1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines malloc/free checker, which checks for potential memory 11 // leaks, double free, and use-after-free problems. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ClangSACheckers.h" 16 #include "InterCheckerAPI.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/ParentMap.h" 19 #include "clang/Basic/SourceManager.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" 22 #include "clang/StaticAnalyzer/Core/Checker.h" 23 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" 25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" 26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" 27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" 28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" 29 #include "llvm/ADT/ImmutableMap.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallString.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include <climits> 34 #include <utility> 35 36 using namespace clang; 37 using namespace ento; 38 39 namespace { 40 41 // Used to check correspondence between allocators and deallocators. 42 enum AllocationFamily { 43 AF_None, 44 AF_Malloc, 45 AF_CXXNew, 46 AF_CXXNewArray, 47 AF_IfNameIndex, 48 AF_Alloca 49 }; 50 51 class RefState { 52 enum Kind { // Reference to allocated memory. 53 Allocated, 54 // Reference to zero-allocated memory. 55 AllocatedOfSizeZero, 56 // Reference to released/freed memory. 57 Released, 58 // The responsibility for freeing resources has transferred from 59 // this reference. A relinquished symbol should not be freed. 60 Relinquished, 61 // We are no longer guaranteed to have observed all manipulations 62 // of this pointer/memory. For example, it could have been 63 // passed as a parameter to an opaque function. 64 Escaped 65 }; 66 67 const Stmt *S; 68 unsigned K : 3; // Kind enum, but stored as a bitfield. 69 unsigned Family : 29; // Rest of 32-bit word, currently just an allocation 70 // family. 71 72 RefState(Kind k, const Stmt *s, unsigned family) 73 : S(s), K(k), Family(family) { 74 assert(family != AF_None); 75 } 76 public: 77 bool isAllocated() const { return K == Allocated; } 78 bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; } 79 bool isReleased() const { return K == Released; } 80 bool isRelinquished() const { return K == Relinquished; } 81 bool isEscaped() const { return K == Escaped; } 82 AllocationFamily getAllocationFamily() const { 83 return (AllocationFamily)Family; 84 } 85 const Stmt *getStmt() const { return S; } 86 87 bool operator==(const RefState &X) const { 88 return K == X.K && S == X.S && Family == X.Family; 89 } 90 91 static RefState getAllocated(unsigned family, const Stmt *s) { 92 return RefState(Allocated, s, family); 93 } 94 static RefState getAllocatedOfSizeZero(const RefState *RS) { 95 return RefState(AllocatedOfSizeZero, RS->getStmt(), 96 RS->getAllocationFamily()); 97 } 98 static RefState getReleased(unsigned family, const Stmt *s) { 99 return RefState(Released, s, family); 100 } 101 static RefState getRelinquished(unsigned family, const Stmt *s) { 102 return RefState(Relinquished, s, family); 103 } 104 static RefState getEscaped(const RefState *RS) { 105 return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily()); 106 } 107 108 void Profile(llvm::FoldingSetNodeID &ID) const { 109 ID.AddInteger(K); 110 ID.AddPointer(S); 111 ID.AddInteger(Family); 112 } 113 114 void dump(raw_ostream &OS) const { 115 switch (static_cast<Kind>(K)) { 116 #define CASE(ID) case ID: OS << #ID; break; 117 CASE(Allocated) 118 CASE(AllocatedOfSizeZero) 119 CASE(Released) 120 CASE(Relinquished) 121 CASE(Escaped) 122 } 123 } 124 125 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); } 126 }; 127 128 enum ReallocPairKind { 129 RPToBeFreedAfterFailure, 130 // The symbol has been freed when reallocation failed. 131 RPIsFreeOnFailure, 132 // The symbol does not need to be freed after reallocation fails. 133 RPDoNotTrackAfterFailure 134 }; 135 136 /// \class ReallocPair 137 /// \brief Stores information about the symbol being reallocated by a call to 138 /// 'realloc' to allow modeling failed reallocation later in the path. 139 struct ReallocPair { 140 // \brief The symbol which realloc reallocated. 141 SymbolRef ReallocatedSym; 142 ReallocPairKind Kind; 143 144 ReallocPair(SymbolRef S, ReallocPairKind K) : 145 ReallocatedSym(S), Kind(K) {} 146 void Profile(llvm::FoldingSetNodeID &ID) const { 147 ID.AddInteger(Kind); 148 ID.AddPointer(ReallocatedSym); 149 } 150 bool operator==(const ReallocPair &X) const { 151 return ReallocatedSym == X.ReallocatedSym && 152 Kind == X.Kind; 153 } 154 }; 155 156 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo; 157 158 class MallocChecker : public Checker<check::DeadSymbols, 159 check::PointerEscape, 160 check::ConstPointerEscape, 161 check::PreStmt<ReturnStmt>, 162 check::PreCall, 163 check::PostStmt<CallExpr>, 164 check::PostStmt<CXXNewExpr>, 165 check::PreStmt<CXXDeleteExpr>, 166 check::PostStmt<BlockExpr>, 167 check::PostObjCMessage, 168 check::Location, 169 eval::Assume> 170 { 171 public: 172 MallocChecker() 173 : II_alloca(nullptr), II_win_alloca(nullptr), II_malloc(nullptr), 174 II_free(nullptr), II_realloc(nullptr), II_calloc(nullptr), 175 II_valloc(nullptr), II_reallocf(nullptr), II_strndup(nullptr), 176 II_strdup(nullptr), II_win_strdup(nullptr), II_kmalloc(nullptr), 177 II_if_nameindex(nullptr), II_if_freenameindex(nullptr), 178 II_wcsdup(nullptr), II_win_wcsdup(nullptr) {} 179 180 /// In pessimistic mode, the checker assumes that it does not know which 181 /// functions might free the memory. 182 enum CheckKind { 183 CK_MallocChecker, 184 CK_NewDeleteChecker, 185 CK_NewDeleteLeaksChecker, 186 CK_MismatchedDeallocatorChecker, 187 CK_NumCheckKinds 188 }; 189 190 enum class MemoryOperationKind { 191 MOK_Allocate, 192 MOK_Free, 193 MOK_Any 194 }; 195 196 DefaultBool IsOptimistic; 197 198 DefaultBool ChecksEnabled[CK_NumCheckKinds]; 199 CheckName CheckNames[CK_NumCheckKinds]; 200 201 void checkPreCall(const CallEvent &Call, CheckerContext &C) const; 202 void checkPostStmt(const CallExpr *CE, CheckerContext &C) const; 203 void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const; 204 void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const; 205 void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const; 206 void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const; 207 void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const; 208 void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; 209 ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond, 210 bool Assumption) const; 211 void checkLocation(SVal l, bool isLoad, const Stmt *S, 212 CheckerContext &C) const; 213 214 ProgramStateRef checkPointerEscape(ProgramStateRef State, 215 const InvalidatedSymbols &Escaped, 216 const CallEvent *Call, 217 PointerEscapeKind Kind) const; 218 ProgramStateRef checkConstPointerEscape(ProgramStateRef State, 219 const InvalidatedSymbols &Escaped, 220 const CallEvent *Call, 221 PointerEscapeKind Kind) const; 222 223 void printState(raw_ostream &Out, ProgramStateRef State, 224 const char *NL, const char *Sep) const override; 225 226 private: 227 mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds]; 228 mutable std::unique_ptr<BugType> BT_DoubleDelete; 229 mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds]; 230 mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds]; 231 mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds]; 232 mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds]; 233 mutable std::unique_ptr<BugType> BT_MismatchedDealloc; 234 mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds]; 235 mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds]; 236 mutable IdentifierInfo *II_alloca, *II_win_alloca, *II_malloc, *II_free, 237 *II_realloc, *II_calloc, *II_valloc, *II_reallocf, 238 *II_strndup, *II_strdup, *II_win_strdup, *II_kmalloc, 239 *II_if_nameindex, *II_if_freenameindex, *II_wcsdup, 240 *II_win_wcsdup; 241 mutable Optional<uint64_t> KernelZeroFlagVal; 242 243 void initIdentifierInfo(ASTContext &C) const; 244 245 /// \brief Determine family of a deallocation expression. 246 AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const; 247 248 /// \brief Print names of allocators and deallocators. 249 /// 250 /// \returns true on success. 251 bool printAllocDeallocName(raw_ostream &os, CheckerContext &C, 252 const Expr *E) const; 253 254 /// \brief Print expected name of an allocator based on the deallocator's 255 /// family derived from the DeallocExpr. 256 void printExpectedAllocName(raw_ostream &os, CheckerContext &C, 257 const Expr *DeallocExpr) const; 258 /// \brief Print expected name of a deallocator based on the allocator's 259 /// family. 260 void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const; 261 262 ///@{ 263 /// Check if this is one of the functions which can allocate/reallocate memory 264 /// pointed to by one of its arguments. 265 bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const; 266 bool isCMemFunction(const FunctionDecl *FD, 267 ASTContext &C, 268 AllocationFamily Family, 269 MemoryOperationKind MemKind) const; 270 bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const; 271 ///@} 272 273 /// \brief Perform a zero-allocation check. 274 ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E, 275 const unsigned AllocationSizeArg, 276 ProgramStateRef State) const; 277 278 ProgramStateRef MallocMemReturnsAttr(CheckerContext &C, 279 const CallExpr *CE, 280 const OwnershipAttr* Att, 281 ProgramStateRef State) const; 282 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 283 const Expr *SizeEx, SVal Init, 284 ProgramStateRef State, 285 AllocationFamily Family = AF_Malloc); 286 static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE, 287 SVal SizeEx, SVal Init, 288 ProgramStateRef State, 289 AllocationFamily Family = AF_Malloc); 290 291 // Check if this malloc() for special flags. At present that means M_ZERO or 292 // __GFP_ZERO (in which case, treat it like calloc). 293 llvm::Optional<ProgramStateRef> 294 performKernelMalloc(const CallExpr *CE, CheckerContext &C, 295 const ProgramStateRef &State) const; 296 297 /// Update the RefState to reflect the new memory allocation. 298 static ProgramStateRef 299 MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State, 300 AllocationFamily Family = AF_Malloc); 301 302 ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE, 303 const OwnershipAttr* Att, 304 ProgramStateRef State) const; 305 ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE, 306 ProgramStateRef state, unsigned Num, 307 bool Hold, 308 bool &ReleasedAllocated, 309 bool ReturnsNullOnFailure = false) const; 310 ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg, 311 const Expr *ParentExpr, 312 ProgramStateRef State, 313 bool Hold, 314 bool &ReleasedAllocated, 315 bool ReturnsNullOnFailure = false) const; 316 317 ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE, 318 bool FreesMemOnFailure, 319 ProgramStateRef State) const; 320 static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE, 321 ProgramStateRef State); 322 323 ///\brief Check if the memory associated with this symbol was released. 324 bool isReleased(SymbolRef Sym, CheckerContext &C) const; 325 326 bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const; 327 328 void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 329 const Stmt *S) const; 330 331 bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const; 332 333 /// Check if the function is known free memory, or if it is 334 /// "interesting" and should be modeled explicitly. 