/external/skia/include/core/ |
SkColorSpace.h | 88 * Colorspace with the sRGB primaries, but a linear (1.0) gamma. Commonly used for 116 static sk_sp<SkColorSpace> MakeRGB(RenderTargetGamma gamma, Gamut gamut); 117 static sk_sp<SkColorSpace> MakeRGB(RenderTargetGamma gamma, const SkMatrix44& toXYZD50); 142 * Returns true if the color space gamma is near enough to be approximated as sRGB. 149 * Returns true if the color space gamma is linear. 187 * Returns a color space with the same gamut as this one, but with a linear gamma.
|
/external/skia/tests/ |
ParametricStageTest.cpp | 44 static void check_error(skiatest::Reporter* r, float limit, float gamma) { 46 fn.fG = gamma;
|
/external/skqp/include/core/ |
SkColorSpace.h | 88 * Colorspace with the sRGB primaries, but a linear (1.0) gamma. Commonly used for 116 static sk_sp<SkColorSpace> MakeRGB(RenderTargetGamma gamma, Gamut gamut); 117 static sk_sp<SkColorSpace> MakeRGB(RenderTargetGamma gamma, const SkMatrix44& toXYZD50); 142 * Returns true if the color space gamma is near enough to be approximated as sRGB. 149 * Returns true if the color space gamma is linear. 187 * Returns a color space with the same gamut as this one, but with a linear gamma.
|
/external/skqp/tests/ |
ParametricStageTest.cpp | 44 static void check_error(skiatest::Reporter* r, float limit, float gamma) { 46 fn.fG = gamma;
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
exponential.py | 29 from tensorflow.python.ops.distributions import gamma 40 class Exponential(gamma.Gamma): 56 The Exponential distribution is a special case of the Gamma distribution, 60 Exponential(rate) = Gamma(concentration=1., rate) 95 # true in the parent class "Gamma." Therefore, passing 106 # While the Gamma distribution is not reparameterizable, the exponential
|
/frameworks/base/core/jni/android/graphics/ |
MaskFilter.cpp | 58 static jlong createGammaTable(JNIEnv* env, jobject, jfloat gamma) { 59 SkMaskFilter* filter = SkTableMaskFilter::CreateGamma(gamma);
|
/external/ImageMagick/MagickCore/ |
gem.c | 1485 gamma, local 1600 gamma, local 1641 gamma, local [all...] |
effect.c | 312 gamma, 349 gamma=0.0; 360 gamma+=(*k); 365 gamma=PerceptibleReciprocal(gamma); 366 SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q); 378 gamma+=(*k)*alpha; 383 gamma=PerceptibleReciprocal(gamma); 384 SetPixelChannel(blur_image,channel,ClampToQuantum(gamma*pixel),q) 310 gamma, local 631 gamma, local 1269 gamma, local 2113 gamma, local 2253 gamma, local 2915 gamma, local 3222 gamma, local 3630 gamma, local [all...] |
channel.c | 872 gamma, local 883 gamma=Sa*(-Da)+Sa+Da; 884 gamma=PerceptibleReciprocal(gamma); 895 composite[i]=ClampToQuantum(gamma*MagickOver_((double) q[i],beta, 901 composite[i]=ClampToQuantum(gamma*MagickOver_((double) q[i],beta, 907 composite[i]=ClampToQuantum(gamma*MagickOver_((double) q[i],beta, 913 composite[i]=ClampToQuantum(gamma*MagickOver_((double) q[i],beta, 985 gamma; local 995 gamma=QuantumScale*GetPixelAlpha(image,q) 1117 gamma, local [all...] |
accelerate-kernels-private.h | 760 gamma, 766 gamma=sqrt(-2.0f*log(alpha)); 767 sigma=gamma*cospi((2.0f*beta)); 768 tau=gamma*sinpi((2.0f*beta)); [all...] |
/external/tensorflow/tensorflow/python/layers/ |
normalization_test.py | 326 np_gamma, np_beta = sess.run([bn.gamma, bn.beta]) 367 np_gamma, np_beta = sess.run([bn.gamma, bn.beta]) 408 np_gamma, np_beta = sess.run([bn.gamma, bn.beta]) 448 np_gamma, np_beta = sess.run([bn.gamma, bn.beta]) 488 np_gamma, np_beta = sess.run([bn.gamma, bn.beta]) 528 np_gamma, np_beta = sess.run([bn.gamma, bn.beta]) 569 np_gamma, np_beta = sess.run([bn.gamma, bn.beta]) 609 np_gamma, np_beta = sess.run([bn.gamma, bn.beta]) 650 np_gamma, np_beta = sess.run([bn.gamma, bn.beta]) 695 gamma = all_vars['bn/gamma:0' [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/linear/ |
TriDiagonalTransformer.java | 243 // compute gamma = beta vT z / 2 244 double gamma = 0; local 246 gamma += z[i] * hK[i]; 248 gamma *= beta / 2; 250 // compute z = z - gamma v 252 z[i] -= gamma * hK[i];
|
/external/eigen/unsupported/Eigen/src/EulerAngles/ |
EulerSystem.h | 143 IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */ 289 res.gamma() = -res.gamma(); 298 if (PositiveRangeGamma && (res.gamma() < 0)) 299 res.gamma() += Scalar(2 * EIGEN_PI);
|
/external/eigen/unsupported/Eigen/src/IterativeSolvers/ |
ConstrainedConjGrad.h | 114 Scalar rho = 1.0, rho_1, lambda, gamma; local 163 if (transition || iter.first()) gamma = 0.0; 164 else gamma = (std::max)(0.0, (rho - old_z.dot(z)) / rho_1); 165 p = z + gamma*p;
