| /external/tensorflow/tensorflow/contrib/lite/toco/graph_transformations/ |
| propagate_array_data_types.cc | 29 for (const auto& output : op->outputs) { 30 model->GetArray(output).data_type = data_type; 46 // Record data types of output before processing, so we can see at the 49 for (const auto& output : op->outputs) { 50 old_output_data_types[output] = model->GetArray(output).data_type; 52 // Do the actual output data types propagation. 70 // These operators produce an output with the same type as their 2nd input 86 // Output type of the Range op can be set via an attribute 104 auto output = op->outputs[i] local [all...] |
| /external/tensorflow/tensorflow/contrib/tensor_forest/hybrid/core/ops/ |
| unpack_path_op.cc | 35 .Output("unpacked_path: float") 84 Tensor* output = nullptr; variable 89 OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output)); 91 tensorforest::Initialize(*output, 0.0f); 94 auto out = output->tensor<float, 2>();
|
| /external/tensorflow/tensorflow/core/framework/ |
| log_memory.cc | 69 MemoryLogTensorOutput output; local 70 output.set_step_id(step_id); 71 output.set_kernel_name(kernel_name); 72 output.set_index(index); 73 tensor.FillDescription(output.mutable_tensor()); 74 OutputToLog(output);
|
| numeric_op.h | 28 // One input and one output, both the same type. 38 // Two inputs and one output, all the same type. 48 // For operations where the input and output are the same shape. 57 // Output shape is the same as input shape. 59 Tensor* output = nullptr; variable 61 {0}, 0, input.shape(), &output)); 62 static_cast<CHILD*>(this)->Operate(context, input, output); 80 Tensor* output = nullptr; variable 82 {0, 1}, 0, a.shape(), &output)); 88 static_cast<CHILD*>(this)->template Operate<NDIMS>(context, a, b, output); \ [all...] |
| /external/tensorflow/tensorflow/core/grappler/optimizers/ |
| loop_optimizer_test.cc | 53 GraphDef output; local 54 Status status = optimizer.Optimize(nullptr, item, &output); 57 VerifyGraphsEqual(item.graph, output, __FUNCTION__);
|
| /external/tensorflow/tensorflow/core/kernels/ |
| bucketize_op.cc | 39 typename TTypes<int32, 1>::Tensor& output) { 44 output(i) = first_bigger_it - boundaries_vector.begin(); 69 auto output = output_tensor->template flat<int32>(); variable 71 context, input, boundaries_, output));
|
| cross_op.cc | 65 // Create the output Tensor with the same dimensions as the input Tensors. 66 Tensor* output = nullptr; variable 67 OP_REQUIRES_OK(context, context->allocate_output(0, in0.shape(), &output)); 76 output->flat_inner_dims<Type>();
|
| data_format_ops.cc | 53 Tensor* output = nullptr; variable 55 context->allocate_output(0, input.shape(), &output)); 57 input.flat<T>(), output->flat<T>()); 104 Tensor* output = nullptr; variable 106 context->allocate_output(0, input.shape(), &output)); 108 context->eigen_device<Device>(), input.flat<T>(), output->flat<T>(),
|
| encode_jpeg_op.cc | 122 Tensor* output = nullptr; variable 124 context->allocate_output(0, TensorShape({}), &output)); 127 adjusted_flags, &output->scalar<string>()()),
|
| encode_png_op.cc | 76 Tensor* output = nullptr; variable 78 context->allocate_output(0, TensorShape({}), &output)); 84 &output->scalar<string>()(), nullptr), 91 compression_, &output->scalar<string>()(), nullptr),
|
| fact_op.cc | 88 auto output = output_tensor->template scalar<string>(); local 92 output() = coded;
|
| l2loss_op_gpu.cu.cc | 48 // The output is a single number. 49 Tensor* output = nullptr; variable 51 context->allocate_output(0, TensorShape({}), &output)); 58 context, (T*)output->flat<T>().data(), input_itr, 1,
|
| mfcc_dct_test.cc | 31 std::vector<double> output; local 32 dct.Compute(input, &output); 38 ASSERT_EQ(output.size(), kCoefficientCount); 40 EXPECT_NEAR(output[i], expected[i], 1e-10);
|
