/frameworks/ml/nn/runtime/test/specs/V1_0/ |
rnn_state.mod.py | 25 recurrent_weights = Input("recurrent_weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, units)) variable 34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in, 62 recurrent_weights: [
|
rnn.mod.py | 25 recurrent_weights = Input("recurrent_weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, units)) variable 34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in, 62 recurrent_weights: [
|
/frameworks/ml/nn/runtime/test/specs/V1_1/ |
rnn_state_relaxed.mod.py | 25 recurrent_weights = Input("recurrent_weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, units)) variable 34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in, 63 recurrent_weights: [
|
rnn_relaxed.mod.py | 25 recurrent_weights = Input("recurrent_weights", "TENSOR_FLOAT32", "{%d, %d}" % (units, units)) variable 34 model = model.Operation("RNN", input, weights, recurrent_weights, bias, hidden_state_in, 63 recurrent_weights: [
|
/frameworks/ml/nn/runtime/test/generated/models/ |
rnn.model.cpp | 12 auto recurrent_weights = model->addOperand(&type2); local 21 model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in, activation_param}, {hidden_state_out, output}); 24 {input, weights, recurrent_weights, bias, hidden_state_in},
|
rnn_relaxed.model.cpp | 12 auto recurrent_weights = model->addOperand(&type2); local 21 model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in, activation_param}, {hidden_state_out, output}); 24 {input, weights, recurrent_weights, bias, hidden_state_in},
|
rnn_state.model.cpp | 12 auto recurrent_weights = model->addOperand(&type2); local 21 model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in, activation_param}, {hidden_state_out, output}); 24 {input, weights, recurrent_weights, bias, hidden_state_in},
|
rnn_state_relaxed.model.cpp | 12 auto recurrent_weights = model->addOperand(&type2); local 21 model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in, activation_param}, {hidden_state_out, output}); 24 {input, weights, recurrent_weights, bias, hidden_state_in},
|
/external/tensorflow/tensorflow/contrib/lite/kernels/ |
basic_rnn.cc | 49 TfLiteTensor* recurrent_weights = local 59 TF_LITE_ASSERT_EQ(recurrent_weights->dims->data[0], bias->dims->data[0]); 60 TF_LITE_ASSERT_EQ(recurrent_weights->dims->data[1], bias->dims->data[0]); 92 TfLiteTensor* recurrent_weights = local 111 // Initialize input_weights and recurrent_weights. 113 const float* recurrent_weights_ptr = recurrent_weights->data.f;
|
bidirectional_sequence_rnn_test.cc | 636 constexpr std::initializer_list<float> recurrent_weights = { member in namespace:tflite::__anon39246 [all...] |
unidirectional_sequence_rnn.cc | 49 TfLiteTensor* recurrent_weights = local 64 TF_LITE_ASSERT_EQ(recurrent_weights->dims->data[0], bias->dims->data[0]); 65 TF_LITE_ASSERT_EQ(recurrent_weights->dims->data[1], bias->dims->data[0]); 98 TfLiteTensor* recurrent_weights = local 116 // Initialize input_weights and recurrent_weights. 118 const float* recurrent_weights_ptr = recurrent_weights->data.f;
|
/frameworks/ml/nn/common/operations/ |
RNN.cpp | 53 const RunTimeOperandInfo *recurrent_weights = local 64 NN_CHECK_EQ(SizeOfDimension(recurrent_weights, 0), SizeOfDimension(bias, 0)); 65 NN_CHECK_EQ(SizeOfDimension(recurrent_weights, 1), SizeOfDimension(bias, 0)); 102 // Initialize input_weights and recurrent_weights. 120 // Output += recurrent_weights * hidden_state
|