OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
refs:log_scale
(Results
1 - 5
of
5
) sorted by null
/external/tensorflow/tensorflow/contrib/distributions/python/ops/bijectors/
real_nvp.py
138
`
log_scale
` from both the forward domain (`x`) and the inverse domain
144
`
log_scale
` is equivalent to (but more efficient than) returning zero.
146
implementation assumes `
log_scale
` does not depend on the forward domain
184
shift,
log_scale
= self._shift_and_log_scale_fn(
187
if
log_scale
is not None:
188
y1 *= math_ops.exp(
log_scale
)
198
shift,
log_scale
= self._shift_and_log_scale_fn(
203
if
log_scale
is not None:
204
x1 *= math_ops.exp(-
log_scale
)
211
_,
log_scale
= self._shift_and_log_scale_fn
[
all
...]
masked_autoregressive.py
104
shift,
log_scale
= shift_and_log_scale_fn(y)
105
y = x * math_ops.exp(
log_scale
) + shift
113
shift,
log_scale
= shift_and_log_scale_fn(y)
114
return (y - shift) / math_ops.exp(
log_scale
)
118
forward pass each calculation of `shift` and `
log_scale
` is based on the `y`
121
the "last" `y` used to compute `shift`, `
log_scale
`. (Roughly speaking, this
191
`
log_scale
` from both the forward domain (`x`) and the inverse domain
197
`
log_scale
` is equivalent to (but more efficient than) returning zero.
199
implementation assumes `
log_scale
` does not depend on the forward domain
229
shift,
log_scale
= self._shift_and_log_scale_fn(y
[
all
...]
/toolchain/binutils/binutils-2.27/gprof/
hist.c
570
unsigned
log_scale
;
605
log_scale
= 5; /* Milli-seconds is BSD-default. */
611
log_scale
= 0;
637
for (
log_scale
= 0;
log_scale
< ARRAY_SIZE (SItab);
log_scale
++)
639
double scaled_value = SItab[
log_scale
].scale * top_time;
650
print_header (SItab[
log_scale
].prefix);
661
print_line (time_sorted_syms[sym_index], SItab[
log_scale
].scale);
569
unsigned
log_scale
;
local
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/bijectors/
real_nvp_test.py
135
log_scale
= constant_op.constant([0.5])
136
return shift,
log_scale
/external/tensorflow/tensorflow/python/ops/distributions/
special_math.py
333
log_scale
= -0.5 * x_2 - math_ops.log(-x) - 0.5 * math.log(2. * math.pi)
334
return
log_scale
+ math_ops.log(_log_ndtr_asymptotic_series(x, series_order))
Completed in 304 milliseconds