| /frameworks/ml/nn/runtime/test/specs/V1_0/ |
| relu6_quant8_2.mod.py | 27 output = Output("output", "TENSOR_QUANT8_ASYMM", "{%d, %d, %d, %d}, 1.f, 128" % (d0, d1, d2, d3)) variable 29 model = model.Operation("RELU6", i0).To(output) 36 output0 = {output: output_values}
|
| relu_float_2.mod.py | 27 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d, %d}" % (d0, d1, d2, d3)) variable 29 model = model.Operation("RELU", i0).To(output) 36 output0 = {output: output_values}
|
| relu_quant8_2.mod.py | 27 output = Output("output", "TENSOR_QUANT8_ASYMM", "{%d, %d, %d, %d}, 1.f, 128" % (d0, d1, d2, d3)) variable 29 model = model.Operation("RELU", i0).To(output) 36 output0 = {output: output_values}
|
| rnn_state.mod.py | 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) variable 35 activation_param).To([hidden_state_out, output]) 116 output0[output] = [
|
| svdf_state.mod.py | 31 state_out = Output("state_out", "TENSOR_FLOAT32", "{%d, %d}" % (batches, memory_size*units)) 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) variable 35 rank_param, activation_param).To([state_out, output]) 108 output : [
|
| /frameworks/ml/nn/runtime/test/specs/V1_1/ |
| concat_float_2_relaxed.mod.py | 28 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (output_row, col)) # output variable 29 model = model.Operation("CONCATENATION", input1, input2, axis0).To(output) 39 output0 = {output: output_values}
|
| concat_float_3_relaxed.mod.py | 28 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (row, output_col)) # output variable 29 model = model.Operation("CONCATENATION", input1, input2, axis1).To(output) 45 output0 = {output: output_values}
|
| depthwise_conv2d_float_2_relaxed.mod.py | 25 output = Output("op4", "TENSOR_FLOAT32", "{1, 2, 1, 4}") variable 31 cm, act_none).To(output) 40 output0 = {output: # output 0
|
| depthwise_conv2d_float_large_2_relaxed.mod.py | 25 output = Output("op4", "TENSOR_FLOAT32", "{1, 1, 1, 4}") variable 31 cm, act).To(output) 43 output0 = {output: # output 0
|
| depthwise_conv2d_float_large_2_weights_as_inputs_relaxed.mod.py | 25 output = Output("op4", "TENSOR_FLOAT32", "{1, 1, 1, 4}") variable 31 cm, act).To(output) 50 output0 = {output: # output 0
|
| depthwise_conv2d_float_large_relaxed.mod.py | 25 output = Output("op4", "TENSOR_FLOAT32", "{1, 1, 1, 2}") variable 31 cm, act).To(output) 41 output0 = {output: # output 0
|
| depthwise_conv2d_float_large_weights_as_inputs_relaxed.mod.py | 25 output = Output("op4", "TENSOR_FLOAT32", "{1, 1, 1, 2}") variable 31 cm, act).To(output) 46 output0 = {output: # output 0
|
| depthwise_conv2d_float_relaxed.mod.py | 25 output = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 4}") variable 31 cm, act).To(output) 45 output0 = {output: # output 0
|
| depthwise_conv2d_float_weights_as_inputs_relaxed.mod.py | 25 output = Output("op4", "TENSOR_FLOAT32", "{1, 2, 2, 4}") variable 31 cm, act).To(output) 52 output0 = {output: # output 0
|
| embedding_lookup_relaxed.mod.py | 31 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d}" % (lookups, columns, features)) variable 32 model = model.Operation("EMBEDDING_LOOKUP", index, value).To(output) 38 output0 = {output:
|
| hashtable_lookup_float_relaxed.mod.py | 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (lookups, features)) variable 33 hits = Output("hits", "TENSOR_QUANT8_ASYMM", "{%d}, 1.f, 0" % (lookups)) 34 model = model.Operation("HASHTABLE_LOOKUP", lookup, key, value).To([output, hits]) 41 output0 = {output:
|
| logistic_float_2_relaxed.mod.py | 27 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d, %d}" % (d0, d1, d2, d3)) variable 29 model = model.Operation("LOGISTIC", i0).To(output) 37 output0 = {output: output_values}
|
| lsh_projection_2_relaxed.mod.py | 28 output = Output("output", "TENSOR_INT32", "{%d}" % (num_hash)) variable 30 type_param).To(output) 40 output0 = {output: [1, 2, 2, 0]}
|
| lsh_projection_relaxed.mod.py | 28 output = Output("output", "TENSOR_INT32", "{%d}" % (num_hash * num_bits)) variable 30 type_param).To(output) 38 output0 = {output: [1, 1, 1, 0, 1, 1, 1, 0]}
|
| lsh_projection_weights_as_inputs_relaxed.mod.py | 27 output = Output("output", "TENSOR_INT32", "{%d}" % (num_hash * num_bits)) variable 28 model = model.Operation("LSH_PROJECTION", hhash, lookup, weight, type_param).To(output) 36 output0 = {output: [1, 1, 1, 0, 1, 1, 1, 0]}
|
| relu1_float_2_relaxed.mod.py | 27 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d, %d}" % (d0, d1, d2, d3)) variable 29 model = model.Operation("RELU1", i0).To(output) 37 output0 = {output: output_values}
|
| relu6_float_2_relaxed.mod.py | 27 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d, %d}" % (d0, d1, d2, d3)) variable 29 model = model.Operation("RELU6", i0).To(output) 37 output0 = {output: output_values}
|
| relu_float_2_relaxed.mod.py | 27 output = Output("output", "TENSOR_FLOAT32", "{%d, %d, %d, %d}" % (d0, d1, d2, d3)) variable 29 model = model.Operation("RELU", i0).To(output) 37 output0 = {output: output_values}
|
| rnn_state_relaxed.mod.py | 32 output = Output("output", "TENSOR_FLOAT32", "{%d, %d}" % (batches, units)) variable 35 activation_param).To([hidden_state_out, output]) 117 output0[output] = [
|
| strided_slice.mod.py | 10 output = Output("output", "TENSOR_FLOAT32", "{1, 2}") variable 12 model = model.Operation("STRIDED_SLICE", i1, begins, ends, strides, beginMask, endMask, shrinkAxisMask).To(output) 19 output0 = {output: # output 0
|