/frameworks/support/graphics/drawable/animated/src/androidTest/java/androidx/vectordrawable/graphics/drawable/tests/ |
PathInterpolatorValueParameterizedTest.java | 41 private static final float EPSILON = 1e-3f; 75 assertTrue("value " + value + " is different than expected " + mExpected, delta < EPSILON);
|
/packages/inputmethods/LatinIME/native/jni/tests/suggest/core/layout/ |
normal_distribution_2d_test.cpp | 51 static const float EPSILON = 0.01f; 62 EXPECT_NEAR(probabilityDensity0, probabilityDensity1, EPSILON);
|
/packages/inputmethods/LatinIME/tests/src/com/android/inputmethod/keyboard/internal/ |
MatrixUtilsTests.java | 28 private static final float EPSILON = 0.00001f; 31 assertEqualsFloat(f0, f1, EPSILON);
|
/external/deqp/external/openglcts/modules/glesext/tessellation_shader/ |
esextcTessellationShaderPoints.cpp | 556 const float epsilon = (float)1.0f / 255.0f; local 586 if (de::abs(expected_color_r - rendered_color_r) > epsilon || 587 de::abs(expected_color_g - rendered_color_g) > epsilon || 588 de::abs(expected_color_b - rendered_color_b) > epsilon || 589 de::abs(expected_color_a - rendered_color_a) > epsilon) 595 << ", " << rendered_color_a << ") epsilon: " << epsilon << tcu::TestLog::EndMessage; 794 const float epsilon = 1e-5f; local 847 * is treated as though it were originally specified as 1+epsilon, which would 852 if (de::abs(clamped_inner_levels[0] - 1.0f) < epsilon) 1016 const float epsilon = 1e-5f; local [all...] |
esextcTessellationShaderVertexOrdering.cpp | 486 const float epsilon = 1e-5f; local 516 epsilon && 518 epsilon && 520 epsilon && 522 epsilon && 524 epsilon && 526 epsilon && 565 const float epsilon = 1e-5f; local 593 DE_UNREF(epsilon); 595 1.0f) < epsilon); [all...] |
/external/tensorflow/tensorflow/python/ops/ |
nn_fused_batchnorm_test.py | 36 def _batch_norm(self, x, mean, var, offset, scale, epsilon): 40 inv = math_ops.rsqrt(var + epsilon) * scale 44 def _inference_ref(self, x, scale, offset, mean, var, epsilon, data_format): 50 y = self._batch_norm(x, mean, var, offset, scale, epsilon) 75 epsilon = 0.001 82 epsilon=epsilon, 86 y_ref = self._inference_ref(x, scale, offset, mean, var, epsilon, 94 def _training_ref(self, x, scale, offset, epsilon, data_format): 102 y = self._batch_norm(x, mean, var, offset, scale, epsilon) [all...] |
/external/tensorflow/tensorflow/compiler/xla/tests/ |
batch_normalization_test.cc | 185 auto epsilon = builder.ConstantR0<float>(kEpsilon); local 197 builder.Gt(standard_deviation, epsilon), ShapeUtil::MakeShape(PRED, {2})); 232 /*epsilon=*/0.001, kFeatureIndex); 256 /*epsilon=*/0.001, kFeatureIndex); 287 /*epsilon=*/1, kFeatureIndex); 301 // Test the correctness of choosing a large epsilon value. 318 // var = 125, mean = 15, epsilon = -100 320 /*epsilon=*/-100, kFeatureIndex); 350 /*epsilon=*/0.0, kFeatureIndex); 441 float epsilon = 0.001 local 541 float epsilon = 0.001; local 649 float epsilon = 0.001; local [all...] |
/cts/tests/tests/animation/src/android/animation/cts/ |
ValueAnimatorTest.java | 61 private static final float EPSILON = 0.0001f; 178 assertEquals(.5f, currentFraction, EPSILON); 179 assertEquals(50, currentValue, EPSILON); 186 assertEquals(.5f, currentFraction, EPSILON); 187 assertEquals(50, currentValue, EPSILON); 196 assertEquals(.5f, currentFraction, EPSILON); 197 assertEquals(50, currentValue, EPSILON); 203 assertEquals(.5f, currentFraction, EPSILON); 204 assertEquals(50, currentValue, EPSILON); 211 assertEquals(.5f, delayedAnim.getAnimatedFraction(), EPSILON); [all...] |
/external/eigen/unsupported/Eigen/src/LevenbergMarquardt/ |
LMonestep.h | 178 if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.) 183 if (m_delta <= NumTraits<Scalar>::epsilon() * xnorm) 188 if (m_gnorm <= NumTraits<Scalar>::epsilon())
|
/external/libcups/cups/ |
pwg-private.h | 48 extern pwg_media_t *_pwgMediaNearSize(int width, int length, int epsilon);
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
api_def_SparseApplyAdadelta.pbtxt | 28 name: "epsilon"
|
/external/tensorflow/tensorflow/python/training/ |
adadelta_test.py | 59 epsilon = 1e-8 60 adadelta_opt = adadelta.AdadeltaOptimizer(lr, rho, epsilon) 106 update[step] = (np.sqrt(accum_update + epsilon) * 107 (1. / np.sqrt(accum + epsilon)) * grad)