335 /// 336 /// \param [out] EscapingSymbol A function might not free memory in general, 337 /// but could be known to free a particular symbol. In this case, false is 338 /// returned and the single escaping symbol is returned through the out 339 /// parameter. 340 /// 341 /// We assume that pointers do not escape through calls to system functions 342 /// not handled by this checker. 343 bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call, 344 ProgramStateRef State, 345 SymbolRef &EscapingSymbol) const; 346 347 // Implementation of the checkPointerEscape callabcks. 348 ProgramStateRef checkPointerEscapeAux(ProgramStateRef State, 349 const InvalidatedSymbols &Escaped, 350 const CallEvent *Call, 351 PointerEscapeKind Kind, 352 bool(*CheckRefState)(const RefState*)) const; 353 354 ///@{ 355 /// Tells if a given family/call/symbol is tracked by the current checker. 356 /// Sets CheckKind to the kind of the checker responsible for this 357 /// family/call/symbol. 358 Optional<CheckKind> getCheckIfTracked(AllocationFamily Family, 359 bool IsALeakCheck = false) const; 360 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, 361 const Stmt *AllocDeallocStmt, 362 bool IsALeakCheck = false) const; 363 Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 364 bool IsALeakCheck = false) const; 365 ///@} 366 static bool SummarizeValue(raw_ostream &os, SVal V); 367 static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR); 368 void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 369 const Expr *DeallocExpr) const; 370 void ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 371 SourceRange Range) const; 372 void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range, 373 const Expr *DeallocExpr, const RefState *RS, 374 SymbolRef Sym, bool OwnershipTransferred) const; 375 void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range, 376 const Expr *DeallocExpr, 377 const Expr *AllocExpr = nullptr) const; 378 void ReportUseAfterFree(CheckerContext &C, SourceRange Range, 379 SymbolRef Sym) const; 380 void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released, 381 SymbolRef Sym, SymbolRef PrevSym) const; 382 383 void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const; 384 385 void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range, 386 SymbolRef Sym) const; 387 388 /// Find the location of the allocation for Sym on the path leading to the 389 /// exploded node N. 390 LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 391 CheckerContext &C) const; 392 393 void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const; 394 395 /// The bug visitor which allows us to print extra diagnostics along the 396 /// BugReport path. For example, showing the allocation site of the leaked 397 /// region. 398 class MallocBugVisitor final 399 : public BugReporterVisitorImpl<MallocBugVisitor> { 400 protected: 401 enum NotificationMode { 402 Normal, 403 ReallocationFailed 404 }; 405 406 // The allocated region symbol tracked by the main analysis. 407 SymbolRef Sym; 408 409 // The mode we are in, i.e. what kind of diagnostics will be emitted. 410 NotificationMode Mode; 411 412 // A symbol from when the primary region should have been reallocated. 413 SymbolRef FailedReallocSymbol; 414 415 bool IsLeak; 416 417 public: 418 MallocBugVisitor(SymbolRef S, bool isLeak = false) 419 : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), IsLeak(isLeak) {} 420 421 void Profile(llvm::FoldingSetNodeID &ID) const override { 422 static int X = 0; 423 ID.AddPointer(&X); 424 ID.AddPointer(Sym); 425 } 426 427 inline bool isAllocated(const RefState *S, const RefState *SPrev, 428 const Stmt *Stmt) { 429 // Did not track -> allocated. Other state (released) -> allocated. 430 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) && 431 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 432 (!SPrev || !(SPrev->isAllocated() || 433 SPrev->isAllocatedOfSizeZero()))); 434 } 435 436 inline bool isReleased(const RefState *S, const RefState *SPrev, 437 const Stmt *Stmt) { 438 // Did not track -> released. Other state (allocated) -> released. 439 return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) && 440 (S && S->isReleased()) && (!SPrev || !SPrev->isReleased())); 441 } 442 443 inline bool isRelinquished(const RefState *S, const RefState *SPrev, 444 const Stmt *Stmt) { 445 // Did not track -> relinquished. Other state (allocated) -> relinquished. 446 return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) || 447 isa<ObjCPropertyRefExpr>(Stmt)) && 448 (S && S->isRelinquished()) && 449 (!SPrev || !SPrev->isRelinquished())); 450 } 451 452 inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev, 453 const Stmt *Stmt) { 454 // If the expression is not a call, and the state change is 455 // released -> allocated, it must be the realloc return value 456 // check. If we have to handle more cases here, it might be cleaner just 457 // to track this extra bit in the state itself. 458 return ((!Stmt || !isa<CallExpr>(Stmt)) && 459 (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) && 460 (SPrev && !(SPrev->isAllocated() || 461 SPrev->isAllocatedOfSizeZero()))); 462 } 463 464 PathDiagnosticPiece *VisitNode(const ExplodedNode *N, 465 const ExplodedNode *PrevN, 466 BugReporterContext &BRC, 467 BugReport &BR) override; 468 469 std::unique_ptr<PathDiagnosticPiece> 470 getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, 471 BugReport &BR) override { 472 if (!IsLeak) 473 return nullptr; 474 475 PathDiagnosticLocation L = 476 PathDiagnosticLocation::createEndOfPath(EndPathNode, 477 BRC.getSourceManager()); 478 // Do not add the statement itself as a range in case of leak. 479 return llvm::make_unique<PathDiagnosticEventPiece>(L, BR.getDescription(), 480 false); 481 } 482 483 private: 484 class StackHintGeneratorForReallocationFailed 485 : public StackHintGeneratorForSymbol { 486 public: 487 StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M) 488 : StackHintGeneratorForSymbol(S, M) {} 489 490 std::string getMessageForArg(const Expr *ArgE, 491 unsigned ArgIndex) override { 492 // Printed parameters start at 1, not 0. 493 ++ArgIndex; 494 495 SmallString<200> buf; 496 llvm::raw_svector_ostream os(buf); 497 498 os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex) 499 << " parameter failed"; 500 501 return os.str(); 502 } 503 504 std::string getMessageForReturn(const CallExpr *CallExpr) override { 505 return "Reallocation of returned value failed"; 506 } 507 }; 508 }; 509 }; 510 } // end anonymous namespace 511 512 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState) 513 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair) 514 REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef) 515 516 // A map from the freed symbol to the symbol representing the return value of 517 // the free function. 518 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef) 519 520 namespace { 521 class StopTrackingCallback final : public SymbolVisitor { 522 ProgramStateRef state; 523 public: 524 StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {} 525 ProgramStateRef getState() const { return state; } 526 527 bool VisitSymbol(SymbolRef sym) override { 528 state = state->remove<RegionState>(sym); 529 return true; 530 } 531 }; 532 } // end anonymous namespace 533 534 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const { 535 if (II_malloc) 536 return; 537 II_alloca = &Ctx.Idents.get("alloca"); 538 II_malloc = &Ctx.Idents.get("malloc"); 539 II_free = &Ctx.Idents.get("free"); 540 II_realloc = &Ctx.Idents.get("realloc"); 541 II_reallocf = &Ctx.Idents.get("reallocf"); 542 II_calloc = &Ctx.Idents.get("calloc"); 543 II_valloc = &Ctx.Idents.get("valloc"); 544 II_strdup = &Ctx.Idents.get("strdup"); 545 II_strndup = &Ctx.Idents.get("strndup"); 546 II_wcsdup = &Ctx.Idents.get("wcsdup"); 547 II_kmalloc = &Ctx.Idents.get("kmalloc"); 548 II_if_nameindex = &Ctx.Idents.get("if_nameindex"); 549 II_if_freenameindex = &Ctx.Idents.get("if_freenameindex"); 550 551 //MSVC uses `_`-prefixed instead, so we check for them too. 552 II_win_strdup = &Ctx.Idents.get("_strdup"); 553 II_win_wcsdup = &Ctx.Idents.get("_wcsdup"); 554 II_win_alloca = &Ctx.Idents.get("_alloca"); 555 } 556 557 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const { 558 if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any)) 559 return true; 560 561 if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 562 return true; 563 564 if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any)) 565 return true; 566 567 if (isStandardNewDelete(FD, C)) 568 return true; 569 570 return false; 571 } 572 573 bool MallocChecker::isCMemFunction(const FunctionDecl *FD, 574 ASTContext &C, 575 AllocationFamily Family, 576 MemoryOperationKind MemKind) const { 577 if (!FD) 578 return false; 579 580 bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any || 581 MemKind == MemoryOperationKind::MOK_Free); 582 bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any || 583 MemKind == MemoryOperationKind::MOK_Allocate); 584 585 if (FD->getKind() == Decl::Function) { 586 const IdentifierInfo *FunI = FD->getIdentifier(); 587 initIdentifierInfo(C); 588 589 if (Family == AF_Malloc && CheckFree) { 590 if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf) 591 return true; 592 } 593 594 if (Family == AF_Malloc && CheckAlloc) { 595 if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf || 596 FunI == II_calloc || FunI == II_valloc || FunI == II_strdup || 597 FunI == II_win_strdup || FunI == II_strndup || FunI == II_wcsdup || 598 FunI == II_win_wcsdup || FunI == II_kmalloc) 599 return true; 600 } 601 602 if (Family == AF_IfNameIndex && CheckFree) { 603 if (FunI == II_if_freenameindex) 604 return true; 605 } 606 607 if (Family == AF_IfNameIndex && CheckAlloc) { 608 if (FunI == II_if_nameindex) 609 return true; 610 } 611 612 if (Family == AF_Alloca && CheckAlloc) { 613 if (FunI == II_alloca || FunI == II_win_alloca) 614 return true; 615 } 616 } 617 618 if (Family != AF_Malloc) 619 return false; 620 621 if (IsOptimistic && FD->hasAttrs()) { 622 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 623 OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind(); 624 if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) { 625 if (CheckFree) 626 return true; 627 } else if (OwnKind == OwnershipAttr::Returns) { 628 if (CheckAlloc) 629 return true; 630 } 631 } 632 } 633 634 return false; 635 } 636 637 // Tells if the callee is one of the following: 638 // 1) A global non-placement new/delete operator function. 639 // 2) A global placement operator function with the single placement argument 640 // of type std::nothrow_t. 641 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD, 642 ASTContext &C) const { 643 if (!FD) 644 return false; 645 646 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 647 if (Kind != OO_New && Kind != OO_Array_New && 648 Kind != OO_Delete && Kind != OO_Array_Delete) 649 return false; 650 651 // Skip all operator new/delete methods. 652 if (isa<CXXMethodDecl>(FD)) 653 return false; 654 655 // Return true if tested operator is a standard placement nothrow operator. 656 if (FD->getNumParams() == 2) { 657 QualType T = FD->getParamDecl(1)->getType(); 658 if (const IdentifierInfo *II = T.getBaseTypeIdentifier()) 659 return II->getName().equals("nothrow_t"); 660 } 661 662 // Skip placement operators. 663 if (FD->getNumParams() != 1 || FD->isVariadic()) 664 return false; 665 666 // One of the standard new/new[]/delete/delete[] non-placement operators. 667 return true; 668 } 669 670 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc( 671 const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const { 672 // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels: 673 // 674 // void *malloc(unsigned long size, struct malloc_type *mtp, int flags); 675 // 676 // One of the possible flags is M_ZERO, which means 'give me back an 677 // allocation which is already zeroed', like calloc. 