/external/tensorflow/tensorflow/core/kernels/ |
batch_norm_op.h | 106 // dg = out_backprop * ((x - m) * rsqrt(v + epsilon)) 109 // (-1/2) * (v + epsilon) ^ (-3/2) 111 // dm = sum_over_rest(out_backprop * gamma) * (-1 / rsqrt(v + epsilon)) 113 // dx = out_backprop * (gamma * rsqrt(v + epsilon)) 116 // scratch1 = rsqrt(v + epsilon) 141 // scratch1 = - 1/2 * (var + epsilon) ^ (-3/2)
|
fused_batch_norm_op.cc | 53 const Tensor& estimated_variance_input, U epsilon, 120 auto scaling_factor = ((variance + epsilon).rsqrt() * scale) 137 U epsilon, Tensor* x_backprop_output, 155 // x_backprop = scale * rsqrt(variance + epsilon) * 157 // mean(y_backprop * (x - mean(x))) / (variance + epsilon)] 159 // (x - mean(x)) * rsqrt(variance + epsilon)) 186 auto coef0 = (variance + epsilon).rsqrt(); 224 const Tensor& estimated_variance, U epsilon, Tensor* y, 318 [d, epsilon, estimated_variance, 326 VarianceToInvVariance<U>()(d, variance, epsilon, channels, inv_variance) 506 float epsilon; local 583 float epsilon; local [all...] |
/external/tensorflow/tensorflow/python/keras/_impl/keras/layers/ |
normalization.py | 46 epsilon: Small float added to variance to avoid dividing by zero. 79 epsilon=1e-3, 95 epsilon=epsilon, 122 'epsilon': self.epsilon,
|
/device/linaro/bootloader/edk2/BaseTools/Source/C/VfrCompile/Pccts/support/rexpr/ |
rexpr.c | 15 * Each non-epsilon arc consumes one character from 's'. Backtracking is
162 if ( p->label == Epsilon )
493 ArcBetweenGraphNodes(A.right, B.left, Epsilon);
509 ArcBetweenGraphNodes(g.left, A.left, Epsilon);
510 ArcBetweenGraphNodes(g.left, B.left, Epsilon);
512 ArcBetweenGraphNodes(A.right, g.right, Epsilon);
513 ArcBetweenGraphNodes(B.right, g.right, Epsilon);
549 ArcBetweenGraphNodes(g.left, A.left, Epsilon);
550 ArcBetweenGraphNodes(g.left, g.right, Epsilon);
551 ArcBetweenGraphNodes(A.right, g.right, Epsilon);
[all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ |
PoissonDistributionImpl.java | 70 private double epsilon = DEFAULT_EPSILON; field in class:PoissonDistributionImpl 88 * @param epsilon the convergence criteria for cumulative probabilites 92 public PoissonDistributionImpl(double p, double epsilon, int maxIterations) { 94 this.epsilon = epsilon; 102 * @param epsilon the convergence criteria for cumulative probabilites 105 public PoissonDistributionImpl(double p, double epsilon) { 107 this.epsilon = epsilon; 219 return Gamma.regularizedGammaQ((double) x + 1, mean, epsilon, maxIterations) [all...] |
/external/tensorflow/tensorflow/examples/android/jni/object_tracking/ |
frame_pair.cc | 67 // the comparison to EPSILON in FillScales (which I've updated to return the 173 if (((dist2_x > EPSILON && dist1_x > EPSILON) || 174 (dist2_x < -EPSILON && dist1_x < -EPSILON)) && 175 ((dist2_y > EPSILON && dist1_y > EPSILON) || 176 (dist2_y < -EPSILON && dist1_y < -EPSILON))) { 204 if (num_items == 0 || sum < EPSILON) { [all...] |
/external/deqp/external/openglcts/modules/glesext/tessellation_shader/ |
esextcTessellationShaderUtils.cpp | 1325 const float epsilon = 1e-5f; local 1383 const float epsilon = 1e-5f; local [all...] |
/external/deqp/external/openglcts/modules/glesext/draw_buffers_indexed/ |
