/external/tensorflow/tensorflow/python/layers/ |
normalization_test.py | 343 variance = np.square(std) 345 self.assertAllClose(variance, moving_var, atol=1e-2) 383 variance = np.square(std) 385 self.assertAllClose(variance, moving_var, atol=1e-2) 424 variance = np.square(std) 426 self.assertAllClose(variance, moving_var, atol=1e-2) 464 variance = np.square(std) 466 self.assertAllClose(variance, moving_var, atol=1e-2) 504 variance = np.square(std) 506 self.assertAllClose(variance, moving_var, atol=1e-2 [all...] |
/external/libvpx/libvpx/vp9/encoder/ |
vp9_encodeframe.c | 82 // This is used as a reference when computing the source variance for the 304 // This struct is used for computing variance in choose_partitioning(), where 311 int variance; member in struct:__anon26198 401 // Set variance values given sum square error, sum error, count. 409 v->variance = 449 // variance is below threshold, otherwise split will be selected. 450 // No check for vert/horiz split as too few samples for variance. 452 // Variance already computed to set the force_split. 456 vt.part_variances->none.variance < threshold) { 462 // Variance already computed to set the force_split 4472 static INLINE uint32_t variance(const diff *const d) { function [all...] |
/external/tensorflow/tensorflow/contrib/timeseries/python/timeseries/ |
math_utils.py | 486 variance. This means setting the (univariate) Gaussian entropy 487 0.5 * ln(2 * variance * pi * e) 490 Solving, we get scale = sqrt(variance * (e / (8 pi))). 609 Moments = collections.namedtuple("Moments", ["mean", "variance"]) 617 ["series_start_moments", # The mean and variance of each feature in a chunk 620 # (mean, variance), each with shape [number of 632 "overall_feature_moments", # The mean and variance of each feature over 634 # variance), each with shape [number of 666 computing the mean and variance at the start of the series. [all...] |
model.py | 143 def _scale_variance(self, variance): 146 return variance / self._input_statistics.overall_feature_moments.variance 148 return variance 157 def _scale_back_variance(self, variance): 160 return variance * self._input_statistics.overall_feature_moments.variance 162 return variance 226 mean and variance). 249 model (for example a mean and variance). Typically these will be th [all...] |
/external/tensorflow/tensorflow/core/kernels/ |
debug_ops.h | 291 double variance = std::numeric_limits<double>::quiet_NaN(); variable 343 // Do a second pass to compute variance. 344 variance = 0.0; 348 variance += (x - mean) * (x - mean); 351 variance /= non_inf_nan_count; 368 output_tensor->vec<double>()(11) = variance;
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
student_t.py | 80 variance. However it is not actually the std. deviation; the Student's 146 standard deviation than variance. 152 statistics (e.g., mean, mode, variance) use the value "`NaN`" to 299 The variance for Student's T equals 316 # When 1 < df <= 2, variance is infinite. 337 message="variance not defined for components of df <= 1"),
|
/external/ImageMagick/MagickCore/ |
feature.c | 591 % moment, contrast, correlation, sum of squares: variance, inverse difference 592 % moment, sum average, sum varience, sum entropy, entropy, difference variance,% difference entropy, information measures of correlation 1, information 655 variance; 843 (void) ResetMagickMemory(&variance,0,sizeof(variance)); 652 variance; local [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ |
BetaDistributionImpl.java | 267 * Returns the variance. 271 * the variance is 274 * @return the variance
|
BinomialDistributionImpl.java | 266 * Returns the variance. 269 * probability parameter <code>p</code>, the variance is 272 * @return the variance
|
CauchyDistributionImpl.java | 310 * Returns the variance. 312 * The variance is always undefined, regardless of the parameters. 314 * @return variance (always Double.NaN)
|
ChiSquaredDistributionImpl.java | 313 * Returns the variance of the distribution. 315 * For <code>k</code> degrees of freedom, the variance is 318 * @return the variance
|
ExponentialDistributionImpl.java | 306 * Returns the variance of the distribution. 308 * For mean parameter <code>k</code>, the variance is 311 * @return the variance
|
TDistributionImpl.java | 277 * Returns the variance. 279 * For degrees of freedom parameter df, the variance is 286 * @return the variance
|
/external/tensorflow/tensorflow/compiler/xla/service/gpu/ |
ir_emission_utils.h | 45 // 1/sqrt(variance + epsilon) in place of plain variance. 46 // - Similarly, BatchNormGrad accepts inv_stddev in place of the variance
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/ |
vector_exponential_diag_test.py | 161 vex.variance().eval()) 169 vex.variance().eval()) 178 vex.variance().eval())
|
vector_laplace_diag_test.py | 170 vla.variance().eval()) 178 vla.variance().eval()) 187 vla.variance().eval())
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
initializers.py | 64 """Returns an initializer that generates tensors without scaling variance. 67 the scale of the input variance constant, so it does not explode or diminish 105 An initializer that generates tensors with unit variance.
|
/external/tensorflow/tensorflow/contrib/quantize/python/ |
quantize_graph.py | 47 freeze_bn_delay: Number of steps after which moving mean and variance are 102 # In this case, we can freeze the moving mean and variance early on and 167 freeze_bn_delay: Number of steps after which moving mean and variance are
|
/external/tensorflow/tensorflow/contrib/timeseries/examples/ |
known_anomaly.py | 106 variance = np.squeeze(np.concatenate( 109 upper_limit = mean + np.sqrt(variance) 110 lower_limit = mean - np.sqrt(variance)
|
/external/webrtc/webrtc/modules/audio_processing/intelligibility/ |
intelligibility_enhancer_unittest.cc | 66 "Variance test data badly initialized."); 73 "Variance test data badly initialized."); 123 // updated when it should be for each variance update method.
|
/external/webrtc/webrtc/modules/remote_bitrate_estimator/ |
aimd_rate_control.cc | 154 // variance and the current incoming bit rate. 268 // Estimate the max bit rate variance and normalize the variance
|
/external/webrtc/webrtc/voice_engine/ |
utility_unittest.cc | 98 float variance = 0; local 103 variance += ref_frame.data_[i] * ref_frame.data_[i]; 107 snr = 10 * log10(variance / mse);
|
/system/extras/tests/ext4/ |
rand_emmc_perf.c | 59 long long variance = 0;; local 104 variance += x; /* Summation */ 106 sdev = sqrt((double)variance/(double)stats_count);
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/ |
DescriptiveStatistics.java | 29 import org.apache.commons.math.stat.descriptive.moment.Variance; 102 /** Variance statistic implementation - can be reset by setter. */ 103 private UnivariateStatistic varianceImpl = new Variance(); 208 * Returns the variance of the available values. 209 * @return The variance, Double.NaN if no values have been added 622 * Returns the currently configured variance implementation. 624 * @return the UnivariateStatistic implementing the variance 632 * <p>Sets the implementation for the variance.</p> 635 * for computing the variance
|
/external/autotest/server/site_tests/platform_TotalMemory/ |
platform_TotalMemory.py | 70 errors.append('MemoryTotal is not consistent. variance=%dKB' %
|