678 679 // 2-argument kmalloc(), as used in the Linux kernel: 680 // 681 // void *kmalloc(size_t size, gfp_t flags); 682 // 683 // Has the similar flag value __GFP_ZERO. 684 685 // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some 686 // code could be shared. 687 688 ASTContext &Ctx = C.getASTContext(); 689 llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS(); 690 691 if (!KernelZeroFlagVal.hasValue()) { 692 if (OS == llvm::Triple::FreeBSD) 693 KernelZeroFlagVal = 0x0100; 694 else if (OS == llvm::Triple::NetBSD) 695 KernelZeroFlagVal = 0x0002; 696 else if (OS == llvm::Triple::OpenBSD) 697 KernelZeroFlagVal = 0x0008; 698 else if (OS == llvm::Triple::Linux) 699 // __GFP_ZERO 700 KernelZeroFlagVal = 0x8000; 701 else 702 // FIXME: We need a more general way of getting the M_ZERO value. 703 // See also: O_CREAT in UnixAPIChecker.cpp. 704 705 // Fall back to normal malloc behavior on platforms where we don't 706 // know M_ZERO. 707 return None; 708 } 709 710 // We treat the last argument as the flags argument, and callers fall-back to 711 // normal malloc on a None return. This works for the FreeBSD kernel malloc 712 // as well as Linux kmalloc. 713 if (CE->getNumArgs() < 2) 714 return None; 715 716 const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1); 717 const SVal V = State->getSVal(FlagsEx, C.getLocationContext()); 718 if (!V.getAs<NonLoc>()) { 719 // The case where 'V' can be a location can only be due to a bad header, 720 // so in this case bail out. 721 return None; 722 } 723 724 NonLoc Flags = V.castAs<NonLoc>(); 725 NonLoc ZeroFlag = C.getSValBuilder() 726 .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType()) 727 .castAs<NonLoc>(); 728 SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And, 729 Flags, ZeroFlag, 730 FlagsEx->getType()); 731 if (MaskedFlagsUC.isUnknownOrUndef()) 732 return None; 733 DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>(); 734 735 // Check if maskedFlags is non-zero. 736 ProgramStateRef TrueState, FalseState; 737 std::tie(TrueState, FalseState) = State->assume(MaskedFlags); 738 739 // If M_ZERO is set, treat this like calloc (initialized). 740 if (TrueState && !FalseState) { 741 SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy); 742 return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState); 743 } 744 745 return None; 746 } 747 748 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const { 749 if (C.wasInlined) 750 return; 751 752 const FunctionDecl *FD = C.getCalleeDecl(CE); 753 if (!FD) 754 return; 755 756 ProgramStateRef State = C.getState(); 757 bool ReleasedAllocatedMemory = false; 758 759 if (FD->getKind() == Decl::Function) { 760 initIdentifierInfo(C.getASTContext()); 761 IdentifierInfo *FunI = FD->getIdentifier(); 762 763 if (FunI == II_malloc) { 764 if (CE->getNumArgs() < 1) 765 return; 766 if (CE->getNumArgs() < 3) { 767 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 768 if (CE->getNumArgs() == 1) 769 State = ProcessZeroAllocation(C, CE, 0, State); 770 } else if (CE->getNumArgs() == 3) { 771 llvm::Optional<ProgramStateRef> MaybeState = 772 performKernelMalloc(CE, C, State); 773 if (MaybeState.hasValue()) 774 State = MaybeState.getValue(); 775 else 776 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 777 } 778 } else if (FunI == II_kmalloc) { 779 llvm::Optional<ProgramStateRef> MaybeState = 780 performKernelMalloc(CE, C, State); 781 if (MaybeState.hasValue()) 782 State = MaybeState.getValue(); 783 else 784 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 785 } else if (FunI == II_valloc) { 786 if (CE->getNumArgs() < 1) 787 return; 788 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State); 789 State = ProcessZeroAllocation(C, CE, 0, State); 790 } else if (FunI == II_realloc) { 791 State = ReallocMem(C, CE, false, State); 792 State = ProcessZeroAllocation(C, CE, 1, State); 793 } else if (FunI == II_reallocf) { 794 State = ReallocMem(C, CE, true, State); 795 State = ProcessZeroAllocation(C, CE, 1, State); 796 } else if (FunI == II_calloc) { 797 State = CallocMem(C, CE, State); 798 State = ProcessZeroAllocation(C, CE, 0, State); 799 State = ProcessZeroAllocation(C, CE, 1, State); 800 } else if (FunI == II_free) { 801 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 802 } else if (FunI == II_strdup || FunI == II_win_strdup || 803 FunI == II_wcsdup || FunI == II_win_wcsdup) { 804 State = MallocUpdateRefState(C, CE, State); 805 } else if (FunI == II_strndup) { 806 State = MallocUpdateRefState(C, CE, State); 807 } else if (FunI == II_alloca || FunI == II_win_alloca) { 808 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 809 AF_Alloca); 810 State = ProcessZeroAllocation(C, CE, 0, State); 811 } else if (isStandardNewDelete(FD, C.getASTContext())) { 812 // Process direct calls to operator new/new[]/delete/delete[] functions 813 // as distinct from new/new[]/delete/delete[] expressions that are 814 // processed by the checkPostStmt callbacks for CXXNewExpr and 815 // CXXDeleteExpr. 816 OverloadedOperatorKind K = FD->getOverloadedOperator(); 817 if (K == OO_New) { 818 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 819 AF_CXXNew); 820 State = ProcessZeroAllocation(C, CE, 0, State); 821 } 822 else if (K == OO_Array_New) { 823 State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State, 824 AF_CXXNewArray); 825 State = ProcessZeroAllocation(C, CE, 0, State); 826 } 827 else if (K == OO_Delete || K == OO_Array_Delete) 828 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 829 else 830 llvm_unreachable("not a new/delete operator"); 831 } else if (FunI == II_if_nameindex) { 832 // Should we model this differently? We can allocate a fixed number of 833 // elements with zeros in the last one. 834 State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State, 835 AF_IfNameIndex); 836 } else if (FunI == II_if_freenameindex) { 837 State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory); 838 } 839 } 840 841 if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) { 842 // Check all the attributes, if there are any. 843 // There can be multiple of these attributes. 844 if (FD->hasAttrs()) 845 for (const auto *I : FD->specific_attrs<OwnershipAttr>()) { 846 switch (I->getOwnKind()) { 847 case OwnershipAttr::Returns: 848 State = MallocMemReturnsAttr(C, CE, I, State); 849 break; 850 case OwnershipAttr::Takes: 851 case OwnershipAttr::Holds: 852 State = FreeMemAttr(C, CE, I, State); 853 break; 854 } 855 } 856 } 857 C.addTransition(State); 858 } 859 860 // Performs a 0-sized allocations check. 861 ProgramStateRef MallocChecker::ProcessZeroAllocation(CheckerContext &C, 862 const Expr *E, 863 const unsigned AllocationSizeArg, 864 ProgramStateRef State) const { 865 if (!State) 866 return nullptr; 867 868 const Expr *Arg = nullptr; 869 870 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 871 Arg = CE->getArg(AllocationSizeArg); 872 } 873 else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 874 if (NE->isArray()) 875 Arg = NE->getArraySize(); 876 else 877 return State; 878 } 879 else 880 llvm_unreachable("not a CallExpr or CXXNewExpr"); 881 882 assert(Arg); 883 884 Optional<DefinedSVal> DefArgVal = 885 State->getSVal(Arg, C.getLocationContext()).getAs<DefinedSVal>(); 886 887 if (!DefArgVal) 888 return State; 889 890 // Check if the allocation size is 0. 891 ProgramStateRef TrueState, FalseState; 892 SValBuilder &SvalBuilder = C.getSValBuilder(); 893 DefinedSVal Zero = 894 SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); 895 896 std::tie(TrueState, FalseState) = 897 State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero)); 898 899 if (TrueState && !FalseState) { 900 SVal retVal = State->getSVal(E, C.getLocationContext()); 901 SymbolRef Sym = retVal.getAsLocSymbol(); 902 if (!Sym) 903 return State; 904 905 const RefState *RS = State->get<RegionState>(Sym); 906 if (RS) { 907 if (RS->isAllocated()) 908 return TrueState->set<RegionState>(Sym, 909 RefState::getAllocatedOfSizeZero(RS)); 910 else 911 return State; 912 } else { 913 // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as 914 // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not 915 // tracked. Add zero-reallocated Sym to the state to catch references 916 // to zero-allocated memory. 917 return TrueState->add<ReallocSizeZeroSymbols>(Sym); 918 } 919 } 920 921 // Assume the value is non-zero going forward. 922 assert(FalseState); 923 return FalseState; 924 } 925 926 static QualType getDeepPointeeType(QualType T) { 927 QualType Result = T, PointeeType = T->getPointeeType(); 928 while (!PointeeType.isNull()) { 929 Result = PointeeType; 930 PointeeType = PointeeType->getPointeeType(); 931 } 932 return Result; 933 } 934 935 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) { 936 937 const CXXConstructExpr *ConstructE = NE->getConstructExpr(); 938 if (!ConstructE) 939 return false; 940 941 if (!NE->getAllocatedType()->getAsCXXRecordDecl()) 942 return false; 943 944 const CXXConstructorDecl *CtorD = ConstructE->getConstructor(); 945 946 // Iterate over the constructor parameters. 947 for (const auto *CtorParam : CtorD->parameters()) { 948 949 QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType(); 950 if (CtorParamPointeeT.isNull()) 951 continue; 952 953 CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT); 954 955 if (CtorParamPointeeT->getAsCXXRecordDecl()) 956 return true; 957 } 958 959 return false; 960 } 961 962 void MallocChecker::checkPostStmt(const CXXNewExpr *NE, 963 CheckerContext &C) const { 964 965 if (NE->getNumPlacementArgs()) 966 for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(), 967 E = NE->placement_arg_end(); I != E; ++I) 968 if (SymbolRef Sym = C.getSVal(*I).getAsSymbol()) 969 checkUseAfterFree(Sym, C, *I); 970 971 if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext())) 972 return; 973 974 ParentMap &PM = C.getLocationContext()->getParentMap(); 975 if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE)) 976 return; 977 978 ProgramStateRef State = C.getState(); 979 // The return value from operator new is bound to a specified initialization 980 // value (if any) and we don't want to loose this value. So we call 981 // MallocUpdateRefState() instead of MallocMemAux() which breakes the 982 // existing binding. 983 State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray 984 : AF_CXXNew); 985 State = ProcessZeroAllocation(C, NE, 0, State); 986 C.addTransition(State); 987 } 988 989 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE, 990 CheckerContext &C) const { 991 992 if (!ChecksEnabled[CK_NewDeleteChecker]) 993 if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol()) 994 checkUseAfterFree(Sym, C, DE->getArgument()); 995 996 if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext())) 997 return; 998 999 ProgramStateRef State = C.getState(); 1000 bool ReleasedAllocated; 1001 State = FreeMemAux(C, DE->getArgument(), DE, State, 1002 /*Hold*/false, ReleasedAllocated); 1003 1004 C.addTransition(State); 1005 } 1006 1007 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) { 1008 // If the first selector piece is one of the names below, assume that the 1009 // object takes ownership of the memory, promising to eventually deallocate it 1010 // with free(). 1011 // Ex: [NSData dataWithBytesNoCopy:bytes length:10]; 1012 // (...unless a 'freeWhenDone' parameter is false, but that's checked later.) 1013 StringRef FirstSlot = Call.getSelector().getNameForSlot(0); 1014 return FirstSlot == "dataWithBytesNoCopy" || 1015 FirstSlot == "initWithBytesNoCopy" || 1016 FirstSlot == "initWithCharactersNoCopy"; 1017 } 1018 1019 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) { 1020 Selector S = Call.getSelector(); 1021 1022 // FIXME: We should not rely on fully-constrained symbols being folded. 