| parse_tensor_op.cc | 50 Tensor output; variable 52 proto, ctx->output_alloc_attr(0), &output)); 55 ctx, out_type_ == output.dtype(), 57 DataTypeString(output.dtype()), ") and dtype (", 60 ctx->set_output(0, output);
|
| quantized_activation_ops.cc | 37 Tensor* output = nullptr; variable 39 context->allocate_output(0, input.shape(), &output)); 45 min_as_quantized, 255, output->flat<quint8>().data()); 47 output->flat<T>().device(context->eigen_cpu_device()) = 70 Tensor* output = nullptr; variable 72 context->allocate_output(0, input.shape(), &output)); 80 output->flat<quint8>().data()); 82 output->flat<T>().device(context->eigen_cpu_device()) =
|
| quantized_pooling_ops.cc | 73 Tensor* output = nullptr; variable 75 0, params.forward_output_shape(), &output)); 88 // Clamp the int32 output back into quantized space. 89 output->flat<T>() = int32_output.flat<int32>()
|
| random_shuffle_op.cc | 30 // TODO(irving): If performance is critical, generate output directly instead 73 // No shuffling is required, so copy input directly to output 90 Tensor* output = nullptr; variable 92 context->allocate_output(0, input.shape(), &output)); 94 auto output_mat = output->flat_outer_dims<T>();
|
| remote_fused_graph_execute_op.cc | 104 Tensor* output = nullptr; variable 109 [i, &ctx, &output](const TensorShape& shape) -> Tensor* { 110 TF_CHECK_OK(ctx->allocate_output(i, shape, &output)); 111 return output; 115 // data type as output if no executor is used. 116 Tensor* output = nullptr; variable 118 TF_CHECK_OK(ctx->allocate_output(i, ts, &output));
|
| requantize.cc | 47 Tensor* output = nullptr; variable 48 OP_REQUIRES_OK(ctx, ctx->allocate_output(0, input.shape(), &output)); 68 auto output_array = output->flat<T2>(); 83 output->flat<quint8>().data()); 88 requested_output_max_float, output);
|
| sparse_slice_op.cc | 77 const sparse::SparseTensor output = variable 80 context->set_output(0, output.indices()); 81 context->set_output(1, output.values()); 83 const TensorShape output_shape(output.shape());
|
| stateless_random_ops.cc | 47 // Allocate output 48 Tensor* output; variable 49 OP_REQUIRES_OK(context, context->allocate_output(0, shape, &output)); 84 Fill(context, random::PhiloxRandom(counter, key), output); 89 Tensor* output) = 0; 98 Tensor* output) override { 100 auto flat = output->flat<T>();
|
| unravel_index_op.cc | 87 auto output = output_tensor->vec<Tidx>(); variable 89 output = output.constant(indices_tensor.scalar<Tidx>()()); 90 output = output.binaryExpr(strides, mod_op<Tidx>()) / strides_shifted; 98 auto output = output_tensor->matrix<Tidx>(); variable 105 output = indices_tensor.vec<Tidx>() 108 output = output.binaryExpr(strides.reshape(reshape).broadcast(bcast),
|
| whole_file_read_ops.cc | 109 Tensor* output = nullptr; variable 111 TensorShape({}), &output)); 114 &output->scalar<string>()()));
|
| /external/tensorflow/tensorflow/core/lib/db/ |
| snapfn.cc | 121 auto output = local 123 if (output == nullptr) { 127 *output++ = static_cast<char>(type), --output_size; 128 snappy::RawCompress(data, static_cast<size_t>(size), output, &output_size); 129 sqlite3_result_blob(ctx, output - 1, static_cast<int>(output_size + 1), 184 auto output = local 186 if (output == nullptr) { 190 if (!snappy::RawUncompress(blob, static_cast<size_t>(size), output)) { 193 sqlite3_free(output); 197 sqlite3_result_text(ctx, output, static_cast<int>(output_size) [all...] |
| /external/tensorflow/tensorflow/python/framework/ |
| test_ops.cc | 26 .Output("result: string") 31 .Output("result: string") 40 .Output("version: int32") 45 .Output("version: int32") 62 .Output("initialized: bool") 75 .Output("output1: float") 76 .Output("output2: string") 80 .Output("out: T") 94 Tensor* output; variable 96 ctx->allocate_output("result", TensorShape({}), &output)); 136 Tensor* output = nullptr; variable 201 Tensor* output; variable [all...] |