HomeSort by relevance Sort by last modified time
    Searched refs:Model (Results 601 - 625 of 1881) sorted by null

<<21222324252627282930>>

  /frameworks/ml/nn/runtime/test/generated/models/
concat_quant8_3.model.cpp 2 void CreateModel(Model *model) {
8 auto input1 = model->addOperand(&type0);
9 auto input2 = model->addOperand(&type1);
10 auto axis1 = model->addOperand(&type2);
11 auto output = model->addOperand(&type3);
14 model->setOperandValue(axis1, axis1_init, sizeof(int32_t) * 1);
15 model->addOperation(ANEURALNETWORKS_CONCATENATION, {input1, input2, axis1}, {output});
17 model->identifyInputsAndOutputs(
20 assert(model->isValid())
    [all...]
depth_to_space_float_1.model.cpp 2 void CreateModel(Model *model) {
7 auto input = model->addOperand(&type0);
8 auto block_size = model->addOperand(&type1);
9 auto output = model->addOperand(&type2);
12 model->setOperandValue(block_size, block_size_init, sizeof(int32_t) * 1);
13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, block_size}, {output});
15 model->identifyInputsAndOutputs(
18 assert(model->isValid());
depth_to_space_float_1_relaxed.model.cpp 2 void CreateModel(Model *model) {
7 auto input = model->addOperand(&type0);
8 auto block_size = model->addOperand(&type1);
9 auto output = model->addOperand(&type2);
12 model->setOperandValue(block_size, block_size_init, sizeof(int32_t) * 1);
13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, block_size}, {output});
15 model->identifyInputsAndOutputs(
19 model->relaxComputationFloat32toFloat16(true);
20 assert(model->isValid())
    [all...]
depth_to_space_float_2.model.cpp 2 void CreateModel(Model *model) {
7 auto input = model->addOperand(&type0);
8 auto block_size = model->addOperand(&type1);
9 auto output = model->addOperand(&type2);
12 model->setOperandValue(block_size, block_size_init, sizeof(int32_t) * 1);
13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, block_size}, {output});
15 model->identifyInputsAndOutputs(
18 assert(model->isValid());
depth_to_space_float_2_relaxed.model.cpp 2 void CreateModel(Model *model) {
7 auto input = model->addOperand(&type0);
8 auto block_size = model->addOperand(&type1);
9 auto output = model->addOperand(&type2);
12 model->setOperandValue(block_size, block_size_init, sizeof(int32_t) * 1);
13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, block_size}, {output});
15 model->identifyInputsAndOutputs(
19 model->relaxComputationFloat32toFloat16(true);
20 assert(model->isValid())
    [all...]
depth_to_space_float_3.model.cpp 2 void CreateModel(Model *model) {
7 auto input = model->addOperand(&type0);
8 auto block_size = model->addOperand(&type1);
9 auto output = model->addOperand(&type2);
12 model->setOperandValue(block_size, block_size_init, sizeof(int32_t) * 1);
13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, block_size}, {output});
15 model->identifyInputsAndOutputs(
18 assert(model->isValid());
depth_to_space_float_3_relaxed.model.cpp 2 void CreateModel(Model *model) {
7 auto input = model->addOperand(&type0);
8 auto block_size = model->addOperand(&type1);
9 auto output = model->addOperand(&type2);
12 model->setOperandValue(block_size, block_size_init, sizeof(int32_t) * 1);
13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, block_size}, {output});
15 model->identifyInputsAndOutputs(
19 model->relaxComputationFloat32toFloat16(true);
20 assert(model->isValid())
    [all...]
depth_to_space_quant8_1.model.cpp 2 void CreateModel(Model *model) {
7 auto input = model->addOperand(&type0);
8 auto radius = model->addOperand(&type1);
9 auto output = model->addOperand(&type2);
12 model->setOperandValue(radius, radius_init, sizeof(int32_t) * 1);
13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, radius}, {output});
15 model->identifyInputsAndOutputs(
18 assert(model->isValid());
depth_to_space_quant8_2.model.cpp 2 void CreateModel(Model *model) {
7 auto input = model->addOperand(&type0);
8 auto radius = model->addOperand(&type1);
9 auto output = model->addOperand(&type2);
12 model->setOperandValue(radius, radius_init, sizeof(int32_t) * 1);
13 model->addOperation(ANEURALNETWORKS_DEPTH_TO_SPACE, {input, radius}, {output});
15 model->identifyInputsAndOutputs(
18 assert(model->isValid());
div.model.cpp 2 void CreateModel(Model *model) {
6 auto op1 = model->addOperand(&type0);
7 auto op2 = model->addOperand(&type0);
8 auto act = model->addOperand(&type1);
9 auto op3 = model->addOperand(&type0);
12 model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
13 model->addOperation(ANEURALNETWORKS_DIV, {op1, op2, act}, {op3});
15 model->identifyInputsAndOutputs(
18 assert(model->isValid())
    [all...]