1023 for (unsigned i = 1; i < S.getNumArgs(); ++i) 1024 if (S.getNameForSlot(i).equals("freeWhenDone")) 1025 return !Call.getArgSVal(i).isZeroConstant(); 1026 1027 return None; 1028 } 1029 1030 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call, 1031 CheckerContext &C) const { 1032 if (C.wasInlined) 1033 return; 1034 1035 if (!isKnownDeallocObjCMethodName(Call)) 1036 return; 1037 1038 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call)) 1039 if (!*FreeWhenDone) 1040 return; 1041 1042 bool ReleasedAllocatedMemory; 1043 ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0), 1044 Call.getOriginExpr(), C.getState(), 1045 /*Hold=*/true, ReleasedAllocatedMemory, 1046 /*RetNullOnFailure=*/true); 1047 1048 C.addTransition(State); 1049 } 1050 1051 ProgramStateRef 1052 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE, 1053 const OwnershipAttr *Att, 1054 ProgramStateRef State) const { 1055 if (!State) 1056 return nullptr; 1057 1058 if (Att->getModule() != II_malloc) 1059 return nullptr; 1060 1061 OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end(); 1062 if (I != E) { 1063 return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), State); 1064 } 1065 return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State); 1066 } 1067 1068 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1069 const CallExpr *CE, 1070 const Expr *SizeEx, SVal Init, 1071 ProgramStateRef State, 1072 AllocationFamily Family) { 1073 if (!State) 1074 return nullptr; 1075 1076 return MallocMemAux(C, CE, State->getSVal(SizeEx, C.getLocationContext()), 1077 Init, State, Family); 1078 } 1079 1080 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C, 1081 const CallExpr *CE, 1082 SVal Size, SVal Init, 1083 ProgramStateRef State, 1084 AllocationFamily Family) { 1085 if (!State) 1086 return nullptr; 1087 1088 // We expect the malloc functions to return a pointer. 1089 if (!Loc::isLocType(CE->getType())) 1090 return nullptr; 1091 1092 // Bind the return value to the symbolic value from the heap region. 1093 // TODO: We could rewrite post visit to eval call; 'malloc' does not have 1094 // side effects other than what we model here. 1095 unsigned Count = C.blockCount(); 1096 SValBuilder &svalBuilder = C.getSValBuilder(); 1097 const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); 1098 DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count) 1099 .castAs<DefinedSVal>(); 1100 State = State->BindExpr(CE, C.getLocationContext(), RetVal); 1101 1102 // Fill the region with the initialization value. 1103 State = State->bindDefault(RetVal, Init); 1104 1105 // Set the region's extent equal to the Size parameter. 1106 const SymbolicRegion *R = 1107 dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion()); 1108 if (!R) 1109 return nullptr; 1110 if (Optional<DefinedOrUnknownSVal> DefinedSize = 1111 Size.getAs<DefinedOrUnknownSVal>()) { 1112 SValBuilder &svalBuilder = C.getSValBuilder(); 1113 DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder); 1114 DefinedOrUnknownSVal extentMatchesSize = 1115 svalBuilder.evalEQ(State, Extent, *DefinedSize); 1116 1117 State = State->assume(extentMatchesSize, true); 1118 assert(State); 1119 } 1120 1121 return MallocUpdateRefState(C, CE, State, Family); 1122 } 1123 1124 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C, 1125 const Expr *E, 1126 ProgramStateRef State, 1127 AllocationFamily Family) { 1128 if (!State) 1129 return nullptr; 1130 1131 // Get the return value. 1132 SVal retVal = State->getSVal(E, C.getLocationContext()); 1133 1134 // We expect the malloc functions to return a pointer. 1135 if (!retVal.getAs<Loc>()) 1136 return nullptr; 1137 1138 SymbolRef Sym = retVal.getAsLocSymbol(); 1139 assert(Sym); 1140 1141 // Set the symbol's state to Allocated. 1142 return State->set<RegionState>(Sym, RefState::getAllocated(Family, E)); 1143 } 1144 1145 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C, 1146 const CallExpr *CE, 1147 const OwnershipAttr *Att, 1148 ProgramStateRef State) const { 1149 if (!State) 1150 return nullptr; 1151 1152 if (Att->getModule() != II_malloc) 1153 return nullptr; 1154 1155 bool ReleasedAllocated = false; 1156 1157 for (const auto &Arg : Att->args()) { 1158 ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg, 1159 Att->getOwnKind() == OwnershipAttr::Holds, 1160 ReleasedAllocated); 1161 if (StateI) 1162 State = StateI; 1163 } 1164 return State; 1165 } 1166 1167 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1168 const CallExpr *CE, 1169 ProgramStateRef State, 1170 unsigned Num, 1171 bool Hold, 1172 bool &ReleasedAllocated, 1173 bool ReturnsNullOnFailure) const { 1174 if (!State) 1175 return nullptr; 1176 1177 if (CE->getNumArgs() < (Num + 1)) 1178 return nullptr; 1179 1180 return FreeMemAux(C, CE->getArg(Num), CE, State, Hold, 1181 ReleasedAllocated, ReturnsNullOnFailure); 1182 } 1183 1184 /// Checks if the previous call to free on the given symbol failed - if free 1185 /// failed, returns true. Also, returns the corresponding return value symbol. 1186 static bool didPreviousFreeFail(ProgramStateRef State, 1187 SymbolRef Sym, SymbolRef &RetStatusSymbol) { 1188 const SymbolRef *Ret = State->get<FreeReturnValue>(Sym); 1189 if (Ret) { 1190 assert(*Ret && "We should not store the null return symbol"); 1191 ConstraintManager &CMgr = State->getConstraintManager(); 1192 ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret); 1193 RetStatusSymbol = *Ret; 1194 return FreeFailed.isConstrainedTrue(); 1195 } 1196 return false; 1197 } 1198 1199 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C, 1200 const Stmt *S) const { 1201 if (!S) 1202 return AF_None; 1203 1204 if (const CallExpr *CE = dyn_cast<CallExpr>(S)) { 1205 const FunctionDecl *FD = C.getCalleeDecl(CE); 1206 1207 if (!FD) 1208 FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1209 1210 ASTContext &Ctx = C.getASTContext(); 1211 1212 if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any)) 1213 return AF_Malloc; 1214 1215 if (isStandardNewDelete(FD, Ctx)) { 1216 OverloadedOperatorKind Kind = FD->getOverloadedOperator(); 1217 if (Kind == OO_New || Kind == OO_Delete) 1218 return AF_CXXNew; 1219 else if (Kind == OO_Array_New || Kind == OO_Array_Delete) 1220 return AF_CXXNewArray; 1221 } 1222 1223 if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any)) 1224 return AF_IfNameIndex; 1225 1226 if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any)) 1227 return AF_Alloca; 1228 1229 return AF_None; 1230 } 1231 1232 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S)) 1233 return NE->isArray() ? AF_CXXNewArray : AF_CXXNew; 1234 1235 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S)) 1236 return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew; 1237 1238 if (isa<ObjCMessageExpr>(S)) 1239 return AF_Malloc; 1240 1241 return AF_None; 1242 } 1243 1244 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C, 1245 const Expr *E) const { 1246 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 1247 // FIXME: This doesn't handle indirect calls. 1248 const FunctionDecl *FD = CE->getDirectCallee(); 1249 if (!FD) 1250 return false; 1251 1252 os << *FD; 1253 if (!FD->isOverloadedOperator()) 1254 os << "()"; 1255 return true; 1256 } 1257 1258 if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) { 1259 if (Msg->isInstanceMessage()) 1260 os << "-"; 1261 else 1262 os << "+"; 1263 Msg->getSelector().print(os); 1264 return true; 1265 } 1266 1267 if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) { 1268 os << "'" 1269 << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator()) 1270 << "'"; 1271 return true; 1272 } 1273 1274 if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) { 1275 os << "'" 1276 << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator()) 1277 << "'"; 1278 return true; 1279 } 1280 1281 return false; 1282 } 1283 1284 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C, 1285 const Expr *E) const { 1286 AllocationFamily Family = getAllocationFamily(C, E); 1287 1288 switch(Family) { 1289 case AF_Malloc: os << "malloc()"; return; 1290 case AF_CXXNew: os << "'new'"; return; 1291 case AF_CXXNewArray: os << "'new[]'"; return; 1292 case AF_IfNameIndex: os << "'if_nameindex()'"; return; 1293 case AF_Alloca: 1294 case AF_None: llvm_unreachable("not a deallocation expression"); 1295 } 1296 } 1297 1298 void MallocChecker::printExpectedDeallocName(raw_ostream &os, 1299 AllocationFamily Family) const { 1300 switch(Family) { 1301 case AF_Malloc: os << "free()"; return; 1302 case AF_CXXNew: os << "'delete'"; return; 1303 case AF_CXXNewArray: os << "'delete[]'"; return; 1304 case AF_IfNameIndex: os << "'if_freenameindex()'"; return; 1305 case AF_Alloca: 1306 case AF_None: llvm_unreachable("suspicious argument"); 1307 } 1308 } 1309 1310 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C, 1311 const Expr *ArgExpr, 1312 const Expr *ParentExpr, 1313 ProgramStateRef State, 1314 bool Hold, 1315 bool &ReleasedAllocated, 1316 bool ReturnsNullOnFailure) const { 1317 1318 if (!State) 1319 return nullptr; 1320 1321 SVal ArgVal = State->getSVal(ArgExpr, C.getLocationContext()); 1322 if (!ArgVal.getAs<DefinedOrUnknownSVal>()) 1323 return nullptr; 1324 DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>(); 1325 1326 // Check for null dereferences. 1327 if (!location.getAs<Loc>()) 1328 return nullptr; 1329 1330 // The explicit NULL case, no operation is performed. 1331 ProgramStateRef notNullState, nullState; 1332 std::tie(notNullState, nullState) = State->assume(location); 1333 if (nullState && !notNullState) 1334 return nullptr; 1335 1336 // Unknown values could easily be okay 1337 // Undefined values are handled elsewhere 1338 if (ArgVal.isUnknownOrUndef()) 1339 return nullptr; 1340 1341 const MemRegion *R = ArgVal.getAsRegion(); 1342 1343 // Nonlocs can't be freed, of course. 1344 // Non-region locations (labels and fixed addresses) also shouldn't be freed. 1345 if (!R) { 1346 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1347 return nullptr; 1348 } 1349 1350 R = R->StripCasts(); 1351 1352 // Blocks might show up as heap data, but should not be free()d 1353 if (isa<BlockDataRegion>(R)) { 1354 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1355 return nullptr; 1356 } 1357 1358 const MemSpaceRegion *MS = R->getMemorySpace(); 1359 1360 // Parameters, locals, statics, globals, and memory returned by 1361 // __builtin_alloca() shouldn't be freed. 1362 if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) { 1363 // FIXME: at the time this code was written, malloc() regions were 1364 // represented by conjured symbols, which are all in UnknownSpaceRegion. 1365 // This means that there isn't actually anything from HeapSpaceRegion 1366 // that should be freed, even though we allow it here. 1367 // Of course, free() can work on memory allocated outside the current 1368 // function, so UnknownSpaceRegion is always a possibility. 1369 // False negatives are better than false positives. 1370 1371 if (isa<AllocaRegion>(R)) 1372 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1373 else 1374 ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr); 1375 1376 return nullptr; 1377 } 1378 1379 const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion()); 1380 // Various cases could lead to non-symbol values here. 1381 // For now, ignore them. 1382 if (!SrBase) 1383 return nullptr; 1384 1385 SymbolRef SymBase = SrBase->getSymbol(); 1386 const RefState *RsBase = State->get<RegionState>(SymBase); 1387 SymbolRef PreviousRetStatusSymbol = nullptr; 1388 1389 if (RsBase) { 1390 1391 // Memory returned by alloca() shouldn't be freed. 