/external/tensorflow/tensorflow/core/api_def/base_api/ |
api_def_ResourceApplyAdadelta.pbtxt | 34 name: "epsilon" 55 update = (update_accum + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad;
|
api_def_ResourceApplyRMSProp.pbtxt | 34 name: "epsilon" 60 Delta = learning_rate * gradient / sqrt(mean_square + epsilon) 63 mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
|
api_def_ResourceSparseApplyRMSProp.pbtxt | 34 name: "epsilon" 66 Delta = learning_rate * gradient / sqrt(mean_square + epsilon) 69 mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
|
api_def_SparseApplyRMSProp.pbtxt | 34 name: "epsilon" 72 Delta = learning_rate * gradient / sqrt(mean_square + epsilon) 75 mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)
|
/external/eigen/Eigen/src/SparseCore/ |
SparseView.h | 38 * entries smaller than \c reference * \c epsilon are removed. 55 const RealScalar &epsilon = NumTraits<Scalar>::dummy_precision()) 56 : m_matrix(mat), m_reference(reference), m_epsilon(epsilon) {} 69 RealScalar epsilon() const { return m_epsilon; } function in class:Eigen::SparseView 117 while((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.reference(), m_view.epsilon())) 186 while((bool(*this)) && internal::isMuchSmallerThan(value(), m_sve.m_view.reference(), m_sve.m_view.epsilon())) 210 * \a reference * \a epsilon removed. 218 * S = D.sparseView(reference,epsilon); 221 * and \a epsilon is a tolerance factor defaulting to NumTraits<Scalar>::dummy_precision(). 226 const typename NumTraits<Scalar>::Real& epsilon) cons [all...] |
/external/tensorflow/tensorflow/compiler/xla/service/gpu/ |
cudnn_batchnorm_rewriter.cc | 47 // cudnn defines CUDNN_BN_MIN_EPSILON = 1e-5 as the minimum acceptable epsilon 50 return batch_norm->epsilon() >= 1e-5; 69 HloInstruction* epsilon = computation_->AddInstruction( local 70 HloInstruction::CreateConstant(Literal::CreateR0(batch_norm->epsilon()))); 77 operands.push_back(epsilon); 104 HloInstruction* epsilon = computation_->AddInstruction( local 105 HloInstruction::CreateConstant(Literal::CreateR0(batch_norm->epsilon()))); 112 operands.push_back(epsilon); 121 // {output, mean, rsqrt(variance + epsilon)}, 134 variance_plus_epsilon, epsilon)); 167 HloInstruction* epsilon = computation_->AddInstruction( local [all...] |
/art/test/053-wait-some/src/ |
Main.java | 60 long epsilon = delay / 10; local 61 if (epsilon > 50) { 62 epsilon = 50; 65 long min = delay - epsilon; 66 long max = delay + epsilon;
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/linear/ |
SimplexSolver.java | 39 protected final double epsilon; field in class:SimplexSolver 50 * @param epsilon the amount of error to accept in floating point comparisons 52 public SimplexSolver(final double epsilon) { 53 this.epsilon = epsilon; 65 if (MathUtils.compareTo(tableau.getEntry(0, i), minValue, epsilon) < 0) { 86 if (MathUtils.compareTo(entry, 0, epsilon) > 0) { 88 if (MathUtils.equals(ratio, minRatio, epsilon)) { 106 if (MathUtils.equals(tableau.getEntry(row, column), 1, epsilon) && 165 if (!MathUtils.equals(tableau.getEntry(0, tableau.getRhsOffset()), 0, epsilon)) { [all...] |
/cts/tests/tests/animation/src/android/animation/cts/ |