div_broadcast_float.model.cpp 2 void CreateModel(Model *model) {
7 auto op1 = model->addOperand(&type0);
8 auto op2 = model->addOperand(&type1);
9 auto act = model->addOperand(&type2);
10 auto op3 = model->addOperand(&type1);
13 model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
14 model->addOperation(ANEURALNETWORKS_DIV, {op1, op2, act}, {op3});
16 model->identifyInputsAndOutputs(
19 assert(model->isValid())
    [all...]
div_broadcast_float_relaxed.model.cpp 2 void CreateModel(Model *model) {
7 auto op1 = model->addOperand(&type0);
8 auto op2 = model->addOperand(&type1);
9 auto act = model->addOperand(&type2);
10 auto op3 = model->addOperand(&type1);
13 model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
14 model->addOperation(ANEURALNETWORKS_DIV, {op1, op2, act}, {op3});
16 model->identifyInputsAndOutputs(
20 model->relaxComputationFloat32toFloat16(true)
    [all...]
div_relaxed.model.cpp 2 void CreateModel(Model *model) {
6 auto op1 = model->addOperand(&type0);
7 auto op2 = model->addOperand(&type0);
8 auto act = model->addOperand(&type1);
9 auto op3 = model->addOperand(&type0);
12 model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
13 model->addOperation(ANEURALNETWORKS_DIV, {op1, op2, act}, {op3});
15 model->identifyInputsAndOutputs(
19 model->relaxComputationFloat32toFloat16(true)
    [all...]
fully_connected_float_large_weights_as_inputs.model.cpp 2 void CreateModel(Model *model) {
8 auto op1 = model->addOperand(&type0);
9 auto op2 = model->addOperand(&type0);
10 auto b0 = model->addOperand(&type1);
11 auto op3 = model->addOperand(&type2);
12 auto act = model->addOperand(&type3);
15 model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
16 model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {op1, op2, b0, act}, {op3});
18 model->identifyInputsAndOutputs
    [all...]
fully_connected_float_large_weights_as_inputs_relaxed.model.cpp 2 void CreateModel(Model *model) {
8 auto op1 = model->addOperand(&type0);
9 auto op2 = model->addOperand(&type0);
10 auto b0 = model->addOperand(&type1);
11 auto op3 = model->addOperand(&type2);
12 auto act = model->addOperand(&type3);
15 model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
16 model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {op1, op2, b0, act}, {op3});
18 model->identifyInputsAndOutputs
    [all...]
fully_connected_float_weights_as_inputs.model.cpp 2 void CreateModel(Model *model) {
8 auto op1 = model->addOperand(&type0);
9 auto op2 = model->addOperand(&type1);
10 auto b0 = model->addOperand(&type2);
11 auto op3 = model->addOperand(&type0);
12 auto act = model->addOperand(&type3);
15 model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
16 model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {op1, op2, b0, act}, {op3});
18 model->identifyInputsAndOutputs
    [all...]
fully_connected_float_weights_as_inputs_relaxed.model.cpp 2 void CreateModel(Model *model) {
8 auto op1 = model->addOperand(&type0);
9 auto op2 = model->addOperand(&type1);
10 auto b0 = model->addOperand(&type2);
11 auto op3 = model->addOperand(&type0);
12 auto act = model->addOperand(&type3);
15 model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
16 model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {op1, op2, b0, act}, {op3});
18 model->identifyInputsAndOutputs
    [all...]
fully_connected_quant8_large_weights_as_inputs.model.cpp 2 void CreateModel(Model *model) {
8 auto op1 = model->addOperand(&type0);
9 auto op2 = model->addOperand(&type0);
10 auto b0 = model->addOperand(&type1);
11 auto op3 = model->addOperand(&type2);
12 auto act = model->addOperand(&type3);
15 model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
16 model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {op1, op2, b0, act}, {op3});
18 model->identifyInputsAndOutputs
    [all...]