1392 if (RsBase->getAllocationFamily() == AF_Alloca) { 1393 ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange()); 1394 return nullptr; 1395 } 1396 1397 // Check for double free first. 1398 if ((RsBase->isReleased() || RsBase->isRelinquished()) && 1399 !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) { 1400 ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(), 1401 SymBase, PreviousRetStatusSymbol); 1402 return nullptr; 1403 1404 // If the pointer is allocated or escaped, but we are now trying to free it, 1405 // check that the call to free is proper. 1406 } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() || 1407 RsBase->isEscaped()) { 1408 1409 // Check if an expected deallocation function matches the real one. 1410 bool DeallocMatchesAlloc = 1411 RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr); 1412 if (!DeallocMatchesAlloc) { 1413 ReportMismatchedDealloc(C, ArgExpr->getSourceRange(), 1414 ParentExpr, RsBase, SymBase, Hold); 1415 return nullptr; 1416 } 1417 1418 // Check if the memory location being freed is the actual location 1419 // allocated, or an offset. 1420 RegionOffset Offset = R->getAsOffset(); 1421 if (Offset.isValid() && 1422 !Offset.hasSymbolicOffset() && 1423 Offset.getOffset() != 0) { 1424 const Expr *AllocExpr = cast<Expr>(RsBase->getStmt()); 1425 ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr, 1426 AllocExpr); 1427 return nullptr; 1428 } 1429 } 1430 } 1431 1432 ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() || 1433 RsBase->isAllocatedOfSizeZero()); 1434 1435 // Clean out the info on previous call to free return info. 1436 State = State->remove<FreeReturnValue>(SymBase); 1437 1438 // Keep track of the return value. If it is NULL, we will know that free 1439 // failed. 1440 if (ReturnsNullOnFailure) { 1441 SVal RetVal = C.getSVal(ParentExpr); 1442 SymbolRef RetStatusSymbol = RetVal.getAsSymbol(); 1443 if (RetStatusSymbol) { 1444 C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol); 1445 State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol); 1446 } 1447 } 1448 1449 AllocationFamily Family = RsBase ? RsBase->getAllocationFamily() 1450 : getAllocationFamily(C, ParentExpr); 1451 // Normal free. 1452 if (Hold) 1453 return State->set<RegionState>(SymBase, 1454 RefState::getRelinquished(Family, 1455 ParentExpr)); 1456 1457 return State->set<RegionState>(SymBase, 1458 RefState::getReleased(Family, ParentExpr)); 1459 } 1460 1461 Optional<MallocChecker::CheckKind> 1462 MallocChecker::getCheckIfTracked(AllocationFamily Family, 1463 bool IsALeakCheck) const { 1464 switch (Family) { 1465 case AF_Malloc: 1466 case AF_Alloca: 1467 case AF_IfNameIndex: { 1468 if (ChecksEnabled[CK_MallocChecker]) 1469 return CK_MallocChecker; 1470 1471 return Optional<MallocChecker::CheckKind>(); 1472 } 1473 case AF_CXXNew: 1474 case AF_CXXNewArray: { 1475 if (IsALeakCheck) { 1476 if (ChecksEnabled[CK_NewDeleteLeaksChecker]) 1477 return CK_NewDeleteLeaksChecker; 1478 } 1479 else { 1480 if (ChecksEnabled[CK_NewDeleteChecker]) 1481 return CK_NewDeleteChecker; 1482 } 1483 return Optional<MallocChecker::CheckKind>(); 1484 } 1485 case AF_None: { 1486 llvm_unreachable("no family"); 1487 } 1488 } 1489 llvm_unreachable("unhandled family"); 1490 } 1491 1492 Optional<MallocChecker::CheckKind> 1493 MallocChecker::getCheckIfTracked(CheckerContext &C, 1494 const Stmt *AllocDeallocStmt, 1495 bool IsALeakCheck) const { 1496 return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt), 1497 IsALeakCheck); 1498 } 1499 1500 Optional<MallocChecker::CheckKind> 1501 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym, 1502 bool IsALeakCheck) const { 1503 if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) 1504 return CK_MallocChecker; 1505 1506 const RefState *RS = C.getState()->get<RegionState>(Sym); 1507 assert(RS); 1508 return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck); 1509 } 1510 1511 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) { 1512 if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>()) 1513 os << "an integer (" << IntVal->getValue() << ")"; 1514 else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>()) 1515 os << "a constant address (" << ConstAddr->getValue() << ")"; 1516 else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>()) 1517 os << "the address of the label '" << Label->getLabel()->getName() << "'"; 1518 else 1519 return false; 1520 1521 return true; 1522 } 1523 1524 bool MallocChecker::SummarizeRegion(raw_ostream &os, 1525 const MemRegion *MR) { 1526 switch (MR->getKind()) { 1527 case MemRegion::FunctionCodeRegionKind: { 1528 const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl(); 1529 if (FD) 1530 os << "the address of the function '" << *FD << '\''; 1531 else 1532 os << "the address of a function"; 1533 return true; 1534 } 1535 case MemRegion::BlockCodeRegionKind: 1536 os << "block text"; 1537 return true; 1538 case MemRegion::BlockDataRegionKind: 1539 // FIXME: where the block came from? 1540 os << "a block"; 1541 return true; 1542 default: { 1543 const MemSpaceRegion *MS = MR->getMemorySpace(); 1544 1545 if (isa<StackLocalsSpaceRegion>(MS)) { 1546 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1547 const VarDecl *VD; 1548 if (VR) 1549 VD = VR->getDecl(); 1550 else 1551 VD = nullptr; 1552 1553 if (VD) 1554 os << "the address of the local variable '" << VD->getName() << "'"; 1555 else 1556 os << "the address of a local stack variable"; 1557 return true; 1558 } 1559 1560 if (isa<StackArgumentsSpaceRegion>(MS)) { 1561 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1562 const VarDecl *VD; 1563 if (VR) 1564 VD = VR->getDecl(); 1565 else 1566 VD = nullptr; 1567 1568 if (VD) 1569 os << "the address of the parameter '" << VD->getName() << "'"; 1570 else 1571 os << "the address of a parameter"; 1572 return true; 1573 } 1574 1575 if (isa<GlobalsSpaceRegion>(MS)) { 1576 const VarRegion *VR = dyn_cast<VarRegion>(MR); 1577 const VarDecl *VD; 1578 if (VR) 1579 VD = VR->getDecl(); 1580 else 1581 VD = nullptr; 1582 1583 if (VD) { 1584 if (VD->isStaticLocal()) 1585 os << "the address of the static variable '" << VD->getName() << "'"; 1586 else 1587 os << "the address of the global variable '" << VD->getName() << "'"; 1588 } else 1589 os << "the address of a global variable"; 1590 return true; 1591 } 1592 1593 return false; 1594 } 1595 } 1596 } 1597 1598 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal, 1599 SourceRange Range, 1600 const Expr *DeallocExpr) const { 1601 1602 if (!ChecksEnabled[CK_MallocChecker] && 1603 !ChecksEnabled[CK_NewDeleteChecker]) 1604 return; 1605 1606 Optional<MallocChecker::CheckKind> CheckKind = 1607 getCheckIfTracked(C, DeallocExpr); 1608 if (!CheckKind.hasValue()) 1609 return; 1610 1611 if (ExplodedNode *N = C.generateErrorNode()) { 1612 if (!BT_BadFree[*CheckKind]) 1613 BT_BadFree[*CheckKind].reset( 1614 new BugType(CheckNames[*CheckKind], "Bad free", "Memory Error")); 1615 1616 SmallString<100> buf; 1617 llvm::raw_svector_ostream os(buf); 1618 1619 const MemRegion *MR = ArgVal.getAsRegion(); 1620 while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR)) 1621 MR = ER->getSuperRegion(); 1622 1623 os << "Argument to "; 1624 if (!printAllocDeallocName(os, C, DeallocExpr)) 1625 os << "deallocator"; 1626 1627 os << " is "; 1628 bool Summarized = MR ? SummarizeRegion(os, MR) 1629 : SummarizeValue(os, ArgVal); 1630 if (Summarized) 1631 os << ", which is not memory allocated by "; 1632 else 1633 os << "not memory allocated by "; 1634 1635 printExpectedAllocName(os, C, DeallocExpr); 1636 1637 auto R = llvm::make_unique<BugReport>(*BT_BadFree[*CheckKind], os.str(), N); 1638 R->markInteresting(MR); 1639 R->addRange(Range); 1640 C.emitReport(std::move(R)); 1641 } 1642 } 1643 1644 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal, 1645 SourceRange Range) const { 1646 1647 Optional<MallocChecker::CheckKind> CheckKind; 1648 1649 if (ChecksEnabled[CK_MallocChecker]) 1650 CheckKind = CK_MallocChecker; 1651 else if (ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1652 CheckKind = CK_MismatchedDeallocatorChecker; 1653 else 1654 return; 1655 1656 if (ExplodedNode *N = C.generateErrorNode()) { 1657 if (!BT_FreeAlloca[*CheckKind]) 1658 BT_FreeAlloca[*CheckKind].reset( 1659 new BugType(CheckNames[*CheckKind], "Free alloca()", "Memory Error")); 1660 1661 auto R = llvm::make_unique<BugReport>( 1662 *BT_FreeAlloca[*CheckKind], 1663 "Memory allocated by alloca() should not be deallocated", N); 1664 R->markInteresting(ArgVal.getAsRegion()); 1665 R->addRange(Range); 1666 C.emitReport(std::move(R)); 1667 } 1668 } 1669 1670 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C, 1671 SourceRange Range, 1672 const Expr *DeallocExpr, 1673 const RefState *RS, 1674 SymbolRef Sym, 1675 bool OwnershipTransferred) const { 1676 1677 if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) 1678 return; 1679 1680 if (ExplodedNode *N = C.generateErrorNode()) { 1681 if (!BT_MismatchedDealloc) 1682 BT_MismatchedDealloc.reset( 1683 new BugType(CheckNames[CK_MismatchedDeallocatorChecker], 1684 "Bad deallocator", "Memory Error")); 1685 1686 SmallString<100> buf; 1687 llvm::raw_svector_ostream os(buf); 1688 1689 const Expr *AllocExpr = cast<Expr>(RS->getStmt()); 1690 SmallString<20> AllocBuf; 1691 llvm::raw_svector_ostream AllocOs(AllocBuf); 1692 SmallString<20> DeallocBuf; 1693 llvm::raw_svector_ostream DeallocOs(DeallocBuf); 1694 1695 if (OwnershipTransferred) { 1696 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1697 os << DeallocOs.str() << " cannot"; 1698 else 1699 os << "Cannot"; 1700 1701 os << " take ownership of memory"; 1702 1703 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1704 os << " allocated by " << AllocOs.str(); 1705 } else { 1706 os << "Memory"; 1707 if (printAllocDeallocName(AllocOs, C, AllocExpr)) 1708 os << " allocated by " << AllocOs.str(); 1709 1710 os << " should be deallocated by "; 1711 printExpectedDeallocName(os, RS->getAllocationFamily()); 1712 1713 if (printAllocDeallocName(DeallocOs, C, DeallocExpr)) 1714 os << ", not " << DeallocOs.str(); 1715 } 1716 1717 auto R = llvm::make_unique<BugReport>(*BT_MismatchedDealloc, os.str(), N); 1718 R->markInteresting(Sym); 1719 R->addRange(Range); 1720 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1721 C.emitReport(std::move(R)); 1722 } 1723 } 1724 1725 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal, 1726 SourceRange Range, const Expr *DeallocExpr, 1727 const Expr *AllocExpr) const { 1728 1729 1730 if (!ChecksEnabled[CK_MallocChecker] && 1731 !ChecksEnabled[CK_NewDeleteChecker]) 1732 return; 1733 1734 Optional<MallocChecker::CheckKind> CheckKind = 1735 getCheckIfTracked(C, AllocExpr); 1736 if (!CheckKind.hasValue()) 1737 return; 1738 1739 ExplodedNode *N = C.generateErrorNode(); 1740 if (!N) 1741 return; 1742 1743 if (!BT_OffsetFree[*CheckKind]) 1744 BT_OffsetFree[*CheckKind].reset( 1745 new BugType(CheckNames[*CheckKind], "Offset free", "Memory Error")); 1746 1747 SmallString<100> buf; 1748 llvm::raw_svector_ostream os(buf); 1749 SmallString<20> AllocNameBuf; 1750 llvm::raw_svector_ostream AllocNameOs(AllocNameBuf); 1751 1752 const MemRegion *MR = ArgVal.getAsRegion(); 1753 assert(MR && "Only MemRegion based symbols can have offset free errors"); 1754 1755 RegionOffset Offset = MR->getAsOffset(); 1756 assert((Offset.isValid() && 1757 !Offset.hasSymbolicOffset() && 1758 Offset.getOffset() != 0) && 1759 "Only symbols with a valid offset can have offset free errors"); 1760 1761 int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth(); 1762 1763 os << "Argument to "; 1764 if (!printAllocDeallocName(os, C, DeallocExpr)) 1765 os << "deallocator"; 1766 os << " is offset