/external/tensorflow/tensorflow/contrib/lite/toco/graph_transformations/ |
resolve_mean_attributes.cc | 21 #include "tensorflow/contrib/lite/toco/model.h" 27 bool ResolveMeanAttributes::Run(Model* model, std::size_t op_index) { 28 auto* mean_op = model->operators[op_index].get(); 37 if (!IsConstantParameterArray(*model, op->inputs[1])) return false; 39 const auto& indices_array = model->GetArray(op->inputs[1]);
|
resolve_reshape_attributes.cc | 22 #include "tensorflow/contrib/lite/toco/model.h" 28 bool ResolveReshapeAttributes::Run(Model* model, std::size_t op_index) { 29 const auto reshape_it = model->operators.begin() + op_index; 39 if (IsConstantParameterArray(*model, reshape_op->inputs[1])) { 40 const auto& constant_input_array = model->GetArray(reshape_op->inputs[1]);
|
resolve_squeeze_attributes.cc | 22 #include "tensorflow/contrib/lite/toco/model.h" 28 bool ResolveSqueezeAttributes::Run(Model* model, std::size_t op_index) { 29 auto* squeeze_op = model->operators[op_index].get(); 37 if (CountOpsWithInput(*model, squeeze_op->outputs[0]) == 1) { 38 const auto* next_op = GetOpWithInput(*model, squeeze_op->outputs[0]); 45 return RemoveTrivialPassthroughOp(this, model, op_index);
|
/external/testng/src/main/java/org/testng/reporters/jq/ |
BannerPanel.java | 7 public BannerPanel(Model model) { 8 super(model);
|
/frameworks/ml/nn/runtime/test/generated/models/ |
dequantize.model.cpp | 2 void CreateModel(Model *model) { 6 auto op1 = model->addOperand(&type0); 7 auto op2 = model->addOperand(&type1); 9 model->addOperation(ANEURALNETWORKS_DEQUANTIZE, {op1}, {op2}); 11 model->identifyInputsAndOutputs( 14 assert(model->isValid());
|
dequantize_relaxed.model.cpp | 2 void CreateModel(Model *model) { 6 auto op1 = model->addOperand(&type0); 7 auto op2 = model->addOperand(&type1); 9 model->addOperation(ANEURALNETWORKS_DEQUANTIZE, {op1}, {op2}); 11 model->identifyInputsAndOutputs( 15 model->relaxComputationFloat32toFloat16(true); 16 assert(model->isValid());
|
embedding_lookup.model.cpp | 2 void CreateModel(Model *model) { 6 auto index = model->addOperand(&type0); 7 auto value = model->addOperand(&type1); 8 auto output = model->addOperand(&type1); 10 model->addOperation(ANEURALNETWORKS_EMBEDDING_LOOKUP, {index, value}, {output}); 12 model->identifyInputsAndOutputs( 15 assert(model->isValid());
|
embedding_lookup_relaxed.model.cpp | 2 void CreateModel(Model *model) { 6 auto index = model->addOperand(&type0); 7 auto value = model->addOperand(&type1); 8 auto output = model->addOperand(&type1); 10 model->addOperation(ANEURALNETWORKS_EMBEDDING_LOOKUP, {index, value}, {output}); 12 model->identifyInputsAndOutputs( 16 model->relaxComputationFloat32toFloat16(true); 17 assert(model->isValid());
|
logistic_quant8_1.model.cpp | 2 void CreateModel(Model *model) { 6 auto op1 = model->addOperand(&type0); 7 auto op3 = model->addOperand(&type1); 9 model->addOperation(ANEURALNETWORKS_LOGISTIC, {op1}, {op3}); 11 model->identifyInputsAndOutputs( 14 assert(model->isValid());
|
logistic_quant8_2.model.cpp | 2 void CreateModel(Model *model) { 6 auto input = model->addOperand(&type0); 7 auto output = model->addOperand(&type1); 9 model->addOperation(ANEURALNETWORKS_LOGISTIC, {input}, {output}); 11 model->identifyInputsAndOutputs( 14 assert(model->isValid());
|
reshape_quant8_weights_as_inputs.model.cpp | 2 void CreateModel(Model *model) { 7 auto op1 = model->addOperand(&type0); 8 auto op2 = model->addOperand(&type1); 9 auto op3 = model->addOperand(&type2); 11 model->addOperation(ANEURALNETWORKS_RESHAPE, {op1, op2}, {op3}); 13 model->identifyInputsAndOutputs( 16 assert(model->isValid());
|
reshape_weights_as_inputs.model.cpp | 2 void CreateModel(Model *model) { 7 auto op1 = model->addOperand(&type0); 8 auto op2 = model->addOperand(&type1); 9 auto op3 = model->addOperand(&type2); 11 model->addOperation(ANEURALNETWORKS_RESHAPE, {op1, op2}, {op3}); 13 model->identifyInputsAndOutputs( 16 assert(model->isValid());
