/external/tensorflow/tensorflow/tools/api/golden/ |
tensorflow.distributions.-student-t.pbtxt | 144 name: "variance" 145 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|
tensorflow.distributions.-uniform.pbtxt | 144 name: "variance" 145 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|
/frameworks/opt/net/wifi/tests/wifitests/src/com/android/server/wifi/util/ |
KalmanFilterTest.java | 123 double variance = (sumSquares - sum * sum) / (n * n); local 125 assertTrue(variance < 1.5);
|
/art/libartbase/base/ |
histogram_test.cc | 57 double variance; local 62 variance = hist->Variance(); 63 EXPECT_DOUBLE_EQ(64.25, variance);
|
/external/ImageMagick/MagickCore/ |
statistic.h | 42 variance, member in struct:_ChannelStatistics
|
/external/libvpx/libvpx/vp8/encoder/ |
mcomp.h | 15 #include "vpx_dsp/variance.h"
|
/external/skia/tools/ |
Stats.h | 73 double var; // Estimate of population variance.
|
/external/skqp/tools/ |
Stats.h | 73 double var; // Estimate of population variance.
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
batch_norm_op.cc | 69 // calculated mean and variance. 77 // variance to the gradient. Here we maintain the same behavior by setting 78 // them to the mean and variance calculated by BatchNormTraining. 86 // Directly send input to output as mean and variance in inference mode.
|
/external/webrtc/webrtc/modules/remote_bitrate_estimator/ |
overuse_estimator.h | 33 // Returns the estimated noise/jitter variance in ms^2.
|
/cts/tests/tests/uirendering/src/android/uirendering/cts/bitmapcomparers/ |
MSSIMComparer.java | 120 * Finds the variance of the two sets of pixels, as well as the covariance of the windows. The 121 * return value is an array of doubles, the first is the variance of the first set of pixels, 122 * the second is the variance of the second set of pixels, and the third is the covariance.
|
/external/ImageMagick/Magick++/lib/Magick++/ |
Statistic.h | 175 // Standard deviation, sqrt(variance) 190 // Variance 191 double variance() const;
|
/external/icu/icu4c/source/test/perf/howExpensiveIs/ |
readme.txt | 72 Intel(R) Core(TM) i7-2720QM CPU @ 2.20GHz",MacBook 2.4ghz (Core2D),MacBook 2GhzCore2,AIX Power,MB 2.4 Variance,MB 2 variance,AIX Variance
|
/external/tensorflow/tensorflow/core/kernels/ |
debug_ops_test.cc | 297 8.97959183673, // variance of non-inf and non-nan elements. 336 8.97959183673, // variance of non-inf and non-nan elements. 364 7.33333333333, // variance of non-inf and non-nan elements. 431 0.0, // variance of non-inf and non-nan elements. 463 0.0, // variance of non-inf and non-nan elements. 488 14.75, // variance of non-inf and non-nan elements. 515 7.33333333333, // variance of non-inf and non-nan elements. 541 6.25, // variance of non-inf and non-nan elements. 567 576.0, // variance of non-inf and non-nan elements. 594 0.25, // variance of non-inf and non-nan elements [all...] |
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
student_t_test.py | 269 self.assertEqual(student.variance().get_shape(), (3,)) 352 # df = 0.5 ==> undefined mean ==> undefined variance. 353 # df = 1.5 ==> infinite variance. 359 var = student.variance().eval() 360 ## scipy uses inf for variance when the mean is undefined. When mean is 361 # undefined we say variance is undefined as well. So test the first 377 # df = 1.5 ==> infinite variance. 382 var = student.variance().eval() 393 # df <= 1 ==> variance not defined 397 student.variance().eval( [all...] |
/external/webrtc/webrtc/modules/audio_processing/intelligibility/ |
intelligibility_utils.h | 47 // The result is an array of variances per position: the i-th variance 48 // is the variance of the stream of data on the i-th positions in the 91 const float* variance() const { return variance_.get(); } function in class:webrtc::intelligibility::VarianceArray
|
intelligibility_enhancer.cc | 184 clear_variance_.variance(), clear_variance_.variance() + freqs_, 0.f); 197 FilterVariance(clear_variance_.variance(), filtered_clear_var_.get()); 198 FilterVariance(noise_variance_.variance(), filtered_noise_var_.get()); 209 } // Else experiencing variance underflow, so do nothing.
