/external/tensorflow/tensorflow/contrib/data/python/kernel_tests/ |
stats_dataset_ops_test.py | 53 dataset = dataset_ops.Dataset.range(100).map( 56 iterator = dataset.make_initializable_iterator() 79 dataset = dataset_ops.Dataset.range(100).apply( 81 iterator = dataset.make_initializable_iterator() 98 dataset = dataset_ops.Dataset.range(100).apply( 100 iterator = dataset.make_initializable_iterator() 120 dataset = dataset_ops.Dataset.range(100).apply [all...] |
scan_dataset_op_test.py | 37 return dataset_ops.Dataset.from_tensors(0).repeat(None).apply( 61 iterator = dataset_ops.Dataset.from_tensors(1).repeat(None).apply( 85 dataset = dataset_ops.Dataset.from_tensors(0).repeat(5).apply( 87 self.assertEqual([None], dataset.output_shapes[0][0].as_list()) 88 self.assertIs(None, dataset.output_shapes[0][1].ndims) 89 self.assertEqual([], dataset.output_shapes[1].as_list()) 91 iterator = dataset.make_one_shot_iterator() 107 dataset = dataset_ops.Dataset.range(10 [all...] |
/packages/apps/Contacts/src/com/android/contacts/model/account/ |
AccountComparator.java | 35 && Objects.equal(a.dataSet, b.dataSet)) { 60 if (a.dataSet != null) { 61 return b.dataSet == null ? 1 : a.dataSet.compareToIgnoreCase(b.dataSet); 69 return GoogleAccountType.ACCOUNT_TYPE.equals(account.type) && account.dataSet == null;
|
/developers/build/prebuilts/gradle/AutofillFramework/afservice/src/main/java/com/example/android/autofill/service/ |
AutofillHelper.java | 20 import android.service.autofill.Dataset; 45 * Wraps autofill data in a LoginCredential Dataset object which can then be sent back to the 48 public static Dataset newDataset(Context context, 53 Dataset.Builder datasetBuilder; 55 datasetBuilder = new Dataset.Builder 62 datasetBuilder = new Dataset.Builder 98 Dataset dataset = newDataset(context, autofillFields, local 100 if (dataset != null) { 101 responseBuilder.addDataset(dataset); [all...] |
/external/tensorflow/tensorflow/python/data/ops/ |
iterator_ops.py | 54 """Represents the state of iterating through a `Dataset`.""" 61 instead use `Dataset.make_initializable_iterator()` or 62 `Dataset.make_one_shot_iterator()`. 70 each component of an element of this dataset. 72 corresponding to each component of an element of this dataset. 96 The returned iterator is not bound to a particular dataset, and it has 98 `Iterator.make_initializer(dataset)`. 105 dataset_range = Dataset.range(10) 138 each component of an element of this dataset. 140 corresponding to each component of an element of this dataset. I [all...] |
/external/tensorflow/tensorflow/core/kernels/data/ |
stats_dataset_ops.cc | 18 #include "tensorflow/core/kernels/data/dataset.h" 25 // This op defines a `Dataset` that passes through its input elements and 46 *output = new Dataset(ctx, input, std::move(tag)); 50 class Dataset : public GraphDatasetBase { 52 explicit Dataset(OpKernelContext* ctx, const DatasetBase* input, string tag) 57 ~Dataset() override { input_->Unref(); } 72 string DebugString() override { return "LatencyStatsDatasetOp::Dataset"; } 86 class Iterator : public DatasetIterator<Dataset> { 89 : DatasetIterator<Dataset>(params), 90 input_impl_(params.dataset->input_->MakeIterator(params.prefix)) { [all...] |
cache_dataset_ops.cc | 17 #include "tensorflow/core/kernels/data/dataset.h" 109 input_impl_(params.dataset->input_->MakeIterator(params.prefix)), 110 writer_(params.dataset->env_, params.dataset->filename_), 111 lockfile_(strings::StrCat(params.dataset->filename_, ".lockfile")), 139 if (out_tensors->size() != dataset()->num_tensors_) { 142 dataset()->num_tensors_, " got: ", out_tensors->size()); 146 DCHECK_LT(tensor_index, dataset()->num_tensors_); 147 string key = dataset()->FormatName(cur_index_, tensor_index++); 166 if (dataset()->env_->FileExists(lockfile_).ok()) [all...] |
tensor_dataset_op.cc | 17 #include "tensorflow/core/kernels/data/dataset.h" 31 // Create a new TensorDatasetOp::Dataset, insert it in the step 42 *output = new Dataset(ctx, std::move(components)); 46 class Dataset : public GraphDatasetBase { 48 Dataset(OpKernelContext* ctx, std::vector<Tensor> tensors) 67 string DebugString() override { return "TensorDatasetOp::Dataset"; } 87 class Iterator : public DatasetIterator<Dataset> { 90 : DatasetIterator<Dataset>(params), produced_(false) {} 97 *out_tensors = dataset()->tensors_;
|