esextcDrawBuffersIndexedColorMasks.cpp | 206 tcu::RGBA epsilon = GetEpsilon(); local 230 if (!VerifyImg(textureLevel, expected, epsilon)) 252 if (!VerifyImg(textureLevel, expected, epsilon)) 274 if (!VerifyImg(textureLevel, expected, epsilon)) 409 tcu::UVec4 epsilon; local 414 epsilon[i] = de::min( 418 return tcu::RGBA(epsilon.x(), epsilon.y(), epsilon.z(), epsilon.w()) [all...] |
esextcDrawBuffersIndexedBlending.cpp | 236 tcu::RGBA epsilon = GetEpsilon(); local 245 if (!VerifyImg(textureLevel, expected[i % 4], epsilon)) 375 tcu::UVec4 epsilon; local 380 epsilon[i] = de::min( 384 return tcu::RGBA(epsilon.x(), epsilon.y(), epsilon.z(), epsilon.w()); 388 tcu::RGBA epsilon) 395 if (!tcu::compareThreshold(pixel, expectedColor, epsilon)) [all...] |
/external/tensorflow/tensorflow/contrib/boosted_trees/python/ops/ |
quantile_ops.py | 46 epsilon, 56 epsilon: Error bound on the quantile computation. 64 self._epsilon = epsilon 75 epsilon=epsilon, 150 epsilon=self._epsilon / 2).sparse_summaries[0] 158 epsilon=self._epsilon / 2).dense_summaries[0]
|
/external/tensorflow/tensorflow/python/training/ |
adadelta.py | 36 def __init__(self, learning_rate=0.001, rho=0.95, epsilon=1e-8, 44 epsilon: A `Tensor` or a floating point value. A constant epsilon used 53 self._epsilon = epsilon 68 self._epsilon_t = ops.convert_to_tensor(self._epsilon, name="epsilon")
|
rmsprop_test.py | 40 # learning_rate, decay, momentum, epsilon, centered, use_resource 60 epsilon, centered): 62 denom_t = rms_t + epsilon 73 lr, decay, momentum, epsilon, centered): 82 denom_t = rms_t[gindex] + epsilon 93 epsilon, centered, use_resource) in _TESTPARAMS: 113 epsilon=epsilon, 149 decay, momentum, epsilon, centered) 152 decay, momentum, epsilon, centered [all...] |
/kernel/tests/net/test/ |
resilient_rs_test.py | 100 EPSILON = 0.1 102 MIN_EXP = 1.9 - EPSILON 104 MAX_EXP = 2.1 + EPSILON 113 MIN_LIN = SOLICITATION_INTERVAL * (0.9 - EPSILON) 114 MAX_LIN = SOLICITATION_INTERVAL * (1.1 + EPSILON)
|
/cts/tests/tests/animation/src/android/animation/cts/ |
AnimatorSetTest.java | 71 private static final float EPSILON = 0.001f; 714 assertEquals(100f, (Float) a1.getAnimatedValue(), EPSILON); 715 assertEquals(150f, (Float) a2.getAnimatedValue(), EPSILON); 716 assertEquals(250f, (Float) a3.getAnimatedValue(), EPSILON); 719 assertEquals(150f, (Float) a1.getAnimatedValue(), EPSILON); 720 assertEquals(250f, (Float) a2.getAnimatedValue(), EPSILON); 721 assertEquals(280f, (Float) a3.getAnimatedValue(), EPSILON); 727 assertEquals(150f, (Float) a1.getAnimatedValue(), EPSILON); 728 assertEquals(250f, (Float) a2.getAnimatedValue(), EPSILON); 729 assertEquals(300f, (Float) a3.getAnimatedValue(), EPSILON); [all...] |
/external/eigen/test/ |
prec_inverse_4x4.cpp | 22 double error = double( (m*inv-MatrixType::Identity()).norm() / NumTraits<Scalar>::epsilon() ); 42 } while(absdet < NumTraits<Scalar>::epsilon()); 44 double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / NumTraits<Scalar>::epsilon() );
|
/external/vulkan-validation-layers/libs/glm/gtc/ |
constants.hpp | 54 /// Return the epsilon constant for floating point types. 55 /// @todo Implement epsilon for half-precision floating point type. 58 GLM_FUNC_DECL genType epsilon();
|
