HomeSort by relevance Sort by last modified time
    Searched defs:output (Results 301 - 325 of 4809) sorted by null

<<11121314151617181920>>

  /frameworks/ml/nn/runtime/test/generated/models/
mean_float_2_relaxed.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_MEAN, {input, axis, keepDims}, {output});
21 {output});
mean_quant8_1.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_MEAN, {input, axis, keepDims}, {output});
21 {output});
mean_quant8_2.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_MEAN, {input, axis, keepDims}, {output});
21 {output});
mean_relaxed.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_MEAN, {input, axis, keepDims}, {output});
21 {output});
space_to_batch.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_SPACE_TO_BATCH_ND, {input, block_size, paddings}, {output});
21 {output});
space_to_batch_float_1.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_SPACE_TO_BATCH_ND, {input, block_size, paddings}, {output});
21 {output});
space_to_batch_float_1_relaxed.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_SPACE_TO_BATCH_ND, {input, block_size, paddings}, {output});
21 {output});
space_to_batch_float_2.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_SPACE_TO_BATCH_ND, {input, block_size, paddings}, {output});
21 {output});
space_to_batch_float_2_relaxed.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_SPACE_TO_BATCH_ND, {input, block_size, paddings}, {output});
21 {output});
space_to_batch_float_3.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_SPACE_TO_BATCH_ND, {input, block_size, paddings}, {output});
21 {output});
space_to_batch_float_3_relaxed.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_SPACE_TO_BATCH_ND, {input, block_size, paddings}, {output});
21 {output});
space_to_batch_quant8_1.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_SPACE_TO_BATCH_ND, {input, block_size, paddings}, {output});
21 {output});
space_to_batch_quant8_2.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_SPACE_TO_BATCH_ND, {input, block_size, paddings}, {output});
21 {output});
space_to_batch_quant8_3.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_SPACE_TO_BATCH_ND, {input, block_size, paddings}, {output});
21 {output});
space_to_batch_relaxed.model.cpp 11 auto output = model->addOperand(&type3); local
17 model->addOperation(ANEURALNETWORKS_SPACE_TO_BATCH_ND, {input, block_size, paddings}, {output});
21 {output});
  /frameworks/ml/nn/runtime/test/specs/V1_0/
conv_float.mod.py 24 # output dimension:
26 output = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 1}") variable
28 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output)
34 output0 = {output: # output 0
conv_float_2.mod.py 24 output = Output("op4", "TENSOR_FLOAT32", "{1, 3, 4, 1}") variable
26 model = model.Operation("CONV_2D", i1, f1, b1, pad_same, stride, stride, act_relu).To(output)
32 output0 = {output: # output 0
conv_float_channels.mod.py 24 # output dimension:
26 output = Output("op4", "TENSOR_FLOAT32", "{1, 1, 1, 3}") variable
28 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output)
34 output0 = {output: # output 0
conv_float_channels_weights_as_inputs.mod.py 24 # output dimension:
26 output = Output("op4", "TENSOR_FLOAT32", "{1, 1, 1, 3}") variable
28 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output)
40 output0 = {output: # output 0
conv_float_large.mod.py 24 # output dimension:
26 output = Output("op4", "TENSOR_FLOAT32", "{1, 2, 3, 3}") variable
28 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output)
35 output0 = {output: # output 0
conv_float_large_weights_as_inputs.mod.py 24 # output dimension:
26 output = Output("op4", "TENSOR_FLOAT32", "{1, 2, 3, 3}") variable
28 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output)
41 output0 = {output: # output 0
conv_float_weights_as_inputs.mod.py 24 # output dimension:
26 output = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 1}") variable
28 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output)
38 output0 = {output: # output 0
conv_quant8.mod.py 26 # output dimension:
28 output = Output("op4", "TENSOR_QUANT8_ASYMM", "{1, 2, 2, 1}, 1.f, 0") variable
31 stride, act).To(output)
40 output: # output 0
conv_quant8_channels.mod.py 24 output = Output("op4", "TENSOR_QUANT8_ASYMM", "{1, 1, 1, 3}, 1.0, 0") variable
26 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output)
32 output0 = {output: # output 0
conv_quant8_channels_weights_as_inputs.mod.py 24 output = Output("op4", "TENSOR_QUANT8_ASYMM", "{1, 1, 1, 3}, 1.0, 0") variable
26 model = model.Operation("CONV_2D", i1, f1, b1, pad0, pad0, pad0, pad0, stride, stride, act).To(output)
38 output0 = {output: # output 0

Completed in 361 milliseconds

<<11121314151617181920>>