/external/webrtc/webrtc/modules/audio_processing/intelligibility/ |
intelligibility_enhancer.h | 106 // Updates variance computation and analysis with |in_block_|, 120 // Updates variance calculation for noise input with |in_block|. 134 // Computes variance across ERB filters from freq variance |var|.
|
/external/webrtc/webrtc/modules/audio_processing/intelligibility/test/ |
intelligibility_proc.cc | 45 "Variance algorithm for clear data."); 46 DEFINE_double(clear_alpha, 0.9, "Variance decay factor for clear data."); 49 "Window size for windowed variance for clear data."); 61 "Variance clear rate; history is forgotten every N gain recalculations.");
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
moving_stats.py | 37 """Compute exponentially weighted moving {mean,variance} of a streaming value. 51 T. Finch, Feb 2009. "Incremental calculation of weighted mean and variance". 58 exponentially weighted moving variance. Same shape as `mean_var` and 69 exponentially weighted moving variance. 173 """Compute exponentially weighted moving {mean,variance} of a streaming value. 187 T. Finch, Feb 2009. "Incremental calculation of weighted mean and variance". 206 exponentially weighted moving variance.
|
/external/tensorflow/tensorflow/core/kernels/ |
mkl_fused_batch_norm_op.cc | 153 // Batch variance in TF layout 160 // output tensors for batch mean and variance. 162 // estimated mean and variance. 173 // Mean and variance (without Bessel's correction) saved for backward 174 // computation to serve as pre-computed mean and variance. 194 // Bessel's correction on variance, if training mode is on 334 inline void MklSetMeanVariance(const Tensor& mean, const Tensor& variance) { 338 static_cast<const void*>(variance.flat<float>().data())); 366 // Here scale, mean, and variance are 1D and considered 391 errors::InvalidArgument("saved variance must be 1-dimensional" [all...] |
/frameworks/base/media/mca/filterpacks/java/android/filterpacks/videoproc/ |
BackDropperFilter.java | 132 // Variance threshold scale factor for large scale of hierarchy 134 // Variance threshold scale factor for medium scale of hierarchy 136 // Variance threshold scale factor for small scale of hierarchy 188 // Scale value for mapping variance distance to fit nicely to 0-1, 8-bit 190 // Scale value for mapping variance to fit nicely to 0-1, 8-bit 194 // Minimum variance (0-255 scale) 236 // Variance distance in luminance between current pixel and background model 237 "float gauss_dist_y(float y, float mean, float variance) {\n" + 238 " float dist = (y - mean) * (y - mean) / variance;\n" + 241 // Sum of variance distances in chroma between current pixel and backgroun [all...] |
/external/libvpx/libvpx/vpx_dsp/ |
variance.c | 17 #include "vpx_dsp/variance.h" 52 static void variance(const uint8_t *a, int a_stride, const uint8_t *b, function 134 variance(a, a_stride, b, b_stride, W, H, sse, &sum); \ 172 /* Identical to the variance call except it takes an additional parameter, sum, 180 variance(a, a_stride, b, b_stride, W, H, sse, sum); \ 183 /* Identical to the variance call except it does not calculate the 192 variance(a, a_stride, b, b_stride, W, H, sse, &sum); \ 196 /* All three forms of the variance are available in the same sizes. */ 513 /* All three forms of the variance are available in the same sizes. */
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/descriptive/ |
AggregateSummaryStatistics.java | 198 * {@inheritDoc}. This version returns the variance of all the aggregated 332 final double variance; local 334 variance = Double.NaN; 336 variance = 0d; 338 variance = m2 / (n - 1); 340 return new StatisticalSummaryValues(mean, variance, n, max, min, sum);
|
/frameworks/base/tests/Camera2Tests/SmartCamera/SimpleCamera/src/androidx/media/filterfw/samples/simplecamera/ |
ImageGoodnessFilter.java | 281 return BIG_SCORE_INC; // low variance, sharpness above the mean 306 return BIG_SCORE_INC; // low variance, underExposure below the mean 331 return BIG_SCORE_INC; // low variance, overExposure below the mean 356 return BIG_SCORE_INC; // low variance, contrast above the mean 381 return BIG_SCORE_INC; // low variance, colorfulness above the mean 406 return BIG_SCORE_INC; // low variance, brightness above the mean
|
/art/libartbase/base/ |
histogram.h | 58 double Variance() const; 120 // Summation of the values entered. Used to calculate variance.
|
/cts/apps/CameraITS/tests/scene1/ |
test_raw_sensitivity.py | 59 # Measure the variance. Each shot should be noisier than the 92 pylab.ylabel("Image Center Patch Variance")
|
/external/libvpx/libvpx/vp8/common/ |
loopfilter_filters.c | 37 /* is there high variance internal edge ( 11111111 yes, 00000000 no) */ 57 /* add outer taps if we have high edge variance */ 95 int hev = 0; /* high edge variance */ 119 int hev = 0; /* high edge variance */ 149 /* add outer taps if we have high edge variance */ 165 /* only apply wider filter if not high edge variance */ 196 signed char hev = 0; /* high edge variance */ 221 signed char hev = 0; /* high edge variance */
|
/external/libvpx/libvpx/vp9/encoder/ |
vp9_mcomp.h | 15 #include "vpx_dsp/variance.h" 48 // Utility to compute variance + MV rate cost for a given MV
|
/external/tensorflow/tensorflow/contrib/tensor_forest/kernels/v4/ |
stat_utils.cc | 53 float Variance(const LeafStat& stats, int output) { 69 sum += Variance(stats, i);
|
/external/tensorflow/tensorflow/contrib/tensor_forest/proto/ |
fertile_stats.proto | 46 // This is the info needed for calculating variance for regression. 47 // Variance will still have to be summed over every output, but the
|
/external/tensorflow/tensorflow/tools/api/golden/ |
tensorflow.distributions.-bernoulli.pbtxt | 140 name: "variance" 141 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|
tensorflow.distributions.-beta.pbtxt | 144 name: "variance" 145 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|
tensorflow.distributions.-categorical.pbtxt | 144 name: "variance" 145 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|
tensorflow.distributions.-dirichlet-multinomial.pbtxt | 144 name: "variance" 145 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|
tensorflow.distributions.-dirichlet.pbtxt | 140 name: "variance" 141 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|
tensorflow.distributions.-distribution.pbtxt | 131 name: "variance" 132 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|
tensorflow.distributions.-exponential.pbtxt | 141 name: "variance" 142 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|
tensorflow.distributions.-gamma.pbtxt | 140 name: "variance" 141 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|
tensorflow.distributions.-laplace.pbtxt | 140 name: "variance" 141 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|
tensorflow.distributions.-multinomial.pbtxt | 144 name: "variance" 145 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|
tensorflow.distributions.-normal.pbtxt | 140 name: "variance" 141 argspec: "args=[\'self\', \'name\'], varargs=None, keywords=None, defaults=[\'variance\'], "
|