| /frameworks/ml/nn/runtime/test/generated/models/ |
| local_response_norm_float_2.model.cpp | 12 auto output = model->addOperand(&type0); local 22 model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {input, radius, bias, alpha, beta}, {output}); 26 {output});
|
| local_response_norm_float_2_relaxed.model.cpp | 12 auto output = model->addOperand(&type0); local 22 model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {input, radius, bias, alpha, beta}, {output}); 26 {output});
|
| local_response_norm_float_3.model.cpp | 12 auto output = model->addOperand(&type0); local 22 model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {input, radius, bias, alpha, beta}, {output}); 26 {output});
|
| local_response_norm_float_3_relaxed.model.cpp | 12 auto output = model->addOperand(&type0); local 22 model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {input, radius, bias, alpha, beta}, {output}); 26 {output});
|
| local_response_norm_float_4.model.cpp | 12 auto output = model->addOperand(&type0); local 22 model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {input, radius, bias, alpha, beta}, {output}); 26 {output});
|
| local_response_norm_float_4_relaxed.model.cpp | 12 auto output = model->addOperand(&type0); local 22 model->addOperation(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION, {input, radius, bias, alpha, beta}, {output}); 26 {output});
|
| max_pool_float_2.model.cpp | 12 auto output = model->addOperand(&type2); local 22 model->addOperation(ANEURALNETWORKS_MAX_POOL_2D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); 26 {output});
|
| max_pool_float_2_relaxed.model.cpp | 12 auto output = model->addOperand(&type2); local 22 model->addOperation(ANEURALNETWORKS_MAX_POOL_2D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); 26 {output});
|
| max_pool_float_3.model.cpp | 12 auto output = model->addOperand(&type2); local 22 model->addOperation(ANEURALNETWORKS_MAX_POOL_2D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, relu6_activation}, {output}); 26 {output});
|
| max_pool_float_3_relaxed.model.cpp | 12 auto output = model->addOperand(&type2); local 22 model->addOperation(ANEURALNETWORKS_MAX_POOL_2D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, relu6_activation}, {output}); 26 {output});
|
| max_pool_quant8_2.model.cpp | 12 auto output = model->addOperand(&type2); local 22 model->addOperation(ANEURALNETWORKS_MAX_POOL_2D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, activation}, {output}); 26 {output});
|
| max_pool_quant8_3.model.cpp | 12 auto output = model->addOperand(&type2); local 22 model->addOperation(ANEURALNETWORKS_MAX_POOL_2D, {i0, padding, padding, padding, padding, stride, stride, filter, filter, relu1_activation}, {output}); 26 {output});
|
| rnn.model.cpp | 17 auto output = model->addOperand(&type4); local 21 model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in, activation_param}, {hidden_state_out, output}); 25 {hidden_state_out, output});
|
| rnn_relaxed.model.cpp | 17 auto output = model->addOperand(&type4); local 21 model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in, activation_param}, {hidden_state_out, output}); 25 {hidden_state_out, output});
|
| rnn_state.model.cpp | 17 auto output = model->addOperand(&type4); local 21 model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in, activation_param}, {hidden_state_out, output}); 25 {hidden_state_out, output});
|
| rnn_state_relaxed.model.cpp | 17 auto output = model->addOperand(&type4); local 21 model->addOperation(ANEURALNETWORKS_RNN, {input, weights, recurrent_weights, bias, hidden_state_in, activation_param}, {hidden_state_out, output}); 25 {hidden_state_out, output});
|
| svdf.model.cpp | 19 auto output = model->addOperand(&type6); local 25 model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output}); 29 {state_out, output});
|
| svdf2.model.cpp | 19 auto output = model->addOperand(&type6); local 25 model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output}); 29 {state_out, output});
|
| svdf2_relaxed.model.cpp | 19 auto output = model->addOperand(&type6); local 25 model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output}); 29 {state_out, output});
|
| svdf_relaxed.model.cpp | 19 auto output = model->addOperand(&type6); local 25 model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output}); 29 {state_out, output});
|
| svdf_state.model.cpp | 19 auto output = model->addOperand(&type6); local 25 model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output}); 29 {state_out, output});
|
| svdf_state_relaxed.model.cpp | 19 auto output = model->addOperand(&type6); local 25 model->addOperation(ANEURALNETWORKS_SVDF, {input, weights_feature, weights_time, bias, state_in, rank_param, activation_param}, {state_out, output}); 29 {state_out, output});
|
| /frameworks/ml/nn/runtime/test/specs/V1_0/ |
| concat_float_2.mod.py | 28 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (output_row, col)) # output variable 29 model = model.Operation("CONCATENATION", input1, input2, axis0).To(output) 38 output0 = {output: output_values}
|
| concat_float_3.mod.py | 28 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (row, output_col)) # output variable 29 model = model.Operation("CONCATENATION", input1, input2, axis1).To(output) 44 output0 = {output: output_values}
|
| concat_quant8_2.mod.py | 28 output = Output("output", "TENSOR_QUANT8_ASYMM", "{%d, %d}, 0.5f, 0" % (output_row, col)) variable 29 model = model.Operation("CONCATENATION", input1, input2, axis0).To(output) 38 output0 = {output: output_values}
|