InterpolatorTest.java | 36 private static final float EPSILON = 0.00001f; 57 assertEquals(0f, interpolator.getInterpolation(0), EPSILON); 58 assertEquals(1f, interpolator.getInterpolation(1), EPSILON); 62 assertEquals(turningPointY, interpolator.getInterpolation(turningPointX), EPSILON); 66 for (float fraction = EPSILON; fraction < turningPointX; fraction += 0.05f) { 73 for (float fraction = turningPointX + EPSILON; fraction < 1f; fraction += 0.05f) { 79 assertEquals(turningPointY, interpolator.getInterpolation(turningPointX), EPSILON);
|
/external/tensorflow/tensorflow/compiler/tests/ |
fused_batchnorm_test.py | 33 def _reference_training(self, x, scale, offset, epsilon, data_format): 42 normalized = (x - mean) / np.sqrt(var + epsilon) 45 def _reference_grad(self, x, grad_y, scale, mean, var, epsilon, data_format): 48 # sum(grad_y * (x - mean)) * rsqrt(var + epsilon) 53 # 1/N * scale * rsqrt(var + epsilon) * (N * grad_y - sum(grad_y) - 54 # (x - mean) * sum(grad_y * (x - mean)) / (var + epsilon)) 60 (var + epsilon)) / np.sqrt(var + epsilon) 62 grad_y * (x - mean) / np.sqrt(var + epsilon), axis=(0, 1, 2)) 81 epsilon = 0.00 [all...] |
/external/tensorflow/tensorflow/python/layers/ |
normalization_test.py | 314 epsilon = 1e-3 316 axis=1, epsilon=epsilon, momentum=0.9) 334 normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta 351 normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta 356 epsilon = 1e-3 358 axis=2, epsilon=epsilon, momentum=0.9) 374 normed_np_output = ((np_output - epsilon) * np_gamma) + np_beta 391 normed_np_output = ((np_output - epsilon) * np_gamma) + np_bet [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/special/ |
Beta.java | 66 * @param epsilon When the absolute value of the nth item in the 67 * series is less than epsilon the approximation ceases 73 double epsilon) throws MathException 75 return regularizedBeta(x, a, b, epsilon, Integer.MAX_VALUE); 110 * @param epsilon When the absolute value of the nth item in the 111 * series is less than epsilon the approximation ceases 118 final double b, double epsilon, int maxIterations) throws MathException 127 ret = 1.0 - regularizedBeta(1.0 - x, b, a, epsilon, maxIterations); 153 FastMath.log(a) - logBeta(a, b, epsilon, maxIterations)) * 154 1.0 / fraction.evaluate(x, epsilon, maxIterations) [all...] |
/external/vulkan-validation-layers/libs/glm/gtx/ |
vector_query.hpp | 58 GLM_FUNC_DECL bool areCollinear(vecType<T, P> const & v0, vecType<T, P> const & v1, T const & epsilon); 63 GLM_FUNC_DECL bool areOrthogonal(vecType<T, P> const & v0, vecType<T, P> const & v1, T const & epsilon); 68 GLM_FUNC_DECL bool isNormalized(vecType<T, P> const & v, T const & epsilon); 73 GLM_FUNC_DECL bool isNull(vecType<T, P> const & v, T const & epsilon); 78 GLM_FUNC_DECL vecType<bool, P> isCompNull(vecType<T, P> const & v, T const & epsilon); 83 GLM_FUNC_DECL bool areOrthonormal(vecType<T, P> const & v0, vecType<T, P> const & v1, T const & epsilon);
|
epsilon.hpp | 25 # pragma message("GLM: GLM_GTX_epsilon extension is deprecated, include GLM_GTC_epsilon (glm/gtc/epsilon) instead") 29 #include "../gtc/epsilon.hpp"
|
/packages/apps/Messaging/src/com/android/messaging/util/ |
CubicBezierInterpolator.java | 75 final float epsilon = 1e-6f; local 91 double derivative = (getX(t + epsilon) - value) / epsilon; 92 if (Math.abs(value - x) < epsilon) { 94 } else if (Math.abs(derivative) < epsilon) { 108 for (int i = 0; Math.abs(value - x) > epsilon && i < iterations; i++) {
|
/prebuilts/ndk/r16/sources/third_party/vulkan/src/libs/glm/gtx/ |