|
/external/google-tv-pairing-protocol/cpp/src/polo/pairing/ |
pairingsession.cc | 90 bool PairingSession::SetSecret(const Gamma& secret) { 91 secret_ = new Gamma(secret); 162 const Gamma* gamma = challenge().GetGamma(*nonce_); local 163 if (!gamma) { 164 LOG(ERROR) << "Failed to get gamma"; 170 listener_->OnPerformOutputDeviceRole(*gamma); 171 delete gamma;
|
/external/libpng/contrib/gregbook/ |
writepng.h | 91 double gamma; member in struct:_mainprog_info
|
/external/ImageMagick/coders/ |
pango.c | 431 gamma; 440 gamma=QuantumScale*fill_color.alpha; 441 gamma=PerceptibleReciprocal(gamma); 442 fill_color.blue*=gamma; 443 fill_color.green*=gamma; 444 fill_color.red*=gamma; 429 gamma; local
|
/frameworks/base/core/java/android/os/ |
VibrationEffect.java | 316 protected static int scale(int amplitude, float gamma, int maxAmplitude) { 317 float val = MathUtils.pow(amplitude / (float) MAX_AMPLITUDE, gamma); 348 * @param gamma the gamma adjustment to apply 353 public VibrationEffect scale(float gamma, int maxAmplitude) { 354 int newAmplitude = scale(mAmplitude, gamma, maxAmplitude); 478 * Scale the Waveform with the given gamma and new max amplitude. 480 * @param gamma the gamma adjustment to apply 486 public VibrationEffect scale(float gamma, int maxAmplitude) [all...] |
/frameworks/base/services/core/java/com/android/server/display/ |
BrightnessMappingStrategy.java | 187 * {@code config_autoBrightnessAdjustmentMaxGamma<sup>-adjustment</sup>} is used to gamma 340 float gamma = Float.NaN; local 341 // Extreme edge cases: use a simpler heuristic, as proper gamma correction around the edges 352 // current^gamma = desired => gamma = log[current](desired) 353 gamma = MathUtils.log(desiredBrightness) / MathUtils.log(currentBrightness); 354 // max^-adjustment = gamma => adjustment = -log[max](gamma) 355 adjustment = -MathUtils.log(gamma) / MathUtils.log(maxGamma); 360 MathUtils.pow(maxGamma, -adjustment) + " == " + gamma); 375 float gamma = MathUtils.pow(maxGamma, -adjustment); local [all...] |
/prebuilts/go/darwin-x86/src/crypto/elliptic/ |
elliptic.go | 197 gamma := new(big.Int).Mul(y, y) 198 gamma.Mod(gamma, curve.P) 209 beta := alpha2.Mul(x, gamma) 221 z3.Sub(z3, gamma) 238 gamma.Mul(gamma, gamma) 239 gamma.Lsh(gamma, 3 [all...] |
/prebuilts/go/linux-x86/src/crypto/elliptic/ |
elliptic.go | 197 gamma := new(big.Int).Mul(y, y) 198 gamma.Mod(gamma, curve.P) 209 beta := alpha2.Mul(x, gamma) 221 z3.Sub(z3, gamma) 238 gamma.Mul(gamma, gamma) 239 gamma.Lsh(gamma, 3 [all...] |
/external/opencv/cv/src/ |
cvsnakes.cpp | 60 // gamma - pointer to coefficient of image energy, 61 // coeffUsage - if CV_VALUE - alpha, beta, gamma point to single value 78 float *gamma, 133 if( gamma == NULL ) 351 _gamma = *gamma; 357 _gamma = gamma[i]; 411 float *beta, float *gamma, 433 alpha, beta, gamma, coeffUsage, win, criteria,
|
/libcore/ojluni/src/main/java/java/util/ |
SplittableRandom.java | 102 * constant ("gamma") to the current (64 bit) seed, forming a 103 * simple sequence. The seed and the gamma values for any two 118 * and gamma for another SplittableRandom. To conservatively 120 * gamma selection (method mixGamma) uses different 126 * most 4 to any given gamma value). This reduces the effective 127 * set of 64bit odd gamma values by about 2%, and serves as an 158 * The golden ratio scaled to 64bits, used as the initial gamma 177 private final long gamma; field in class:SplittableRandom 182 private SplittableRandom(long seed, long gamma) { 184 this.gamma = gamma [all...] |
/external/opencv/ml/src/ |
mlsvm.cpp | 132 else if( param_id == CvSVM::GAMMA ) 164 "(use one of CvSVM::C, CvSVM::GAMMA et al.)", __FILE__, __LINE__ ); 171 gamma(1), coef0(0), C(1), nu(0), p(0), class_weights(0) 182 degree(_degree), gamma(_gamma), coef0(_coef0), 261 calc_non_rbf_base( vcount, var_count, vecs, another, results, params->gamma, params->coef0 ); 271 -2*params->gamma, -2*params->coef0 ); 289 double gamma = -params->gamma; local 315 results[j] = (Qfloat)(s*gamma); 1613 double gamma = 0, C = 0, degree = 0, coef = 0, p = 0, nu = 0; local [all...] |
/external/apache-commons-math/src/main/java/org/apache/commons/math/estimation/ |
LevenbergMarquardtEstimator.java | 857 double gamma = 0; local 859 gamma += jacobian[index] * jacobian[index + dkp]; 861 gamma *= betak; 863 jacobian[index + dkp] -= gamma * jacobian[index]; 882 double gamma = 0; local 885 gamma += jacobian[index] * y[i]; 888 gamma *= beta[pk]; 891 y[i] -= gamma * jacobian[index];
|