by " 1767 << offsetBytes 1768 << " " 1769 << ((abs(offsetBytes) > 1) ? "bytes" : "byte") 1770 << " from the start of "; 1771 if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr)) 1772 os << "memory allocated by " << AllocNameOs.str(); 1773 else 1774 os << "allocated memory"; 1775 1776 auto R = llvm::make_unique<BugReport>(*BT_OffsetFree[*CheckKind], os.str(), N); 1777 R->markInteresting(MR->getBaseRegion()); 1778 R->addRange(Range); 1779 C.emitReport(std::move(R)); 1780 } 1781 1782 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range, 1783 SymbolRef Sym) const { 1784 1785 if (!ChecksEnabled[CK_MallocChecker] && 1786 !ChecksEnabled[CK_NewDeleteChecker]) 1787 return; 1788 1789 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1790 if (!CheckKind.hasValue()) 1791 return; 1792 1793 if (ExplodedNode *N = C.generateErrorNode()) { 1794 if (!BT_UseFree[*CheckKind]) 1795 BT_UseFree[*CheckKind].reset(new BugType( 1796 CheckNames[*CheckKind], "Use-after-free", "Memory Error")); 1797 1798 auto R = llvm::make_unique<BugReport>(*BT_UseFree[*CheckKind], 1799 "Use of memory after it is freed", N); 1800 1801 R->markInteresting(Sym); 1802 R->addRange(Range); 1803 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1804 C.emitReport(std::move(R)); 1805 } 1806 } 1807 1808 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range, 1809 bool Released, SymbolRef Sym, 1810 SymbolRef PrevSym) const { 1811 1812 if (!ChecksEnabled[CK_MallocChecker] && 1813 !ChecksEnabled[CK_NewDeleteChecker]) 1814 return; 1815 1816 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1817 if (!CheckKind.hasValue()) 1818 return; 1819 1820 if (ExplodedNode *N = C.generateErrorNode()) { 1821 if (!BT_DoubleFree[*CheckKind]) 1822 BT_DoubleFree[*CheckKind].reset( 1823 new BugType(CheckNames[*CheckKind], "Double free", "Memory Error")); 1824 1825 auto R = llvm::make_unique<BugReport>( 1826 *BT_DoubleFree[*CheckKind], 1827 (Released ? "Attempt to free released memory" 1828 : "Attempt to free non-owned memory"), 1829 N); 1830 R->addRange(Range); 1831 R->markInteresting(Sym); 1832 if (PrevSym) 1833 R->markInteresting(PrevSym); 1834 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1835 C.emitReport(std::move(R)); 1836 } 1837 } 1838 1839 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const { 1840 1841 if (!ChecksEnabled[CK_NewDeleteChecker]) 1842 return; 1843 1844 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1845 if (!CheckKind.hasValue()) 1846 return; 1847 1848 if (ExplodedNode *N = C.generateErrorNode()) { 1849 if (!BT_DoubleDelete) 1850 BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker], 1851 "Double delete", "Memory Error")); 1852 1853 auto R = llvm::make_unique<BugReport>( 1854 *BT_DoubleDelete, "Attempt to delete released memory", N); 1855 1856 R->markInteresting(Sym); 1857 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1858 C.emitReport(std::move(R)); 1859 } 1860 } 1861 1862 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C, 1863 SourceRange Range, 1864 SymbolRef Sym) const { 1865 1866 if (!ChecksEnabled[CK_MallocChecker] && 1867 !ChecksEnabled[CK_NewDeleteChecker]) 1868 return; 1869 1870 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym); 1871 1872 if (!CheckKind.hasValue()) 1873 return; 1874 1875 if (ExplodedNode *N = C.generateErrorNode()) { 1876 if (!BT_UseZerroAllocated[*CheckKind]) 1877 BT_UseZerroAllocated[*CheckKind].reset(new BugType( 1878 CheckNames[*CheckKind], "Use of zero allocated", "Memory Error")); 1879 1880 auto R = llvm::make_unique<BugReport>(*BT_UseZerroAllocated[*CheckKind], 1881 "Use of zero-allocated memory", N); 1882 1883 R->addRange(Range); 1884 if (Sym) { 1885 R->markInteresting(Sym); 1886 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym)); 1887 } 1888 C.emitReport(std::move(R)); 1889 } 1890 } 1891 1892 ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C, 1893 const CallExpr *CE, 1894 bool FreesOnFail, 1895 ProgramStateRef State) const { 1896 if (!State) 1897 return nullptr; 1898 1899 if (CE->getNumArgs() < 2) 1900 return nullptr; 1901 1902 const Expr *arg0Expr = CE->getArg(0); 1903 const LocationContext *LCtx = C.getLocationContext(); 1904 SVal Arg0Val = State->getSVal(arg0Expr, LCtx); 1905 if (!Arg0Val.getAs<DefinedOrUnknownSVal>()) 1906 return nullptr; 1907 DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>(); 1908 1909 SValBuilder &svalBuilder = C.getSValBuilder(); 1910 1911 DefinedOrUnknownSVal PtrEQ = 1912 svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull()); 1913 1914 // Get the size argument. If there is no size arg then give up. 1915 const Expr *Arg1 = CE->getArg(1); 1916 if (!Arg1) 1917 return nullptr; 1918 1919 // Get the value of the size argument. 1920 SVal Arg1ValG = State->getSVal(Arg1, LCtx); 1921 if (!Arg1ValG.getAs<DefinedOrUnknownSVal>()) 1922 return nullptr; 1923 DefinedOrUnknownSVal Arg1Val = Arg1ValG.castAs<DefinedOrUnknownSVal>(); 1924 1925 // Compare the size argument to 0. 1926 DefinedOrUnknownSVal SizeZero = 1927 svalBuilder.evalEQ(State, Arg1Val, 1928 svalBuilder.makeIntValWithPtrWidth(0, false)); 1929 1930 ProgramStateRef StatePtrIsNull, StatePtrNotNull; 1931 std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ); 1932 ProgramStateRef StateSizeIsZero, StateSizeNotZero; 1933 std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero); 1934 // We only assume exceptional states if they are definitely true; if the 1935 // state is under-constrained, assume regular realloc behavior. 1936 bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull; 1937 bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero; 1938 1939 // If the ptr is NULL and the size is not 0, the call is equivalent to 1940 // malloc(size). 1941 if ( PrtIsNull && !SizeIsZero) { 1942 ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1), 1943 UndefinedVal(), StatePtrIsNull); 1944 return stateMalloc; 1945 } 1946 1947 if (PrtIsNull && SizeIsZero) 1948 return State; 1949 1950 // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size). 1951 assert(!PrtIsNull); 1952 SymbolRef FromPtr = arg0Val.getAsSymbol(); 1953 SVal RetVal = State->getSVal(CE, LCtx); 1954 SymbolRef ToPtr = RetVal.getAsSymbol(); 1955 if (!FromPtr || !ToPtr) 1956 return nullptr; 1957 1958 bool ReleasedAllocated = false; 1959 1960 // If the size is 0, free the memory. 1961 if (SizeIsZero) 1962 if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0, 1963 false, ReleasedAllocated)){ 1964 // The semantics of the return value are: 1965 // If size was equal to 0, either NULL or a pointer suitable to be passed 1966 // to free() is returned. We just free the input pointer and do not add 1967 // any constrains on the output pointer. 1968 return stateFree; 1969 } 1970 1971 // Default behavior. 1972 if (ProgramStateRef stateFree = 1973 FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) { 1974 1975 ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1), 1976 UnknownVal(), stateFree); 1977 if (!stateRealloc) 1978 return nullptr; 1979 1980 ReallocPairKind Kind = RPToBeFreedAfterFailure; 1981 if (FreesOnFail) 1982 Kind = RPIsFreeOnFailure; 1983 else if (!ReleasedAllocated) 1984 Kind = RPDoNotTrackAfterFailure; 1985 1986 // Record the info about the reallocated symbol so that we could properly 1987 // process failed reallocation. 1988 stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr, 1989 ReallocPair(FromPtr, Kind)); 1990 // The reallocated symbol should stay alive for as long as the new symbol. 1991 C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr); 1992 return stateRealloc; 1993 } 1994 return nullptr; 1995 } 1996 1997 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE, 1998 ProgramStateRef State) { 1999 if (!State) 2000 return nullptr; 2001 2002 if (CE->getNumArgs() < 2) 2003 return nullptr; 2004 2005 SValBuilder &svalBuilder = C.getSValBuilder(); 2006 const LocationContext *LCtx = C.getLocationContext(); 2007 SVal count = State->getSVal(CE->getArg(0), LCtx); 2008 SVal elementSize = State->getSVal(CE->getArg(1), LCtx); 2009 SVal TotalSize = svalBuilder.evalBinOp(State, BO_Mul, count, elementSize, 2010 svalBuilder.getContext().getSizeType()); 2011 SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy); 2012 2013 return MallocMemAux(C, CE, TotalSize, zeroVal, State); 2014 } 2015 2016 LeakInfo 2017 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym, 2018 CheckerContext &C) const { 2019 const LocationContext *LeakContext = N->getLocationContext(); 2020 // Walk the ExplodedGraph backwards and find the first node that referred to 2021 // the tracked symbol. 2022 const ExplodedNode *AllocNode = N; 2023 const MemRegion *ReferenceRegion = nullptr; 2024 2025 while (N) { 2026 ProgramStateRef State = N->getState(); 2027 if (!State->get<RegionState>(Sym)) 2028 break; 2029 2030 // Find the most recent expression bound to the symbol in the current 2031 // context. 2032 if (!ReferenceRegion) { 2033 if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) { 2034 SVal Val = State->getSVal(MR); 2035 if (Val.getAsLocSymbol() == Sym) { 2036 const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>(); 2037 // Do not show local variables belonging to a function other than 2038 // where the error is reported. 2039 if (!VR || 2040 (VR->getStackFrame() == LeakContext->getCurrentStackFrame())) 2041 ReferenceRegion = MR; 2042 } 2043 } 2044 } 2045 2046 // Allocation node, is the last node in the current or parent context in 2047 // which the symbol was tracked. 2048 const LocationContext *NContext = N->getLocationContext(); 2049 if (NContext == LeakContext || 2050 NContext->isParentOf(LeakContext)) 2051 AllocNode = N; 2052 N = N->pred_empty() ? nullptr : *(N->pred_begin()); 2053 } 2054 2055 return LeakInfo(AllocNode, ReferenceRegion); 2056 } 2057 2058 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N, 2059 CheckerContext &C) const { 2060 2061 if (!ChecksEnabled[CK_MallocChecker] && 2062 !ChecksEnabled[CK_NewDeleteLeaksChecker]) 2063 return; 2064 2065 const RefState *RS = C.getState()->get<RegionState>(Sym); 2066 assert(RS && "cannot leak an untracked symbol"); 2067 AllocationFamily Family = RS->getAllocationFamily(); 2068 2069 if (Family == AF_Alloca) 2070 return; 2071 2072 Optional<MallocChecker::CheckKind> 2073 CheckKind = getCheckIfTracked(Family, true); 2074 2075 if (!CheckKind.hasValue()) 2076 return; 2077 2078 assert(N); 2079 if (!BT_Leak[*CheckKind]) { 2080 BT_Leak[*CheckKind].reset( 2081 new BugType(CheckNames[*CheckKind], "Memory leak", "Memory Error")); 2082 // Leaks should not be reported if they are post-dominated by a sink: 2083 // (1) Sinks are higher importance bugs. 2084 // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending 2085 // with __noreturn functions such as assert() or exit(). We choose not 2086 // to report leaks on such paths. 2087 BT_Leak[*CheckKind]->setSuppressOnSink(true); 2088 } 2089 2090 // Most bug reports are cached at the location where they occurred. 