsEff = 97 static_cast<DenseIndex>(in.dimension(idxRows)) - patchRowsEff + 1, 100 static_cast<DenseIndex>(in.dimension(idxCols)) - patchColsEff + 1 [all...] |
tile_ops_impl.h | 31 const Eigen::DSizes<Eigen::DenseIndex, NDIM>& indices, 32 const Eigen::DSizes<Eigen::DenseIndex, NDIM>& sizes, 46 const Eigen::DSizes<Eigen::DenseIndex, 0>&, 47 const Eigen::DSizes<Eigen::DenseIndex, 0>&, 62 const Eigen::DSizes<Eigen::DenseIndex, REDUCEDNDIM>& reduce_dim, 63 const Eigen::DSizes<Eigen::DenseIndex, NDIM>& reshape_dim) const {
|
split_lib_cpu.cc | 31 const Eigen::DSizes<Eigen::DenseIndex, 3>& slice_indices, 32 const Eigen::DSizes<Eigen::DenseIndex, 3>& slice_sizes) { 50 const Eigen::DSizes<Eigen::DenseIndex, 3>& slice_indices, 51 const Eigen::DSizes<Eigen::DenseIndex, 3>& slice_sizes) {
|
/external/eigen/unsupported/test/ |
cxx11_tensor_argmax.cpp | 26 Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); 29 for (DenseIndex n = 0; n < 2*3*5*7; ++n) { 30 const Tuple<DenseIndex, float>& v = index_tuples.coeff(n); 43 Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); 47 for (Eigen::DenseIndex n = 0; n < tensor.size(); ++n) { 48 const Tuple<DenseIndex, float>& v = index_tuples(n); //(i, j, k, l); 61 Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); 64 Tensor<Tuple<DenseIndex, float>, 0, DataLayout> reduced; 65 DimensionList<DenseIndex, 4> dims; 67 dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float> >()) [all...] |
cxx11_tensor_random.cpp | 46 int operator()(Eigen::DenseIndex element_location, Eigen::DenseIndex /*unused*/ = 0) const { 52 Eigen::DenseIndex packet_location, Eigen::DenseIndex /*unused*/ = 0) const {
|
cxx11_tensor_custom_op.cpp | 18 DSizes<DenseIndex, 2> dimensions(const Tensor<float, 2>& input) const { 19 DSizes<DenseIndex, 2> result; 28 array<DenseIndex, 2> strides; 33 Eigen::DSizes<DenseIndex, 2> offsets(1,1); 34 Eigen::DSizes<DenseIndex, 2> extents(output.dimension(0)-1, output.dimension(1)-1); 62 DSizes<DenseIndex, 3> dimensions(const Tensor<float, 3>& input1, const Tensor<float, 3>& input2) const { 63 DSizes<DenseIndex, 3> result;
|
/external/eigen/blas/ |
level3_impl.h | 16 typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, Scalar, internal::level3_blocking<Scalar,Scalar>&, Eigen::internal::GemmParallelInfo<DenseIndex>*); 19 (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,ColMajor,false,ColMajor>::run), 21 (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,false,ColMajor>::run), 23 (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor>::run) [all...] |
/external/eigen/unsupported/Eigen/src/Splines/ |
Spline.h | 127 derivatives(Scalar u, DenseIndex order) const; 136 derivatives(Scalar u, DenseIndex order = DerivativeOrder) const; 171 basisFunctionDerivatives(Scalar u, DenseIndex order) const; 180 basisFunctionDerivatives(Scalar u, DenseIndex order = DerivativeOrder) const; 185 DenseIndex degree() const; 191 DenseIndex span(Scalar u) const; 196 static DenseIndex Span(typename SplineTraits<Spline>::Scalar u, DenseIndex degree, const typename SplineTraits<Spline>::KnotVectorType& knots); 210 static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots); 218 const Scalar u, const DenseIndex order, const DenseIndex degree, const KnotVectorType& knots) [all...] |
SplineFitting.h | 45 void KnotAveraging(const KnotVectorType& parameters, DenseIndex degree, KnotVectorType& knots) 49 for (DenseIndex j=1; j<parameters.size()-degree; ++j) 85 DenseIndex numParameters = parameters.size(); 86 DenseIndex numDerivatives = derivativeIndices.size(); 94 DenseIndex startIndex; 95 DenseIndex endIndex; 97 DenseIndex numInternalDerivatives = numDerivatives; 120 DenseIndex numAverageKnots = endIndex - startIndex + 3; 125 for (DenseIndex i = startIndex; i <= endIndex; ++i) 133 for (DenseIndex i = 0; i < numAverageKnots - 1; ++i [all...] |
/external/eigen/unsupported/Eigen/src/Polynomials/ |
PolynomialUtils.h | 31 for(DenseIndex i=poly.size()-2; i>=0; --i ){ 56 for( DenseIndex i=1; i<poly.size(); ++i ){ 85 for( DenseIndex i=0; i<poly.size()-1; ++i ){ 104 DenseIndex i=0; 111 for( DenseIndex j=i+1; j<poly.size(); ++j ){ 134 for( DenseIndex i=1; i< rv.size(); ++i ) 136 for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
|
/external/eigen/test/ |
resize.cpp | 12 template<DenseIndex rows, DenseIndex cols>
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
index_ops_kernel_argmax_float_1d.cc | 34 Eigen::DSizes<Eigen::DenseIndex, 1> in_eig_sizes(input_size); 37 Eigen::DSizes<Eigen::DenseIndex, 0> out_eig_sizes;
|