|
/external/tensorflow/tensorflow/tools/api/golden/ |
tensorflow.keras.callbacks.-reduce-l-r-on-plateau.pbtxt | 8 argspec: "args=[\'self\', \'monitor\', \'factor\', \'patience\', \'verbose\', \'mode\', \'epsilon\', \'cooldown\', \'min_lr\'], varargs=None, keywords=None, defaults=[\'val_loss\', \'0.1\', \'10\', \'0\', \'auto\', \'0.0001\', \'0\', \'0\'], "
|
tensorflow.keras.optimizers.-adadelta.pbtxt | 8 argspec: "args=[\'self\', \'lr\', \'rho\', \'epsilon\', \'decay\'], varargs=None, keywords=kwargs, defaults=[\'1.0\', \'0.95\', \'None\', \'0.0\'], "
|
tensorflow.keras.optimizers.-adagrad.pbtxt | 8 argspec: "args=[\'self\', \'lr\', \'epsilon\', \'decay\'], varargs=None, keywords=kwargs, defaults=[\'0.01\', \'None\', \'0.0\'], "
|
tensorflow.keras.optimizers.-adam.pbtxt | 8 argspec: "args=[\'self\', \'lr\', \'beta_1\', \'beta_2\', \'epsilon\', \'decay\', \'amsgrad\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'None\', \'0.0\', \'False\'], "
|
tensorflow.keras.optimizers.-adamax.pbtxt | 8 argspec: "args=[\'self\', \'lr\', \'beta_1\', \'beta_2\', \'epsilon\', \'decay\'], varargs=None, keywords=kwargs, defaults=[\'0.002\', \'0.9\', \'0.999\', \'None\', \'0.0\'], "
|
tensorflow.keras.optimizers.-nadam.pbtxt | 8 argspec: "args=[\'self\', \'lr\', \'beta_1\', \'beta_2\', \'epsilon\', \'schedule_decay\'], varargs=None, keywords=kwargs, defaults=[\'0.002\', \'0.9\', \'0.999\', \'None\', \'0.004\'], "
|
tensorflow.keras.optimizers.-r-m-sprop.pbtxt | 8 argspec: "args=[\'self\', \'lr\', \'rho\', \'epsilon\', \'decay\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'None\', \'0.0\'], "
|
/packages/apps/Camera2/src/com/android/camera/ui/motion/ |
UnitBezier.java | 31 private static final float EPSILON = 1e-6f; 82 if (Math.abs(value) < EPSILON) { 86 if (Math.abs(derivative) < EPSILON) { 106 if (Math.abs(value - target) < EPSILON) {
|
/prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.15-4.8/x86_64-linux/include/c++/4.8/bits/ |
regex_nfa.tcc | 75 << " [label=\"epsilon\", tailport=\"s\"];\n" 77 << " [label=\"epsilon\", tailport=\"n\"];\n"; 82 << __id << " -> " << _M_next << " [label=\"epsilon\"];\n"; 87 << __id << " -> " << _M_next << " [label=\"epsilon\"];\n";
|
/prebuilts/gcc/linux-x86/host/x86_64-w64-mingw32-4.8/x86_64-w64-mingw32/include/c++/4.8.3/bits/ |
regex_nfa.tcc | 75 << " [label=\"epsilon\", tailport=\"s\"];\n" 77 << " [label=\"epsilon\", tailport=\"n\"];\n"; 82 << __id << " -> " << _M_next << " [label=\"epsilon\"];\n"; 87 << __id << " -> " << _M_next << " [label=\"epsilon\"];\n";
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/special/ |
Gamma.java | 151 * @param epsilon When the absolute value of the nth item in the 152 * series is less than epsilon the approximation ceases 160 double epsilon, 173 ret = 1.0 - regularizedGammaQ(a, x, epsilon, maxIterations); 179 while (FastMath.abs(an/sum) > epsilon && n < maxIterations && sum < Double.POSITIVE_INFINITY) { 228 * @param epsilon When the absolute value of the nth item in the 229 * series is less than epsilon the approximation ceases 237 double epsilon, 250 ret = 1.0 - regularizedGammaP(a, x, epsilon, maxIterations); 266 ret = 1.0 / cf.evaluate(x, epsilon, maxIterations) [all...] |
/external/tensorflow/tensorflow/core/kernels/ |
training_ops_gpu.cu.cc | 61 typename TTypes<T>::ConstScalar epsilon, 71 (accum_update + epsilon.reshape(single).broadcast(bcast)).sqrt() * 72 (accum + epsilon.reshape(single).broadcast(bcast)).rsqrt() * grad; 111 typename TTypes<T>::ConstScalar epsilon, 133 (epsilon.reshape(single).broadcast(bcast) + v.sqrt()); 140 (epsilon.reshape(single).broadcast(bcast) + v.sqrt()); 152 typename TTypes<T>::ConstScalar epsilon, 164 ((epsilon.reshape(single).broadcast(bcast) + ms).sqrt()); 177 typename TTypes<T>::ConstScalar epsilon, 187 auto denom = (ms - mg.square()) + epsilon.reshape(single).broadcast(bcast) [all...] |
/external/eigen/Eigen/src/SparseCore/ |
AmbiVector.h | 291 * \param epsilon the minimal value used to prune zero coefficients. 292 * In practice, all coefficients having a magnitude smaller than \a epsilon 295 explicit Iterator(const AmbiVector& vec, const RealScalar& epsilon = 0) 299 m_epsilon = epsilon; 367 RealScalar m_epsilon; // epsilon used to prune zero coefficients
|