2091 // With leaks, we want to unique them by the location where they were 2092 // allocated, and only report a single path. 2093 PathDiagnosticLocation LocUsedForUniqueing; 2094 const ExplodedNode *AllocNode = nullptr; 2095 const MemRegion *Region = nullptr; 2096 std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C); 2097 2098 ProgramPoint P = AllocNode->getLocation(); 2099 const Stmt *AllocationStmt = nullptr; 2100 if (Optional<CallExitEnd> Exit = P.getAs<CallExitEnd>()) 2101 AllocationStmt = Exit->getCalleeContext()->getCallSite(); 2102 else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>()) 2103 AllocationStmt = SP->getStmt(); 2104 if (AllocationStmt) 2105 LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt, 2106 C.getSourceManager(), 2107 AllocNode->getLocationContext()); 2108 2109 SmallString<200> buf; 2110 llvm::raw_svector_ostream os(buf); 2111 if (Region && Region->canPrintPretty()) { 2112 os << "Potential leak of memory pointed to by "; 2113 Region->printPretty(os); 2114 } else { 2115 os << "Potential memory leak"; 2116 } 2117 2118 auto R = llvm::make_unique<BugReport>( 2119 *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing, 2120 AllocNode->getLocationContext()->getDecl()); 2121 R->markInteresting(Sym); 2122 R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true)); 2123 C.emitReport(std::move(R)); 2124 } 2125 2126 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper, 2127 CheckerContext &C) const 2128 { 2129 if (!SymReaper.hasDeadSymbols()) 2130 return; 2131 2132 ProgramStateRef state = C.getState(); 2133 RegionStateTy RS = state->get<RegionState>(); 2134 RegionStateTy::Factory &F = state->get_context<RegionState>(); 2135 2136 SmallVector<SymbolRef, 2> Errors; 2137 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2138 if (SymReaper.isDead(I->first)) { 2139 if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero()) 2140 Errors.push_back(I->first); 2141 // Remove the dead symbol from the map. 2142 RS = F.remove(RS, I->first); 2143 2144 } 2145 } 2146 2147 // Cleanup the Realloc Pairs Map. 2148 ReallocPairsTy RP = state->get<ReallocPairs>(); 2149 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2150 if (SymReaper.isDead(I->first) || 2151 SymReaper.isDead(I->second.ReallocatedSym)) { 2152 state = state->remove<ReallocPairs>(I->first); 2153 } 2154 } 2155 2156 // Cleanup the FreeReturnValue Map. 2157 FreeReturnValueTy FR = state->get<FreeReturnValue>(); 2158 for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) { 2159 if (SymReaper.isDead(I->first) || 2160 SymReaper.isDead(I->second)) { 2161 state = state->remove<FreeReturnValue>(I->first); 2162 } 2163 } 2164 2165 // Generate leak node. 2166 ExplodedNode *N = C.getPredecessor(); 2167 if (!Errors.empty()) { 2168 static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak"); 2169 N = C.generateNonFatalErrorNode(C.getState(), &Tag); 2170 if (N) { 2171 for (SmallVectorImpl<SymbolRef>::iterator 2172 I = Errors.begin(), E = Errors.end(); I != E; ++I) { 2173 reportLeak(*I, N, C); 2174 } 2175 } 2176 } 2177 2178 C.addTransition(state->set<RegionState>(RS), N); 2179 } 2180 2181 void MallocChecker::checkPreCall(const CallEvent &Call, 2182 CheckerContext &C) const { 2183 2184 if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) { 2185 SymbolRef Sym = DC->getCXXThisVal().getAsSymbol(); 2186 if (!Sym || checkDoubleDelete(Sym, C)) 2187 return; 2188 } 2189 2190 // We will check for double free in the post visit. 2191 if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) { 2192 const FunctionDecl *FD = FC->getDecl(); 2193 if (!FD) 2194 return; 2195 2196 ASTContext &Ctx = C.getASTContext(); 2197 if (ChecksEnabled[CK_MallocChecker] && 2198 (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) || 2199 isCMemFunction(FD, Ctx, AF_IfNameIndex, 2200 MemoryOperationKind::MOK_Free))) 2201 return; 2202 2203 if (ChecksEnabled[CK_NewDeleteChecker] && 2204 isStandardNewDelete(FD, Ctx)) 2205 return; 2206 } 2207 2208 // Check if the callee of a method is deleted. 2209 if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) { 2210 SymbolRef Sym = CC->getCXXThisVal().getAsSymbol(); 2211 if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr())) 2212 return; 2213 } 2214 2215 // Check arguments for being used after free. 2216 for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) { 2217 SVal ArgSVal = Call.getArgSVal(I); 2218 if (ArgSVal.getAs<Loc>()) { 2219 SymbolRef Sym = ArgSVal.getAsSymbol(); 2220 if (!Sym) 2221 continue; 2222 if (checkUseAfterFree(Sym, C, Call.getArgExpr(I))) 2223 return; 2224 } 2225 } 2226 } 2227 2228 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const { 2229 const Expr *E = S->getRetValue(); 2230 if (!E) 2231 return; 2232 2233 // Check if we are returning a symbol. 2234 ProgramStateRef State = C.getState(); 2235 SVal RetVal = State->getSVal(E, C.getLocationContext()); 2236 SymbolRef Sym = RetVal.getAsSymbol(); 2237 if (!Sym) 2238 // If we are returning a field of the allocated struct or an array element, 2239 // the callee could still free the memory. 2240 // TODO: This logic should be a part of generic symbol escape callback. 2241 if (const MemRegion *MR = RetVal.getAsRegion()) 2242 if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR)) 2243 if (const SymbolicRegion *BMR = 2244 dyn_cast<SymbolicRegion>(MR->getBaseRegion())) 2245 Sym = BMR->getSymbol(); 2246 2247 // Check if we are returning freed memory. 2248 if (Sym) 2249 checkUseAfterFree(Sym, C, E); 2250 } 2251 2252 // TODO: Blocks should be either inlined or should call invalidate regions 2253 // upon invocation. After that's in place, special casing here will not be 2254 // needed. 2255 void MallocChecker::checkPostStmt(const BlockExpr *BE, 2256 CheckerContext &C) const { 2257 2258 // Scan the BlockDecRefExprs for any object the retain count checker 2259 // may be tracking. 2260 if (!BE->getBlockDecl()->hasCaptures()) 2261 return; 2262 2263 ProgramStateRef state = C.getState(); 2264 const BlockDataRegion *R = 2265 cast<BlockDataRegion>(state->getSVal(BE, 2266 C.getLocationContext()).getAsRegion()); 2267 2268 BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(), 2269 E = R->referenced_vars_end(); 2270 2271 if (I == E) 2272 return; 2273 2274 SmallVector<const MemRegion*, 10> Regions; 2275 const LocationContext *LC = C.getLocationContext(); 2276 MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager(); 2277 2278 for ( ; I != E; ++I) { 2279 const VarRegion *VR = I.getCapturedRegion(); 2280 if (VR->getSuperRegion() == R) { 2281 VR = MemMgr.getVarRegion(VR->getDecl(), LC); 2282 } 2283 Regions.push_back(VR); 2284 } 2285 2286 state = 2287 state->scanReachableSymbols<StopTrackingCallback>(Regions.data(), 2288 Regions.data() + Regions.size()).getState(); 2289 C.addTransition(state); 2290 } 2291 2292 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const { 2293 assert(Sym); 2294 const RefState *RS = C.getState()->get<RegionState>(Sym); 2295 return (RS && RS->isReleased()); 2296 } 2297 2298 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C, 2299 const Stmt *S) const { 2300 2301 if (isReleased(Sym, C)) { 2302 ReportUseAfterFree(C, S->getSourceRange(), Sym); 2303 return true; 2304 } 2305 2306 return false; 2307 } 2308 2309 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C, 2310 const Stmt *S) const { 2311 assert(Sym); 2312 2313 if (const RefState *RS = C.getState()->get<RegionState>(Sym)) { 2314 if (RS->isAllocatedOfSizeZero()) 2315 ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym); 2316 } 2317 else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) { 2318 ReportUseZeroAllocated(C, S->getSourceRange(), Sym); 2319 } 2320 } 2321 2322 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const { 2323 2324 if (isReleased(Sym, C)) { 2325 ReportDoubleDelete(C, Sym); 2326 return true; 2327 } 2328 return false; 2329 } 2330 2331 // Check if the location is a freed symbolic region. 2332 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S, 2333 CheckerContext &C) const { 2334 SymbolRef Sym = l.getLocSymbolInBase(); 2335 if (Sym) { 2336 checkUseAfterFree(Sym, C, S); 2337 checkUseZeroAllocated(Sym, C, S); 2338 } 2339 } 2340 2341 // If a symbolic region is assumed to NULL (or another constant), stop tracking 2342 // it - assuming that allocation failed on this path. 2343 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state, 2344 SVal Cond, 2345 bool Assumption) const { 2346 RegionStateTy RS = state->get<RegionState>(); 2347 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2348 // If the symbol is assumed to be NULL, remove it from consideration. 2349 ConstraintManager &CMgr = state->getConstraintManager(); 2350 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2351 if (AllocFailed.isConstrainedTrue()) 2352 state = state->remove<RegionState>(I.getKey()); 2353 } 2354 2355 // Realloc returns 0 when reallocation fails, which means that we should 2356 // restore the state of the pointer being reallocated. 2357 ReallocPairsTy RP = state->get<ReallocPairs>(); 2358 for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) { 2359 // If the symbol is assumed to be NULL, remove it from consideration. 2360 ConstraintManager &CMgr = state->getConstraintManager(); 2361 ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey()); 2362 if (!AllocFailed.isConstrainedTrue()) 2363 continue; 2364 2365 SymbolRef ReallocSym = I.getData().ReallocatedSym; 2366 if (const RefState *RS = state->get<RegionState>(ReallocSym)) { 2367 if (RS->isReleased()) { 2368 if (I.getData().Kind == RPToBeFreedAfterFailure) 2369 state = state->set<RegionState>(ReallocSym, 2370 RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt())); 2371 else if (I.getData().Kind == RPDoNotTrackAfterFailure) 2372 state = state->remove<RegionState>(ReallocSym); 2373 else 2374 assert(I.getData().Kind == RPIsFreeOnFailure); 2375 } 2376 } 2377 state = state->remove<ReallocPairs>(I.getKey()); 2378 } 2379 2380 return state; 2381 } 2382 2383 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly( 2384 const CallEvent *Call, 2385 ProgramStateRef State, 2386 SymbolRef &EscapingSymbol) const { 2387 assert(Call); 2388 EscapingSymbol = nullptr; 2389 2390 // For now, assume that any C++ or block call can free memory. 2391 // TODO: If we want to be more optimistic here, we'll need to make sure that 2392 // regions escape to C++ containers. They seem to do that even now, but for 2393 // mysterious reasons. 2394 if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call))) 2395 return true; 2396 2397 // Check Objective-C messages by selector name. 2398 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) { 2399 // If it's not a framework call, or if it takes a callback, assume it 2400 // can free memory. 2401 if (!Call->isInSystemHeader() || Call->argumentsMayEscape()) 2402 return true; 2403 2404 // If it's a method we know about, handle it explicitly post-call. 2405 // This should happen before the "freeWhenDone" check below. 2406 if (isKnownDeallocObjCMethodName(*Msg)) 2407 return false; 2408 2409 // If there's a "freeWhenDone" parameter, but the method isn't one we know 2410 // about, we can't be sure that the object will use free() to deallocate the 2411 // memory, so we can't model it explicitly. The best we can do is use it to 2412 // decide whether the pointer escapes. 2413 if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg)) 2414 return *FreeWhenDone; 2415 2416 // If the first selector piece ends with "NoCopy", and there is no 2417 // "freeWhenDone" parameter set to zero, we know ownership is being 2418 // transferred. Again, though, we can't be sure that the object will use 2419 // free() to deallocate the memory, so we can't model it explicitly. 2420 StringRef FirstSlot = Msg->getSelector().getNameForSlot(0); 2421 if (FirstSlot.endswith("NoCopy")) 2422 return true; 2423 2424 // If the first selector starts with addPointer, insertPointer, 2425 // or replacePointer, assume we are dealing with NSPointerArray or similar. 2426 // This is similar to C++ containers (vector); we still might want to check 2427 // that the pointers get freed by following the container itself. 2428 if (FirstSlot.startswith("addPointer") || 2429 FirstSlot.startswith("insertPointer") || 2430 FirstSlot.startswith("replacePointer") || 2431 FirstSlot.equals("valueWithPointer")) { 2432 return true; 2433 } 2434 2435 // We should escape receiver on call to 'init'. This is especially relevant 2436 // to the receiver, as the corresponding symbol is usually not referenced 2437 // after the call. 2438 if (Msg->getMethodFamily() == OMF_init) { 2439 EscapingSymbol = Msg->getReceiverSVal().getAsSymbol(); 2440 return true; 2441 } 2442 2443 // Otherwise, assume that the method does not free memory. 