/external/tensorflow/tensorflow/contrib/bayesflow/ |
BUILD | 36 "//third_party/py/numpy", 46 "//third_party/py/numpy", 65 "//third_party/py/numpy", 88 "//third_party/py/numpy", 108 "//third_party/py/numpy", 127 "//third_party/py/numpy", 146 "//third_party/py/numpy", 166 "//third_party/py/numpy", 187 "//third_party/py/numpy", 207 "//third_party/py/numpy", [all...] |
/external/tensorflow/tensorflow/contrib/learn/python/learn/datasets/ |
mnist.py | 23 import numpy 36 dt = numpy.dtype(numpy.uint32).newbyteorder('>') 37 return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] 41 """Extract the images into a 4D uint8 numpy array [index, y, x, depth]. 47 data: A 4D uint8 numpy array [index, y, x, depth]. 63 data = numpy.frombuffer(buf, dtype=numpy.uint8) 71 index_offset = numpy.arange(num_labels) * num_classes 72 labels_one_hot = numpy.zeros((num_labels, num_classes) [all...] |
/cts/suite/audio_quality/test_description/conf/ |
check_conf.py | 18 import numpy as np 20 from numpy import *
|
/external/tensorflow/tensorflow/contrib/crf/ |
BUILD | 25 "//third_party/py/numpy", 34 "//third_party/py/numpy",
|
/external/tensorflow/tensorflow/contrib/eager/python/examples/spinn/ |
BUILD | 13 deps = ["//third_party/py/numpy"], 34 "//third_party/py/numpy",
|
/external/tensorflow/tensorflow/contrib/kfac/examples/ |
BUILD | 48 "//third_party/py/numpy", 58 "//third_party/py/numpy",
|
/external/tensorflow/tensorflow/contrib/remote_fused_graph/pylib/ |
BUILD | 32 "//third_party/py/numpy", 48 "//third_party/py/numpy",
|
/external/tensorflow/tensorflow/examples/image_retraining/ |
BUILD | 24 "//third_party/py/numpy", 49 "//third_party/py/numpy",
|
/external/tensorflow/tensorflow/tools/ci_build/remote/ |
Dockerfile.cpu | 10 python-numpy \ 21 RUN pip install --upgrade enum34 futures mock numpy six backports.weakref portpicker && \
|
Dockerfile.gpu | 10 python-numpy \ 22 enum34 futures astor gast mock numpy six \
|
/cts/apps/CameraITS/tests/scene5/ |
test_lens_shading_and_color_uniformity.py | 20 import numpy 41 SPB_CT_LIST = numpy.arange(spb_r, 1/2., spb_r*2) 85 img_legend_ls = numpy.copy(img_rgb) 86 img_legend_ufmt = numpy.copy(img_rgb) 98 center_y = numpy.mean(img_y[top:bottom, left:right]) 99 center_r_g = numpy.mean(r_g[top:bottom, left:right]) 100 center_b_g = numpy.mean(b_g[top:bottom, left:right]) 123 num_sample = int(numpy.asscalar((1-spb_ct*2)/spb_r/2 + 1)) 124 ct_cord_x = numpy.concatenate( 125 (numpy.arange(spb_ct, 1-spb_ct+spb_r, spb_r*2) [all...] |
/external/tensorflow/tensorflow/contrib/solvers/ |
BUILD | 36 "//third_party/py/numpy", 54 "//third_party/py/numpy", 71 "//third_party/py/numpy", 88 "//third_party/py/numpy",
|
/external/tensorflow/tensorflow/contrib/timeseries/examples/ |
BUILD | 18 "//third_party/py/numpy", 43 "//third_party/py/numpy", 66 "//third_party/py/numpy", 93 "//third_party/py/numpy",
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
api_def_FloorMod.pbtxt | 9 [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)
|
api_def_Mod.pbtxt | 9 [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)
|
api_def_TruncateMod.pbtxt | 9 [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)
|
/external/tensorflow/tensorflow/contrib/periodic_resample/python/kernel_tests/ |
periodic_resample_op_test.py | 21 import numpy 34 input_tensor = numpy.arange(12).reshape((3, 4)) 35 desired_shape = numpy.array([6, None]) 45 input_tensor = numpy.arange(12).reshape((3, 4)) 46 desired_shape = numpy.array([5, None]) 56 input_tensor = numpy.arange(2 * 2 * 4).reshape((2, 2, 4)) 57 desired_shape = numpy.array([4, 4, None]) 58 output_tensor = numpy.array([[[0], [2], [4], [6]], [[1], [3], [5], [7]], 74 input_tensor = numpy.arange(2 * 2 * 2 * 8).reshape((2, 2, 2, 8)) 75 desired_shape = numpy.array([4, 4, 4, None] [all...] |
/external/tensorflow/tensorflow/tools/quantization/ |
BUILD | 28 "//third_party/py/numpy", 46 "//third_party/py/numpy", 65 "//third_party/py/numpy",
|
/external/tensorflow/tensorflow/python/lib/core/ |
ndarray_tensor_bridge.h | 19 #include "tensorflow/python/lib/core/numpy.h" 29 // Destructor passed to TF_NewTensor when it reuses a numpy buffer. Stores a 34 // Actually dereferences cached numpy arrays. REQUIRES being called while 38 // Creates a numpy array with shapes specified by dim_size and dims and content 45 // Converts TF_DataType to the corresponding numpy type.
