HomeSort by relevance Sort by last modified time
    Searched refs:rank_param (Results 1 - 12 of 12) sorted by null

  /frameworks/ml/nn/runtime/test/specs/V1_0/
svdf_state.mod.py 29 rank_param = Int32Scalar("rank_param", 1) variable
35 rank_param, activation_param).To([state_out, output])
svdf.mod.py 31 rank_param = Int32Scalar("rank_param", rank) variable
37 rank_param, activation_param).To([state_out, output])
svdf2.mod.py 31 rank_param = Int32Scalar("rank_param", rank) variable
37 rank_param, activation_param).To([state_out, output])
  /frameworks/ml/nn/runtime/test/specs/V1_1/
svdf_state_relaxed.mod.py 29 rank_param = Int32Scalar("rank_param", 1) variable
35 rank_param, activation_param).To([state_out, output])
svdf2_relaxed.mod.py 31 rank_param = Int32Scalar("rank_param", rank) variable
37 rank_param, activation_param).To([state_out, output])
svdf_relaxed.mod.py 31 rank_param = Int32Scalar("rank_param", rank) variable
37 rank_param, activation_param).To([state_out, output])
  /frameworks/ml/nn/runtime/test/generated/models/
svdf.model.cpp 16 auto rank_param = model->addOperand(&type5); local
22 model->setOperandValue(rank_param, rank_param_init, sizeof(int32_t) * 1);
25 model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output});
svdf2.model.cpp 16 auto rank_param = model->addOperand(&type5); local
22 model->setOperandValue(rank_param, rank_param_init, sizeof(int32_t) * 1);
25 model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output});
svdf2_relaxed.model.cpp 16 auto rank_param = model->addOperand(&type5); local
22 model->setOperandValue(rank_param, rank_param_init, sizeof(int32_t) * 1);
25 model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output});
svdf_relaxed.model.cpp 16 auto rank_param = model->addOperand(&type5); local
22 model->setOperandValue(rank_param, rank_param_init, sizeof(int32_t) * 1);
25 model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output});
svdf_state.model.cpp 16 auto rank_param = model->addOperand(&type5); local
22 model->setOperandValue(rank_param, rank_param_init, sizeof(int32_t) * 1);
25 model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output});
svdf_state_relaxed.model.cpp 16 auto rank_param = model->addOperand(&type5); local
22 model->setOperandValue(rank_param, rank_param_init, sizeof(int32_t) * 1);
25 model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output});

Completed in 193 milliseconds