fully_connected_quant8_weights_as_inputs.model.cpp 2 void CreateModel(Model *model) {
9 auto op1 = model->addOperand(&type0);
10 auto op2 = model->addOperand(&type1);
11 auto b0 = model->addOperand(&type2);
12 auto op3 = model->addOperand(&type3);
13 auto act = model->addOperand(&type4);
16 model->setOperandValue(act, act_init, sizeof(int32_t) * 1);
17 model->addOperation(ANEURALNETWORKS_FULLY_CONNECTED, {op1, op2, b0, act}, {op3});
19 model->identifyInputsAndOutputs
    [all...]
hashtable_lookup_float.model.cpp 2 void CreateModel(Model *model) {
9 auto lookup = model->addOperand(&type0);
10 auto key = model->addOperand(&type1);
11 auto value = model->addOperand(&type2);
12 auto output = model->addOperand(&type3);
13 auto hits = model->addOperand(&type4);
15 model->addOperation(ANEURALNETWORKS_HASHTABLE_LOOKUP, {lookup, key, value}, {output, hits});
17 model->identifyInputsAndOutputs(
20 assert(model->isValid())
    [all...]
hashtable_lookup_float_relaxed.model.cpp 2 void CreateModel(Model *model) {
9 auto lookup = model->addOperand(&type0);
10 auto key = model->addOperand(&type1);
11 auto value = model->addOperand(&type2);
12 auto output = model->addOperand(&type3);
13 auto hits = model->addOperand(&type4);
15 model->addOperation(ANEURALNETWORKS_HASHTABLE_LOOKUP, {lookup, key, value}, {output, hits});
17 model->identifyInputsAndOutputs(
21 model->relaxComputationFloat32toFloat16(true)
    [all...]
hashtable_lookup_quant8.model.cpp 2 void CreateModel(Model *model) {
9 auto lookup = model->addOperand(&type0);
10 auto key = model->addOperand(&type1);
11 auto value = model->addOperand(&type2);
12 auto output = model->addOperand(&type3);
13 auto hits = model->addOperand(&type4);
15 model->addOperation(ANEURALNETWORKS_HASHTABLE_LOOKUP, {lookup, key, value}, {output, hits});
17 model->identifyInputsAndOutputs(
20 assert(model->isValid())
    [all...]
lsh_projection_weights_as_inputs.model.cpp 2 void CreateModel(Model *model) {
9 auto hash = model->addOperand(&type0);
10 auto lookup = model->addOperand(&type1);
11 auto weight = model->addOperand(&type2);
12 auto type_param = model->addOperand(&type3);
13 auto output = model->addOperand(&type4);
16 model->setOperandValue(type_param, type_param_init, sizeof(int32_t) * 1);
17 model->addOperation(ANEURALNETWORKS_LSH_PROJECTION, {hash, lookup, weight, type_param}, {output});
19 model->identifyInputsAndOutputs
    [all...]
lsh_projection_weights_as_inputs_relaxed.model.cpp 2 void CreateModel(Model *model) {
9 auto hash = model->addOperand(&type0);
10 auto lookup = model->addOperand(&type1);
11 auto weight = model->addOperand(&type2);
12 auto type_param = model->addOperand(&type3);
13 auto output = model->addOperand(&type4);
16 model->setOperandValue(type_param, type_param_init, sizeof(int32_t) * 1);
17 model->addOperation(ANEURALNETWORKS_LSH_PROJECTION, {hash, lookup, weight, type_param}, {output});
19 model->identifyInputsAndOutputs
    [all...]
mean.model.cpp 2 void CreateModel(Model *model) {
8 auto input = model->addOperand(&type0);
9 auto axis = model->addOperand(&type1);
10 auto keepDims = model->addOperand(&type2);
11 auto output = model->addOperand(&type3);
14 model->setOperandValue(axis, axis_init, sizeof(int32_t) * 1);
16 model->setOperandValue(keepDims, keepDims_init, sizeof(int32_t) * 1);
17 model->addOperation(ANEURALNETWORKS_MEAN, {input, axis, keepDims}, {output});
19 model->identifyInputsAndOutputs
    [all...]

Completed in 221 milliseconds

<<21222324252627282930>>