/device/google/contexthub/firmware/os/algos/calibration/gyroscope/ |
gyro_stillness_detect.h | 23 * is computed using non-overlapping windows of signal variance 48 // Variance threshold for the stillness confidence score. 51 // Delta about the variance threshold for calculation of the 72 // variance for the current window (used for stillness detection). 81 // Latest computed variance.
|
gyro_stillness_detect.c | 34 // Set the delta about the variance threshold for calculation 42 // Set the variance threshold parameter for the stillness 59 // online mean and variance statistics: 88 // Reset current window mean and variance. 107 // Online window mean and variance ("one-pass" accumulation). 138 // Update the final calculation of window mean and variance. 162 // Define the variance thresholds. 173 // Sensor variance exceeds the upper threshold (i.e., motion detected). 181 // Sensor variance is below the lower threshold (i.e., stillness
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/regression/ |
GLSMultipleLinearRegression.java | 36 * whose variance is 103 * Calculates the variance on the beta. 107 * @return The beta variance matrix 118 * Calculates the estimated variance of the error term using the formula 125 * @return error variance
|
/external/autotest/client/site_tests/video_WebRtcCamera/ |
ssim.js | 29 // square root. The latter is actually an unbiased estimate of the variance, 30 // not the exact variance. 43 return {mean : meanA, variance : accu / a.length}; 70 var sigmaX2 = statsX.variance; 74 var sigmaY2 = statsY.variance;
|
/external/autotest/client/site_tests/video_WebRtcPeerConnectionWithCamera/ |
ssim.js | 29 // square root. The latter is actually an unbiased estimate of the variance, 30 // not the exact variance. 43 return {mean : meanA, variance : accu / a.length}; 70 var sigmaX2 = statsX.variance; 74 var sigmaY2 = statsY.variance;
|
/external/libmpeg2/common/x86/ |
icv_variance_ssse3.c | 26 * This file contains the functions to compute variance 60 * Computes variance of a given 8x4 block 63 * Compute variance of a given 8x4 block 78 * Variance 153 /* Compute variance */
|
/cts/apps/CameraITS/tests/scene1/ |
test_dng_noise_model.py | 25 DIFF_THRESH = 0.0012 # absolute variance delta threshold 26 FRAC_THRESH = 0.2 # relative variance delta threshold 35 # defined as being within an absolute variance delta or relative variance 36 # delta of the expected variance, whichever is larger. This is to allow the 93 # non-uniform lighting or vignetting doesn't affect the variance 117 pylab.ylabel('Center patch variance')
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/moment/ |
Skewness.java | 107 double variance = moment.m2 / (moment.n - 1); local 108 if (variance < 10E-20) { 113 ((n0 - 1) * (n0 -2) * FastMath.sqrt(variance) * variance); 172 final double variance = (accum - (accum2 * accum2 / length)) / (length - 1); local 179 accum3 /= variance * FastMath.sqrt(variance);
|
/external/tensorflow/tensorflow/core/kernels/ |
fused_batch_norm_op.h | 32 // Details: in cuDNN v4, y = bnScale * (x - mean) * variance + bnBias; 33 // in v5, y = bnScale * (x - mean) / sqrt(variance + epsilon) + bnBias 38 void operator()(const Eigen::GpuDevice& d, const T* variance, double epsilon, 42 // This function converts the inverted variance of the cuDNN forward training 43 // output to variance for TensorFlow to calculate the running variance. 49 int channels, T* variance);
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/ |
SummaryStatistics.java | 26 import org.apache.commons.math.stat.descriptive.moment.Variance; 45 * default implementation for the variance can be overridden by calling 67 /** SecondMoment is used to compute the mean and variance */ 91 /** variance of values that have been added */ 92 protected Variance variance = new Variance(); field in class:SummaryStatistics 115 /** Variance statistic implementation - can be reset by setter. */ 116 private StorelessUnivariateStatistic varianceImpl = variance; 154 // If mean, variance or geomean have been overridden [all...] |
/external/autotest/server/tests/netpipe/ |
netpipe.py | 7 def run_once(self, pair, buffer, upper_bound, variance): 43 buffer, upper_bound, variance, 46 buffer, upper_bound, variance,
|
/external/tensorflow/tensorflow/contrib/tensor_forest/kernels/v4/ |
stat_utils.h | 33 // Returns the variance in stats for the given output. 34 float Variance(const LeafStat& stats, int output); 36 // Returns the variance sum for all outputs.