/frameworks/base/packages/SystemUI/src/com/android/systemui/classifier/ |
HistoryEvaluator.java | 29 private static final float EPSILON = 1e-5f; 101 return x <= EPSILON && x >= -EPSILON;
|
/packages/apps/Dialer/java/com/android/incallui/answer/impl/classifier/ |
HistoryEvaluator.java | 28 private static final float EPSILON = 1e-5f; 98 return x <= EPSILON && x >= -EPSILON;
|
/prebuilts/ndk/r16/sources/third_party/vulkan/src/libs/glm/gtc/ |
constants.hpp | 54 /// Return the epsilon constant for floating point types. 55 /// @todo Implement epsilon for half-precision floating point type. 58 GLM_FUNC_DECL genType epsilon();
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/util/ |
ContinuedFraction.java | 81 * @param epsilon maximum error allowed. 85 public double evaluate(double x, double epsilon) throws MathException { 86 return evaluate(x, epsilon, Integer.MAX_VALUE); 121 * @param epsilon maximum error allowed. 126 public double evaluate(double x, double epsilon, int maxIterations) 136 while (n < maxIterations && relativeError > epsilon) {
|
/external/tensorflow/tensorflow/python/keras/_impl/keras/ |
losses.py | 45 diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), None)) 52 first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.) 53 second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.) 118 y_true = K.clip(y_true, K.epsilon(), 1) 119 y_pred = K.clip(y_pred, K.epsilon(), 1) 125 return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
|
/external/tensorflow/tensorflow/python/kernel_tests/ |
linalg_grad_test.py | 70 # Optimal stepsize for central difference is O(epsilon^{1/3}). 71 epsilon = np.finfo(dtype_).eps 72 delta = epsilon**(1.0 / 3.0) 117 # Optimal stepsize for central difference is O(epsilon^{1/3}). 118 epsilon = np.finfo(dtype_).eps 119 delta = epsilon**(1.0 / 3.0)
|
/external/tensorflow/tensorflow/python/ops/ |
nn_grad.py | 740 dx: Backprop for input, which is (grad * (g * rsqrt(v + epsilon))) 742 sum_over_rest(grad * g) * (-1 / rsqrt(v + epsilon)) 744 sum_over_rest(grad * g * (x - m)) * (-1/2) * (v + epsilon) ^ (-3/2) 747 dg: Backprop for gamma, which is (grad * ((x - m) * rsqrt(v + epsilon))) 766 grad_x: gradient for x, which is scale * rsqrt(variance + epsilon) * 768 mean(grad_y * (x - mean(x))) / (variance + epsilon)] 769 in training mode; grad_y * scale * rsqrt(pop_variance + epsilon) 773 rsqrt(variance + epsilon)) in training mode; 774 sum(grad_y * (x - pop_mean) * rsqrt(pop_variance + epsilon)) 783 epsilon = op.get_attr("epsilon" [all...] |
/external/antlr/antlr-3.4/tool/src/main/java/org/antlr/analysis/ |
Label.java | 36 * tokens. It can be an epsilon transition. It can be a semantic predicate 37 * (which assumes an epsilon transition) or a tree of predicates (in a DFA). 45 public static final int EPSILON = -5; 47 public static final String EPSILON_STR = "<EPSILON>"; 49 /** label is a semantic predicate; implies label is epsilon also */ 75 /** We have labels like EPSILON that are below 0; it's hard to 194 return label==EPSILON; 283 // labels must be the same even if epsilon or set or sempred etc...
|
/external/eigen/unsupported/test/ |
mpreal_support.cpp | 17 std::cerr << "epsilon = " << NumTraits<mpreal>::epsilon() << "\n";
|