/external/tensorflow/tensorflow/python/keras/_impl/keras/ |
activations.py | 100 @tf_export('keras.activations.sigmoid') 101 def sigmoid(x): function 102 return K.sigmoid(x)
|
/external/tensorflow/tensorflow/python/ops/ |
nn.py | 32 @@sigmoid 116 from tensorflow.python.ops.math_ops import sigmoid 134 # TODO(cwhipkey): sigmoid and tanh should not be exposed from tf.nn.
|
hidden_ops.txt | 284 Sigmoid
|
nn_impl.py | 112 """Computes sigmoid cross entropy given `logits`. 121 z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) 196 targets * -log(sigmoid(logits)) + 197 (1 - targets) * -log(1 - sigmoid(logits)) 207 targets * -log(sigmoid(logits)) * pos_weight + 208 (1 - targets) * -log(1 - sigmoid(logits)) 213 qz * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) 295 sigmoid_features = math_ops.sigmoid(features [all...] |
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
unary_ops.cc | 148 // Expresses sigmoid as a rescaled tanh: sigmoid(x) == (tanh(x/2) + 1) / 2. 149 static xla::ComputationDataHandle Sigmoid(xla::ComputationBuilder* b, 155 XLAJIT_MAKE_UNARY(Sigmoid, Sigmoid(b, input_type(0), x));
|
/external/tensorflow/tensorflow/contrib/boosted_trees/python/utils/ |
losses.py | 138 modified_predictions are 1 if sigmoid is >= 0.5+eps (eg we predict positive 139 class), -1 if sigmoid < 0.5-eps (e.g. we predict negative class) and ax+b in 158 modified_predictions are 1 if sigmoid is >= 0.5+eps (eg we predict positive 159 class), -1 if sigmoid < 0.5-eps (e.g. we predict negative class) and ax+b in 199 probs = math_ops.sigmoid(logits)
|
/external/tensorflow/tensorflow/contrib/specs/ |
README.md | 25 represents a fully connected layer followed by a sigmoid, whereas `Ft` 34 Nonlinearities (suffixes for C/F, so Cs = convolutional layer + sigmoid): 36 - `s` = sigmoid 51 - `Sig` = tf.nn.sigmoid 191 Sig = Import("import tensorflow as tf; f = tf.nn.sigmoid")
|
/external/tensorflow/tensorflow/compiler/tests/ |
lstm.py | 72 in_gate = math_ops.sigmoid(in_gate) 73 forget_gate = math_ops.sigmoid(forget_gate) 74 out_gate = math_ops.sigmoid(out_gate)
|
lstm_layer_inference.pbtxt | [all...] |
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
geometric.py | 194 # log[1-sigmoid(s)] 200 # 1-sigmoid(s) = sigmoid(-s) = 1/(1+exp(s))
|
/external/tensorflow/tensorflow/contrib/lite/kernels/ |
activations_test.cc | 71 // implementation of sigmoid and software, but a tolerance of twice the output 146 TEST(FloatActivationsOpTest, Sigmoid) { 160 TEST(QuantizedActivationsOpTest, Sigmoid) {
|
/external/tensorflow/tensorflow/contrib/nn/python/ops/ |
cross_entropy.py | 132 """Computes sigmoid cross entropy given `logits`. 144 z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x))
|
/external/tensorflow/tensorflow/contrib/rnn/kernels/ |
gru_ops.h | 98 // Slice r_u_bar into r, u and apply the sigmoid. 99 r.device(d) = (r_u_bar.slice(ru_r_offset(), cell_extents())).sigmoid(); 100 u.device(d) = (r_u_bar.slice(ru_u_offset(), cell_extents())).sigmoid();
|
/external/webrtc/webrtc/modules/audio_processing/ns/ |
nsx_core_c.c | 98 // compute indicator function: sigmoid map 127 // compute indicator function: sigmoid map 174 // compute indicator function: sigmoid map
|
/device/google/contexthub/firmware/os/algos/common/math/ |
macros.h | 32 #define SIGMOID(x) (1 / (1 + expf(-x)))
|
/external/libopus/silk/ |
sigm_Q15.c | 32 /* Approximate sigmoid function */
|
define.h | 189 /* Sigmoid settings */ 190 #define VAD_NEGATIVE_OFFSET_Q5 128 /* sigmoid is 0 at -128 */
|
/external/tensorflow/tensorflow/contrib/keras/api/keras/activations/ |
__init__.py | 27 from tensorflow.python.keras._impl.keras.activations import sigmoid
|
/external/tensorflow/tensorflow/python/keras/activations/ |
__init__.py | 27 from tensorflow.python.keras._impl.keras.activations import sigmoid
|
/external/tensorflow/tensorflow/contrib/labeled_tensor/ |
__init__.py | 76 sigmoid = _core.sigmoid variable
|
/external/tensorflow/tensorflow/compiler/xla/service/ |
hlo_cost_analysis_test.cc | 85 // Create a computation for a sigmoid function: x => 1 / (1 + exp(-x)) 87 ComputationBuilder builder(client_, "sigmoid"); 287 // sigmoid(input * weight + bias) 298 // 600 flops from sigmoid, and 200 transcendental ops from sigmoid.
|
/external/tensorflow/tensorflow/core/kernels/ |
word2vec_kernels.cc | 295 // Scalar buffer to hold sigmoid(+/- dot). 314 // l = log(sigmoid(x)) 315 // backward: dl/dx = g = sigmoid(-x) 328 // l = log(sigmoid(-x)) 329 // backward: dl/dx = g = -sigmoid(x)
|
eigen_activations.h | 25 * \brief Template functor to compute the fast derivative of a sigmoid
|
/external/jemalloc/include/jemalloc/internal/ |
smoothstep.sh | 3 # Generate a discrete lookup table for a sigmoid function in the smoothstep
|
/external/tensorflow/tensorflow/python/estimator/canned/ |
baseline_test.py | 116 def sigmoid(x): function 850 # loss = 1 * -log ( sigmoid(logits) ) = 0.69315 898 # so, loss = 1 * -log ( sigmoid(-1) ) = 1.3133 [all...] |