vector_query.hpp | 58 GLM_FUNC_DECL bool areCollinear(vecType<T, P> const & v0, vecType<T, P> const & v1, T const & epsilon); 63 GLM_FUNC_DECL bool areOrthogonal(vecType<T, P> const & v0, vecType<T, P> const & v1, T const & epsilon); 68 GLM_FUNC_DECL bool isNormalized(vecType<T, P> const & v, T const & epsilon); 73 GLM_FUNC_DECL bool isNull(vecType<T, P> const & v, T const & epsilon); 78 GLM_FUNC_DECL vecType<bool, P> isCompNull(vecType<T, P> const & v, T const & epsilon); 83 GLM_FUNC_DECL bool areOrthonormal(vecType<T, P> const & v0, vecType<T, P> const & v1, T const & epsilon);
|
epsilon.hpp | 25 # pragma message("GLM: GLM_GTX_epsilon extension is deprecated, include GLM_GTC_epsilon (glm/gtc/epsilon) instead") 29 #include "../gtc/epsilon.hpp"
|
/external/eigen/unsupported/Eigen/src/NonLinearOptimization/ |
chkder.h | 25 const Scalar eps = sqrt(NumTraits<Scalar>::epsilon()); 26 const Scalar epsf = chkder_factor * NumTraits<Scalar>::epsilon(); 56 if (temp > NumTraits<Scalar>::epsilon() && temp < eps)
|
/packages/screensavers/PhotoTable/src/com/android/dreams/phototable/ |
SoftLandingInterpolator.java | 42 final float epsilon = Math.min(mI / 2f, (1f - mI) / 2f); local 43 bottom = mI - epsilon; 44 top = mI + epsilon;
|
/external/mesa3d/docs/ |
conform.html | 114 Epsilon Report. 115 zero error epsilon = 0.000122. 116 RGBA error epsilon = 0.0324, 0.016, 0.0324, 0.000122. 117 Depth buffer error epsilon = 0.000137. 118 Stencil plane error epsilon = 0.00404. 119 Accumulation error epsilon = 0.000137, 0.000137, 0.000137, 0.000137. 227 Epsilon Report. 228 zero error epsilon = 0.000122. 229 RGBA error epsilon = 0.0324, 0.016, 0.0324, 0.000122. 230 Depth buffer error epsilon = 0.000137 [all...] |
/external/replicaisland/src/com/replica/replicaisland/ |
Utils.java | 21 private static final float EPSILON = 0.0001f; 24 return close(a, b, EPSILON); 27 public final static boolean close(float a, float b, float epsilon) { 28 return Math.abs(a - b) < epsilon;
|
/external/eigen/test/ |
bicgstab.cpp | 20 bicgstab_colmajor_diag.setTolerance(NumTraits<T>::epsilon()*4); 21 bicgstab_colmajor_ilut.setTolerance(NumTraits<T>::epsilon()*4);
|
/external/tensorflow/tensorflow/core/kernels/ |
fused_batch_norm_op.h | 33 // in v5, y = bnScale * (x - mean) / sqrt(variance + epsilon) + bnBias 38 void operator()(const Eigen::GpuDevice& d, const T* variance, double epsilon, 48 void operator()(const Eigen::GpuDevice& d, double epsilon, int sample_size, 67 const Tensor& pop_variance_input, U epsilon, 99 // scale_backprop = y_backprop * ((x - pop_mean) * rsqrt(pop_var + epsilon)) 100 // x_backprop = y_backprop * (scale * rsqrt(pop_var + epsilon)) 108 // scratch1 = rsqrt(pop_var + epsilon) 109 scratch1.device(d) = (pop_var + pop_var.constant(epsilon)).rsqrt();
|
/external/valgrind/docs/internals/ |
SPEC-notes.txt | 22 (std::numeric_limits<double>::epsilon() / 100), 24 double>::epsilon() *5));
|
/external/protobuf/js/binary/ |
decoder_test.js | 54 * @param {number} epsilon 60 writeValue, epsilon, upperLimit, filter) { 65 writeValue.call(encoder, filter(epsilon)); 69 for (var cursor = epsilon; cursor < upperLimit; cursor *= 1.1) { 77 assertEquals(filter(epsilon), readValue.call(decoder)); 81 for (var cursor = epsilon; cursor < upperLimit; cursor *= 1.1) { 95 * @param {number} epsilon 102 writeValue, epsilon, lowerLimit, upperLimit, filter) { 107 writeValue.call(encoder, filter(-epsilon)); 109 writeValue.call(encoder, filter(epsilon)); [all...] |