|
/external/tensorflow/tensorflow/contrib/opt/ |
BUILD | 46 "//third_party/py/numpy", 64 "//third_party/py/numpy", 91 "//third_party/py/numpy", 117 "//third_party/py/numpy", 135 "//third_party/py/numpy", 154 "//third_party/py/numpy", 163 "//third_party/py/numpy", 194 "//third_party/py/numpy", 212 "//third_party/py/numpy", 244 "//third_party/py/numpy", [all...] |
/external/tensorflow/tensorflow/python/estimator/inputs/ |
numpy_io.py | 15 """Methods to allow dict of numpy arrays.""" 23 import numpy as np 37 Caller of `input_fn` usually provides `features` (dict of numpy arrays) and 38 `target`, but the underlying feeding module expects a single dict of numpy 45 features: OrderedDict of numpy arrays 61 x: numpy array object or dict of numpy array objects. If an array, 98 """Returns input function that would feed dict of numpy arrays into the model. 101 of numpy arrays. The dict `features` has the same keys as the `x`. The dict 118 x: numpy array object or dict of numpy array objects. If an array [all...] |
/external/autotest/client/cros/audio/ |
audio_analysis_unittest.py | 3 import numpy 14 numpy.random.seed(0) 75 array = numpy.random.uniform(0, 1, 1000000) 93 noise = numpy.random.standard_normal(samples) * 0.005 94 x = numpy.linspace(0.0, (samples - 1) * 1.0 / rate, samples) 95 y = (coeff_1 * numpy.sin(freq_1 * 2.0 * numpy.pi * x) + 96 coeff_2 * numpy.sin(freq_2 * 2.0 * numpy.pi * x)) + noise 135 noise = numpy.random.standard_normal(samples) * noise_amplitud [all...] |
/tools/test/connectivity/acts/framework/tests/ |
audio_analysis_unittest.py | 18 import numpy 29 numpy.random.seed(0) 93 array = numpy.random.uniform(0, 1, 1000000) 110 noise = numpy.random.standard_normal(int(samples)) * 0.005 111 x = numpy.linspace(0.0, (samples - 1) * 1.0 / rate, samples) 112 y = (coeff_1 * numpy.sin(freq_1 * 2.0 * numpy.pi * x) + coeff_2 * 113 numpy.sin(freq_2 * 2.0 * numpy.pi * x)) + noise 151 noise = numpy.random.standard_normal(int(samples)) * noise_amplitud [all...] |
/external/tensorflow/tensorflow/contrib/factorization/ |
BUILD | 69 "//third_party/py/numpy", 141 "//third_party/py/numpy", 170 "//third_party/py/numpy", 195 "//third_party/py/numpy", 206 "//third_party/py/numpy", 241 "//third_party/py/numpy", 253 "//third_party/py/numpy", 285 "//third_party/py/numpy", 300 "//third_party/py/numpy", 313 "//third_party/py/numpy", [all...] |
/external/tensorflow/tensorflow/contrib/training/ |
BUILD | 64 "//third_party/py/numpy", 98 "//third_party/py/numpy", 121 "//third_party/py/numpy", 136 "//third_party/py/numpy", 164 "//third_party/py/numpy", 187 "//third_party/py/numpy", 229 "//third_party/py/numpy", 261 "//third_party/py/numpy", 285 "//third_party/py/numpy", 307 "//third_party/py/numpy", [all...] |