|
reshape_weights_as_inputs_relaxed.model.cpp | 2 void CreateModel(Model *model) { 7 auto op1 = model->addOperand(&type0); 8 auto op2 = model->addOperand(&type1); 9 auto op3 = model->addOperand(&type2); 11 model->addOperation(ANEURALNETWORKS_RESHAPE, {op1, op2}, {op3}); 13 model->identifyInputsAndOutputs( 17 model->relaxComputationFloat32toFloat16(true); 18 assert(model->isValid());
|
softmax_float_1.model.cpp | 2 void CreateModel(Model *model) { 6 auto input = model->addOperand(&type0); 7 auto beta = model->addOperand(&type1); 8 auto output = model->addOperand(&type0); 11 model->setOperandValue(beta, beta_init, sizeof(float) * 1); 12 model->addOperation(ANEURALNETWORKS_SOFTMAX, {input, beta}, {output}); 14 model->identifyInputsAndOutputs( 17 assert(model->isValid());
|
softmax_float_1_relaxed.model.cpp | 2 void CreateModel(Model *model) { 6 auto input = model->addOperand(&type0); 7 auto beta = model->addOperand(&type1); 8 auto output = model->addOperand(&type0); 11 model->setOperandValue(beta, beta_init, sizeof(float) * 1); 12 model->addOperation(ANEURALNETWORKS_SOFTMAX, {input, beta}, {output}); 14 model->identifyInputsAndOutputs( 18 model->relaxComputationFloat32toFloat16(true); 19 assert(model->isValid()) [all...] |
softmax_float_2.model.cpp | 2 void CreateModel(Model *model) { 6 auto input = model->addOperand(&type0); 7 auto beta = model->addOperand(&type1); 8 auto output = model->addOperand(&type0); 11 model->setOperandValue(beta, beta_init, sizeof(float) * 1); 12 model->addOperation(ANEURALNETWORKS_SOFTMAX, {input, beta}, {output}); 14 model->identifyInputsAndOutputs( 17 assert(model->isValid());
|
softmax_float_2_relaxed.model.cpp | 2 void CreateModel(Model *model) { 6 auto input = model->addOperand(&type0); 7 auto beta = model->addOperand(&type1); 8 auto output = model->addOperand(&type0); 11 model->setOperandValue(beta, beta_init, sizeof(float) * 1); 12 model->addOperation(ANEURALNETWORKS_SOFTMAX, {input, beta}, {output}); 14 model->identifyInputsAndOutputs( 18 model->relaxComputationFloat32toFloat16(true); 19 assert(model->isValid()) [all...] |
transpose.model.cpp | 2 void CreateModel(Model *model) { 6 auto input = model->addOperand(&type0); 7 auto perms = model->addOperand(&type1); 8 auto output = model->addOperand(&type0); 11 model->setOperandValue(perms, perms_init, sizeof(int32_t) * 4); 12 model->addOperation(ANEURALNETWORKS_TRANSPOSE, {input, perms}, {output}); 14 model->identifyInputsAndOutputs( 17 assert(model->isValid());
|
transpose_relaxed.model.cpp | 2 void CreateModel(Model *model) { 6 auto input = model->addOperand(&type0); 7 auto perms = model->addOperand(&type1); 8 auto output = model->addOperand(&type0); 11 model->setOperandValue(perms, perms_init, sizeof(int32_t) * 4); 12 model->addOperation(ANEURALNETWORKS_TRANSPOSE, {input, perms}, {output}); 14 model->identifyInputsAndOutputs( 18 model->relaxComputationFloat32toFloat16(true); 19 assert(model->isValid()) [all...] |
/frameworks/ml/nn/runtime/test/specs/V1_0/ |
conv_1_h3_w2_SAME.mod.py | 0 model = Model() 10 model = model.Conv(i2, i0, i1, i4, i5, i6, i7).To(i3) variable 1 model = Model() variable
|
conv_1_h3_w2_VALID.mod.py | 0 model = Model() 10 model = model.Conv(i2, i0, i1, i4, i5, i6, i7).To(i3) variable 1 model = Model() variable
|
conv_3_h3_w2_SAME.mod.py | 0 model = Model() 10 model = model.Conv(i2, i0, i1, i4, i5, i6, i7).To(i3) variable 1 model = Model() variable
|
conv_3_h3_w2_VALID.mod.py | 0 model = Model() 10 model = model.Conv(i2, i0, i1, i4, i5, i6, i7).To(i3) variable 1 model = Model() variable
|
depthwise_conv.mod.py | 0 model = Model() 11 model = model.DepthWiseConv(i2, i0, i1, i4, i5, i6, i7, i8).To(i3) variable 1 model = Model() variable
|
depthwise_conv2d_float_large_2_weights_as_inputs.mod.py | 17 model = Model() variable 27 model = model.Operation("DEPTHWISE_CONV_2D", variable
|