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
api_def_QuantizedBatchNormWithGlobalNormalization.pbtxt | 44 A 1D variance Tensor with size matching the last dimension of t. 52 The value represented by the lowest quantized variance. 58 The value represented by the highest quantized variance.
|
/external/tensorflow/tensorflow/python/ops/ |
batch_norm_benchmark.py | 39 def batch_norm_op(tensor, mean, variance, beta, gamma, scale): 45 variance, beta, gamma, 51 # batch_norm = (tensor - mean) * tf.rsqrt(variance + 0.001) 55 def batch_norm_py(tensor, mean, variance, beta, gamma, scale): 57 return nn_impl.batch_normalization(tensor, mean, variance, beta, gamma if 61 def batch_norm_slow(tensor, mean, variance, beta, gamma, scale): 62 batch_norm = (tensor - mean) * math_ops.rsqrt(variance + 0.001) 99 mean, variance = nn_impl.moments(tensor, axes, keep_dims=keep_dims) 102 variance = array_ops.ones(moment_shape) 106 tensor = batch_norm_py(tensor, mean, variance, beta, gamma, scale [all...] |
/libcore/support/src/test/java/tests/util/ |
SummaryStatistics.java | 26 /** Use the first value to shift all values to it when computing variance, as it improves 27 * numerical stability. Note variance is invariant to shifting. */ 56 /** Variance of the values seen. */
|
/external/tensorflow/tensorflow/contrib/bayesflow/python/ops/ |
mcmc_diagnostics_impl.py | 45 with the same variance as `state`. 51 ```Variance{ N**-1 * Sum{X_i} } = ESS**-1 * Variance{ X_1 }.``` 78 mean, variance = tf.nn.moments(states, axis=0) 79 standard_error = tf.sqrt(variance / ess) 83 `R_k := Covariance{X_1, X_{1+k}} / Variance{X_1}`, we have 209 Specifically, R-hat measures the degree to which variance (of the means) 263 `N, C --> infinity`, with `E`, `Var` denoting expectation and variance, 267 Using the law of total variance, the numerator is the variance of the combine [all...] |
/external/libmpeg2/common/arm/ |
icv_variance_a9.s | 26 @* This file contains definitions of routines for variance caclulation 42 @* @brief computes variance of a 8x4 block 46 @* This functions computes variance of a 8x4 block 61 @* variance value in r0
|
/external/libmpeg2/common/armv8/ |
icv_variance_av8.s | 25 //* This file contains definitions of routines for variance caclulation 41 //* @brief computes variance of a 8x4 block 45 //* This functions computes variance of a 8x4 block 60 //* variance value in x0
|
/external/libmpeg2/common/ |
icv_variance.h | 26 * This file contains the functions to compute variance
|
/external/libvpx/libvpx/vp9/common/ |
vp9_mfqe.h | 23 // the current block and correlated block, the variance of the block
|
/external/libvpx/libvpx/vp9/encoder/ |
vp9_firstpass.h | 60 double intra_count_low; // Coded intra but low variance 61 double intra_count_high; // Coded intra high variance 86 double pcnt_intra_low; // Coded intra but low variance 87 double pcnt_intra_high; // Coded intra high variance
|
/external/tensorflow/tensorflow/compiler/xla/service/gpu/ |
cudnn_batchnorm_rewriter.h | 41 // call returns 1/sqrt(variance + epsilon), while the HLO returns plain 42 // variance. Similarly, the grad cudnn call expects 1/sqrt(variance + epsilon) 43 // as input, whereas the HLO expects plain variance.
|
/external/webrtc/webrtc/test/ |
statistics.h | 25 double Variance() const;
|
/external/webrtc/webrtc/voice_engine/test/auto_test/standard/ |
video_sync_test.cc | 58 // Computes the standard deviation by first estimating the sample variance 66 float variance = 0; local 68 variance += (*start - mean) * (*start - mean) / (num_elements - 1); 70 return sqrt(variance);
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/clustering/ |
KMeansPlusPlusClusterer.java | 27 import org.apache.commons.math.stat.descriptive.moment.Variance; 41 /** Split the cluster with largest distance variance. */ 64 * algorithm iterations is to split the cluster with largest distance variance. 201 * Get a random point from the {@link Cluster} with the largest distance variance. 213 // compute the distance variance of the current cluster 215 final Variance stat = new Variance(); 219 final double variance = stat.getResult(); local 221 // select the cluster with the largest variance 222 if (variance > maxVariance) [all...] |