scan_dataset_op.cc | 22 #include "tensorflow/core/kernels/data/dataset.h" 66 *output = new Dataset(ctx, input, func_, std::move(initial_state), 72 class Dataset : public GraphDatasetBase { 74 Dataset(OpKernelContext* ctx, const DatasetBase* input, 91 ~Dataset() override { input_->Unref(); } 106 string DebugString() override { return "ScanDatasetOp::Dataset"; } 148 class Iterator : public DatasetIterator<Dataset> { 151 : DatasetIterator<Dataset>(params), 152 input_impl_(params.dataset->input_->MakeIterator(params.prefix)), 153 state_(params.dataset->initial_state_) { [all...] |
concatenate_dataset_op.cc | 17 #include "tensorflow/core/kernels/data/dataset.h" 34 "input dataset and dataset to concatenate" 38 *output = new Dataset(ctx, input, to_concatenate); 42 class Dataset : public GraphDatasetBase { 44 explicit Dataset(OpKernelContext* ctx, const DatasetBase* input, 59 ~Dataset() override { 78 string DebugString() override { return "ConcatenateDatasetOp::Dataset"; } 94 class Iterator : public DatasetIterator<Dataset> { 97 : DatasetIterator<Dataset>(params) [all...] |
/developers/samples/android/input/autofill/AutofillFramework/afservice/src/main/java/com/example/android/autofill/service/data/adapter/ |
DatasetAdapter.java | 21 import android.service.autofill.Dataset; 53 * Wraps autofill data in a {@link Dataset} object which can then be sent back to the client. 55 public Dataset buildDataset(HashMap<String, FieldTypeWithHeuristics> fieldTypesByAutofillHint, 62 public Dataset buildDatasetForFocusedNode(FilledAutofillField filledAutofillField, 64 Dataset.Builder datasetBuilder = new Dataset.Builder(remoteViews); 74 * Wraps autofill data in a {@link Dataset} object with an IntentSender, which can then be 77 public Dataset buildDataset(HashMap<String, FieldTypeWithHeuristics> fieldTypesByAutofillHint, 80 Dataset.Builder datasetBuilder = new Dataset.Builder(remoteViews) [all...] |
/external/icu/icu4c/source/test/perf/perldriver/ |
Dataset.pm | 12 package Dataset; 17 # Create a new Dataset with the given data. 66 # Return a 99% error based on the t distribution. The dataset 74 # mean+/-error. The new Dataset has no data points. 84 my $result = Dataset->new(); 92 # mean+/-error. The new Dataset has no data points. 97 my $result = Dataset->new(); 105 # mean+/-error. The new Dataset has no data points. 110 my $result = Dataset->new(); 117 # Divides a dataset by a scalar [all...] |
/external/icu/icu4j/perf-tests/perldriver/ |
Dataset.pm | 10 package Dataset; 15 # Create a new Dataset with the given data. 64 # Return a 99% error based on the t distribution. The dataset 72 # mean+/-error. The new Dataset has no data points. 82 my $result = Dataset->new(); 90 # mean+/-error. The new Dataset has no data points. 95 my $result = Dataset->new(); 103 # mean+/-error. The new Dataset has no data points. 108 my $result = Dataset->new(); 115 # Divides a dataset by a scalar [all...] |
/external/tensorflow/tensorflow/python/keras/_impl/keras/utils/ |
io_utils.py | 36 """Representation of HDF5 dataset to be used instead of a Numpy array. 45 Providing `start` and `end` allows use of a slice of the dataset. 52 dataset: string, name of the HDF5 dataset in the file specified 54 start: int, start of desired slice of the specified dataset 55 end: int, end of desired slice of the specified dataset 59 An array-like HDF5 dataset. 63 def __init__(self, datapath, dataset, start=0, end=None, normalizer=None): 73 self.data = f[dataset] 119 """Gets a numpy-style shape tuple giving the dataset dimensions [all...] |
/external/tensorflow/tensorflow/contrib/data/kernels/ |
ignore_errors_dataset_op.cc | 15 #include "tensorflow/core/framework/dataset.h" 34 *output = new Dataset(ctx, input); 38 class Dataset : public GraphDatasetBase { 40 explicit Dataset(OpKernelContext* ctx, const DatasetBase* input) 45 ~Dataset() override { input_->Unref(); } 60 string DebugString() override { return "IgnoreErrorsDatasetOp::Dataset"; } 72 class Iterator : public DatasetIterator<Dataset> { 75 : DatasetIterator<Dataset>(params), 76 input_impl_(params.dataset->input_->MakeIterator(params.prefix)) {}
|
/libcore/benchmarks/src/benchmarks/ |
XmlSerializeBenchmark.java | 36 double[] dataset; field in class:XmlSerializeBenchmark 42 double contChance = dataset[0]; 43 double levelUpChance = dataset[1]; 44 double levelDownChance = dataset[2]; 45 double attributeChance = dataset[3]; 46 double writeChance1 = dataset[4]; 47 double writeChance2 = dataset[5]; 89 dataset = new double[splitted.length]; 91 dataset[i] = Double.parseDouble(splitted[i]);
|
/external/tensorflow/tensorflow/contrib/data/python/ops/ |