2444 // Most framework methods do not free memory. 2445 return false; 2446 } 2447 2448 // At this point the only thing left to handle is straight function calls. 2449 const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl(); 2450 if (!FD) 2451 return true; 2452 2453 ASTContext &ASTC = State->getStateManager().getContext(); 2454 2455 // If it's one of the allocation functions we can reason about, we model 2456 // its behavior explicitly. 2457 if (isMemFunction(FD, ASTC)) 2458 return false; 2459 2460 // If it's not a system call, assume it frees memory. 2461 if (!Call->isInSystemHeader()) 2462 return true; 2463 2464 // White list the system functions whose arguments escape. 2465 const IdentifierInfo *II = FD->getIdentifier(); 2466 if (!II) 2467 return true; 2468 StringRef FName = II->getName(); 2469 2470 // White list the 'XXXNoCopy' CoreFoundation functions. 2471 // We specifically check these before 2472 if (FName.endswith("NoCopy")) { 2473 // Look for the deallocator argument. We know that the memory ownership 2474 // is not transferred only if the deallocator argument is 2475 // 'kCFAllocatorNull'. 2476 for (unsigned i = 1; i < Call->getNumArgs(); ++i) { 2477 const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts(); 2478 if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) { 2479 StringRef DeallocatorName = DE->getFoundDecl()->getName(); 2480 if (DeallocatorName == "kCFAllocatorNull") 2481 return false; 2482 } 2483 } 2484 return true; 2485 } 2486 2487 // Associating streams with malloced buffers. The pointer can escape if 2488 // 'closefn' is specified (and if that function does free memory), 2489 // but it will not if closefn is not specified. 2490 // Currently, we do not inspect the 'closefn' function (PR12101). 2491 if (FName == "funopen") 2492 if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0)) 2493 return false; 2494 2495 // Do not warn on pointers passed to 'setbuf' when used with std streams, 2496 // these leaks might be intentional when setting the buffer for stdio. 2497 // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer 2498 if (FName == "setbuf" || FName =="setbuffer" || 2499 FName == "setlinebuf" || FName == "setvbuf") { 2500 if (Call->getNumArgs() >= 1) { 2501 const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts(); 2502 if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE)) 2503 if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl())) 2504 if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos) 2505 return true; 2506 } 2507 } 2508 2509 // A bunch of other functions which either take ownership of a pointer or 2510 // wrap the result up in a struct or object, meaning it can be freed later. 2511 // (See RetainCountChecker.) Not all the parameters here are invalidated, 2512 // but the Malloc checker cannot differentiate between them. The right way 2513 // of doing this would be to implement a pointer escapes callback. 2514 if (FName == "CGBitmapContextCreate" || 2515 FName == "CGBitmapContextCreateWithData" || 2516 FName == "CVPixelBufferCreateWithBytes" || 2517 FName == "CVPixelBufferCreateWithPlanarBytes" || 2518 FName == "OSAtomicEnqueue") { 2519 return true; 2520 } 2521 2522 if (FName == "postEvent" && 2523 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2524 return true; 2525 } 2526 2527 if (FName == "postEvent" && 2528 FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") { 2529 return true; 2530 } 2531 2532 // Handle cases where we know a buffer's /address/ can escape. 2533 // Note that the above checks handle some special cases where we know that 2534 // even though the address escapes, it's still our responsibility to free the 2535 // buffer. 2536 if (Call->argumentsMayEscape()) 2537 return true; 2538 2539 // Otherwise, assume that the function does not free memory. 2540 // Most system calls do not free the memory. 2541 return false; 2542 } 2543 2544 static bool retTrue(const RefState *RS) { 2545 return true; 2546 } 2547 2548 static bool checkIfNewOrNewArrayFamily(const RefState *RS) { 2549 return (RS->getAllocationFamily() == AF_CXXNewArray || 2550 RS->getAllocationFamily() == AF_CXXNew); 2551 } 2552 2553 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State, 2554 const InvalidatedSymbols &Escaped, 2555 const CallEvent *Call, 2556 PointerEscapeKind Kind) const { 2557 return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue); 2558 } 2559 2560 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State, 2561 const InvalidatedSymbols &Escaped, 2562 const CallEvent *Call, 2563 PointerEscapeKind Kind) const { 2564 return checkPointerEscapeAux(State, Escaped, Call, Kind, 2565 &checkIfNewOrNewArrayFamily); 2566 } 2567 2568 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State, 2569 const InvalidatedSymbols &Escaped, 2570 const CallEvent *Call, 2571 PointerEscapeKind Kind, 2572 bool(*CheckRefState)(const RefState*)) const { 2573 // If we know that the call does not free memory, or we want to process the 2574 // call later, keep tracking the top level arguments. 2575 SymbolRef EscapingSymbol = nullptr; 2576 if (Kind == PSK_DirectEscapeOnCall && 2577 !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State, 2578 EscapingSymbol) && 2579 !EscapingSymbol) { 2580 return State; 2581 } 2582 2583 for (InvalidatedSymbols::const_iterator I = Escaped.begin(), 2584 E = Escaped.end(); 2585 I != E; ++I) { 2586 SymbolRef sym = *I; 2587 2588 if (EscapingSymbol && EscapingSymbol != sym) 2589 continue; 2590 2591 if (const RefState *RS = State->get<RegionState>(sym)) { 2592 if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) && 2593 CheckRefState(RS)) { 2594 State = State->remove<RegionState>(sym); 2595 State = State->set<RegionState>(sym, RefState::getEscaped(RS)); 2596 } 2597 } 2598 } 2599 return State; 2600 } 2601 2602 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState, 2603 ProgramStateRef prevState) { 2604 ReallocPairsTy currMap = currState->get<ReallocPairs>(); 2605 ReallocPairsTy prevMap = prevState->get<ReallocPairs>(); 2606 2607 for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end(); 2608 I != E; ++I) { 2609 SymbolRef sym = I.getKey(); 2610 if (!currMap.lookup(sym)) 2611 return sym; 2612 } 2613 2614 return nullptr; 2615 } 2616 2617 PathDiagnosticPiece * 2618 MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N, 2619 const ExplodedNode *PrevN, 2620 BugReporterContext &BRC, 2621 BugReport &BR) { 2622 ProgramStateRef state = N->getState(); 2623 ProgramStateRef statePrev = PrevN->getState(); 2624 2625 const RefState *RS = state->get<RegionState>(Sym); 2626 const RefState *RSPrev = statePrev->get<RegionState>(Sym); 2627 if (!RS) 2628 return nullptr; 2629 2630 const Stmt *S = nullptr; 2631 const char *Msg = nullptr; 2632 StackHintGeneratorForSymbol *StackHint = nullptr; 2633 2634 // Retrieve the associated statement. 2635 ProgramPoint ProgLoc = N->getLocation(); 2636 if (Optional<StmtPoint> SP = ProgLoc.getAs<StmtPoint>()) { 2637 S = SP->getStmt(); 2638 } else if (Optional<CallExitEnd> Exit = ProgLoc.getAs<CallExitEnd>()) { 2639 S = Exit->getCalleeContext()->getCallSite(); 2640 } else if (Optional<BlockEdge> Edge = ProgLoc.getAs<BlockEdge>()) { 2641 // If an assumption was made on a branch, it should be caught 2642 // here by looking at the state transition. 2643 S = Edge->getSrc()->getTerminator(); 2644 } 2645 2646 if (!S) 2647 return nullptr; 2648 2649 // FIXME: We will eventually need to handle non-statement-based events 2650 // (__attribute__((cleanup))). 2651 2652 // Find out if this is an interesting point and what is the kind. 2653 if (Mode == Normal) { 2654 if (isAllocated(RS, RSPrev, S)) { 2655 Msg = "Memory is allocated"; 2656 StackHint = new StackHintGeneratorForSymbol(Sym, 2657 "Returned allocated memory"); 2658 } else if (isReleased(RS, RSPrev, S)) { 2659 Msg = "Memory is released"; 2660 StackHint = new StackHintGeneratorForSymbol(Sym, 2661 "Returning; memory was released"); 2662 } else if (isRelinquished(RS, RSPrev, S)) { 2663 Msg = "Memory ownership is transferred"; 2664 StackHint = new StackHintGeneratorForSymbol(Sym, ""); 2665 } else if (isReallocFailedCheck(RS, RSPrev, S)) { 2666 Mode = ReallocationFailed; 2667 Msg = "Reallocation failed"; 2668 StackHint = new StackHintGeneratorForReallocationFailed(Sym, 2669 "Reallocation failed"); 2670 2671 if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) { 2672 // Is it possible to fail two reallocs WITHOUT testing in between? 2673 assert((!FailedReallocSymbol || FailedReallocSymbol == sym) && 2674 "We only support one failed realloc at a time."); 2675 BR.markInteresting(sym); 2676 FailedReallocSymbol = sym; 2677 } 2678 } 2679 2680 // We are in a special mode if a reallocation failed later in the path. 2681 } else if (Mode == ReallocationFailed) { 2682 assert(FailedReallocSymbol && "No symbol to look for."); 2683 2684 // Is this is the first appearance of the reallocated symbol? 2685 if (!statePrev->get<RegionState>(FailedReallocSymbol)) { 2686 // We're at the reallocation point. 2687 Msg = "Attempt to reallocate memory"; 2688 StackHint = new StackHintGeneratorForSymbol(Sym, 2689 "Returned reallocated memory"); 2690 FailedReallocSymbol = nullptr; 2691 Mode = Normal; 2692 } 2693 } 2694 2695 if (!Msg) 2696 return nullptr; 2697 assert(StackHint); 2698 2699 // Generate the extra diagnostic. 2700 PathDiagnosticLocation Pos(S, BRC.getSourceManager(), 2701 N->getLocationContext()); 2702 return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint); 2703 } 2704 2705 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State, 2706 const char *NL, const char *Sep) const { 2707 2708 RegionStateTy RS = State->get<RegionState>(); 2709 2710 if (!RS.isEmpty()) { 2711 Out << Sep << "MallocChecker :" << NL; 2712 for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) { 2713 const RefState *RefS = State->get<RegionState>(I.getKey()); 2714 AllocationFamily Family = RefS->getAllocationFamily(); 2715 Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family); 2716 if (!CheckKind.hasValue()) 2717 CheckKind = getCheckIfTracked(Family, true); 2718 2719 I.getKey()->dumpToStream(Out); 2720 Out << " : "; 2721 I.getData().dump(Out); 2722 if (CheckKind.hasValue()) 2723 Out << " (" << CheckNames[*CheckKind].getName() << ")"; 2724 Out << NL; 2725 } 2726 } 2727 } 2728 2729 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) { 2730 registerCStringCheckerBasic(mgr); 2731 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); 2732 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( 2733 "Optimistic", false, checker); 2734 checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true; 2735 checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] = 2736 mgr.getCurrentCheckName(); 2737 // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete 2738 // checker. 2739 if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker]) 2740 checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true; 2741 } 2742 2743 #define REGISTER_CHECKER(name) \ 2744 void ento::register##name(CheckerManager &mgr) { \ 2745 registerCStringCheckerBasic(mgr); \ 2746 MallocChecker *checker = mgr.registerChecker<MallocChecker>(); \ 2747 checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption( \ 2748 "Optimistic", false, checker); \ 2749 checker->ChecksEnabled[MallocChecker::CK_##name] = true; \ 2750 checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \ 2751 } 2752 2753 REGISTER_CHECKER(MallocChecker) 2754 REGISTER_CHECKER(NewDeleteChecker) 2755 REGISTER_CHECKER(MismatchedDeallocatorChecker) 2756