OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
refs:Model
(Results
301 - 325
of
1881
) sorted by null
<<
11
12
13
14
15
16
17
18
19
20
>>
/frameworks/ml/nn/runtime/test/generated/models/
l2_normalization_2_relaxed.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
14
model
->relaxComputationFloat32toFloat16(true);
15
assert(
model
->isValid());
l2_normalization_large.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
l2_normalization_large_relaxed.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
14
model
->relaxComputationFloat32toFloat16(true);
15
assert(
model
->isValid());
l2_normalization_relaxed.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_L2_NORMALIZATION, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
14
model
->relaxComputationFloat32toFloat16(true);
15
assert(
model
->isValid());
logistic_float_1.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op3 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_LOGISTIC, {op1}, {op3});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
logistic_float_1_relaxed.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op3 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_LOGISTIC, {op1}, {op3});
10
model
->identifyInputsAndOutputs(
14
model
->relaxComputationFloat32toFloat16(true);
15
assert(
model
->isValid());
logistic_float_2.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto input =
model
->addOperand(&type0);
6
auto output =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_LOGISTIC, {input}, {output});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
logistic_float_2_relaxed.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto input =
model
->addOperand(&type0);
6
auto output =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_LOGISTIC, {input}, {output});
10
model
->identifyInputsAndOutputs(
14
model
->relaxComputationFloat32toFloat16(true);
15
assert(
model
->isValid());
relu1_float_1.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU1, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
relu1_float_1_relaxed.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU1, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
14
model
->relaxComputationFloat32toFloat16(true);
15
assert(
model
->isValid());
relu1_float_2.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto input =
model
->addOperand(&type0);
6
auto output =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU1, {input}, {output});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
relu1_float_2_relaxed.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto input =
model
->addOperand(&type0);
6
auto output =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU1, {input}, {output});
10
model
->identifyInputsAndOutputs(
14
model
->relaxComputationFloat32toFloat16(true);
15
assert(
model
->isValid());
relu1_quant8_1.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU1, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
relu1_quant8_2.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto input =
model
->addOperand(&type0);
6
auto output =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU1, {input}, {output});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
relu6_float_1.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU6, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
relu6_float_1_relaxed.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU6, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
14
model
->relaxComputationFloat32toFloat16(true);
15
assert(
model
->isValid());
relu6_float_2.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto input =
model
->addOperand(&type0);
6
auto output =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU6, {input}, {output});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
relu6_float_2_relaxed.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto input =
model
->addOperand(&type0);
6
auto output =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU6, {input}, {output});
10
model
->identifyInputsAndOutputs(
14
model
->relaxComputationFloat32toFloat16(true);
15
assert(
model
->isValid());
relu6_quant8_1.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU6, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
relu6_quant8_2.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto input =
model
->addOperand(&type0);
6
auto output =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU6, {input}, {output});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
relu_float_1.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
relu_float_1_relaxed.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
14
model
->relaxComputationFloat32toFloat16(true);
15
assert(
model
->isValid());
relu_float_2.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto input =
model
->addOperand(&type0);
6
auto output =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU, {input}, {output});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
relu_float_2_relaxed.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto input =
model
->addOperand(&type0);
6
auto output =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU, {input}, {output});
10
model
->identifyInputsAndOutputs(
14
model
->relaxComputationFloat32toFloat16(true);
15
assert(
model
->isValid());
relu_quant8_1.model.cpp
2
void CreateModel(
Model
*
model
) {
5
auto op1 =
model
->addOperand(&type0);
6
auto op2 =
model
->addOperand(&type0);
8
model
->addOperation(ANEURALNETWORKS_RELU, {op1}, {op2});
10
model
->identifyInputsAndOutputs(
13
assert(
model
->isValid());
Completed in 6601 milliseconds
<<
11
12
13
14
15
16
17
18
19
20
>>