grouping.py | 15 """Grouping dataset transformations.""" 35 This transformation maps each consecutive element in a dataset to a key 48 reduce_func: A function mapping a key and a dataset of up to `window_size` 49 consecutive elements matching that key to another dataset. 60 A `Dataset` transformation function, which can be passed to 61 @{tf.data.Dataset.apply}. 80 def _apply_fn(dataset): 81 """Function from `Dataset` to `Dataset` that applies the transformation.""" 82 return GroupByWindowDataset(dataset, key_func, reduce_func [all...] |
shuffle_ops.py | 30 class _ShuffleAndRepeatDataset(dataset_ops.Dataset): 31 """A `Dataset` that fuses `shuffle` and `repeat`.""" 38 """See `Dataset.map()` for details.""" 89 """Shuffles and repeats a Dataset returning a new permutation for each epoch. 91 `dataset.apply(tf.contrib.data.shuffle_and_repeat(buffer_size, count))` 95 `dataset.shuffle(buffer_size, reshuffle_each_iteration=True).repeat(count)` 97 The difference is that the latter dataset is not serializable. So, 105 number of times the dataset should be repeated. The default behavior 106 (if `count` is `None` or `-1`) is for the dataset be repeated 113 A `Dataset` transformation function, which can be passed t [all...] |
/external/tensorflow/tensorflow/contrib/eager/python/ |
datasets.py | 49 """An iterator producing tf.Tensor objects from a tf.data.Dataset.""" 51 def __init__(self, dataset): 52 """Creates a new iterator over the given dataset. 56 dataset = tf.data.Dataset.range(4) 57 for x in Iterator(dataset): 65 dataset: A `tf.data.Dataset` object. 74 "tf.data.Dataset.make_iterator or " 75 "tf.data.Dataset.make_one_shot_iterator for graph construction" [all...] |
/external/tensorflow/tensorflow/contrib/slim/python/slim/data/ |
README.md | 11 a dataset is represented so it can be read and interpreted and (2) instruction 12 for providing the data to consumers of the dataset. 19 # Dataset Specification 21 TF-Slim defines a dataset to be a set of files (that may or may not be encoded) 23 predefined set of entities or `items`. For example, a dataset might be stored 30 [dataset](https://www.tensorflow.org/code/tensorflow/contrib/slim/python/slim/data/dataset.py) 31 is a tuple that encapsulates the following elements of a dataset specification: 33 * `data_sources`: A list of file paths that together make up the dataset 39 class which is used to decode the content of the read dataset files [all...] |
dataset_data_provider.py | 15 """A DataProvider that provides data from a Dataset. 31 slim.datasets.pascal_voc.Dataset(), 54 dataset, 69 dataset: An instance of the Dataset class. 79 record_key: The item name to use for the dataset record keys in the 84 ValueError: If `record_key` matches one of the items in the dataset. 87 dataset.data_sources, 88 reader_class=dataset.reader, 98 items = dataset.decoder.list_items( [all...] |
/developers/build/prebuilts/gradle/RecyclerView/Application/src/main/java/com/example/android/recyclerview/ |
CustomAdapter.java | 61 * Initialize the dataset of the Adapter. 63 * @param dataSet String[] containing the data to populate views to be used by RecyclerView. 65 public CustomAdapter(String[] dataSet) { 66 mDataSet = dataSet; 87 // Get element from your dataset at this position and replace the contents of the view 93 // Return the size of your dataset (invoked by the layout manager)
|
/developers/samples/android/ui/views/RecyclerView/Application/src/main/java/com/example/android/recyclerview/ |
CustomAdapter.java | 61 * Initialize the dataset of the Adapter. 63 * @param dataSet String[] containing the data to populate views to be used by RecyclerView. 65 public CustomAdapter(String[] dataSet) { 66 mDataSet = dataSet; 87 // Get element from your dataset at this position and replace the contents of the view 93 // Return the size of your dataset (invoked by the layout manager)
|
/development/samples/browseable/RecyclerView/src/com.example.android.recyclerview/ |
CustomAdapter.java | 61 * Initialize the dataset of the Adapter. 63 * @param dataSet String[] containing the data to populate views to be used by RecyclerView. 65 public CustomAdapter(String[] dataSet) { 66 mDataSet = dataSet; 87 // Get element from your dataset at this position and replace the contents of the view 93 // Return the size of your dataset (invoked by the layout manager)
|
/packages/apps/Contacts/src/com/android/contacts/list/ |
ContactListFilter.java | 62 private static final String KEY_DATA_SET = "filter.dataSet"; 67 public final String dataSet; 71 public ContactListFilter(int filterType, String accountType, String accountName, String dataSet, 76 this.dataSet = dataSet; 85 String dataSet, Drawable icon) { 87 accountName, dataSet, icon); 91 String dataSet) { 93 accountName, dataSet, /* icon */ null); 98 /* accountType= */ null, /* accountName= */ null, /* dataSet= */ null, icon) [all...] |