|
/external/webrtc/webrtc/modules/video_coding/ |
jitter_estimator.h | 74 double _varNoise; // Variance of the time-deviation from the line 90 // Updates the random jitter estimate, i.e. the variance 141 double _varFrameSize; // Frame size variance
|
/test/vti/dashboard/src/main/java/com/android/vts/util/ |
StatSummary.java | 64 * <p>Sets the label as provided. Initializes the mean, variance, and n (number of values seen) 75 * Update the mean and variance using Welford's single-pass method. 89 * Combine the mean and variance with another StatSummary.
|
/external/tensorflow/tensorflow/contrib/quantize/python/ |
fold_batch_norms.py | 47 and variance and using them for batch normalization. This value is used 70 and variance and using them for batch normalization. 83 # new weights = old weights * gamma / sqrt(variance + epsilon) 84 # new biases = -mean * gamma / sqrt(variance + epsilon) + beta 215 # empty 'mean' and empty 'variance', and produces the mean and the variance 231 # The batch variance used during forward and backward prop is biased, 233 # calculation, the variance is corrected by the term N/N-1 (Bessel's 234 # correction). The variance tensor read from FuseBatchNorm has bessel's 306 from regular batch norm to frozen mean and variance [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/correlation/ |
Covariance.java | 24 import org.apache.commons.math.stat.descriptive.moment.Variance; 162 Variance variance = new Variance(biasCorrected); local 170 outMatrix.setEntry(i, i, variance.evaluate(matrix.getColumn(i)));
|
/external/tensorflow/tensorflow/compiler/xla/service/gpu/ |
gpu_layout_assignment_test.cc | 109 // The shape of the scale, offset, mean, and variance inputs to 130 auto* variance = builder.AddInstruction( local 131 HloInstruction::CreateParameter(4, aux_shape, "variance")); 141 {operand, scale, offset, mean, variance, epsilon, feature_index}, 247 // The shape of the scale, mean, and variance inputs to BatchNormGrad. These
|
/external/tensorflow/tensorflow/tools/graph_transforms/ |
fold_old_batch_norms.cc | 73 Tensor variance = GetNodeTensorAttr(variance_node, "value"); local 80 TF_RETURN_IF_ERROR(ErrorIfNotVector(variance, "Variance", num_cols)); 91 (1.0f / sqrtf(variance.flat<float>()(i) + variance_epsilon)) * 97 (1.0f / sqrtf(variance.flat<float>()(i) + variance_epsilon));
|
/external/libvpx/libvpx/vp9/encoder/ |
vp9_speed_features.h | 127 // Skips intra modes other than DC_PRED if the source variance is small 146 // Use an arbitrary partitioning scheme based on source variance within 150 // Use non-fixed partitions based on source variance 371 // A source variance threshold below which filter search is disabled 461 // variance. 465 // temporal variance. If the low temporal variance flag is set for a block,
|
/external/tensorflow/tensorflow/contrib/kfac/python/ops/ |
loss_functions.py | 455 """Negative log prob loss for a normal distribution with mean and variance. 459 assume the variance is held constant. The Fisher Information for n = 1 462 F = [[1 / variance, 0], 463 [ 0, 0.5 / variance^2]] 466 vector as [mean, variance]. For n > 1, the mean parameter vector is 467 concatenated with the variance parameter vector. 472 def __init__(self, mean, variance, targets=None, seed=None): 474 assert len(variance.shape) == 2, "Expect 2D variance tensor." 476 self._variance = variance [all...] |