OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
full:bdcsvd
(Results
1 - 15
of
15
) sorted by null
/external/eigen/test/
bdcsvd.cpp
23
#define SVD_DEFAULT(M)
BDCSVD
<M>
24
#define SVD_FOR_MIN_NORM(M)
BDCSVD
<M>
29
void
bdcsvd
(const MatrixType& a = MatrixType(), bool pickrandom = true)
function
35
CALL_SUBTEST(( svd_test_all_computation_options<
BDCSVD
<MatrixType> >(m, false) ));
45
VERIFY_IS_APPROX(m.
bdcSvd
().singularValues(), RealVecType::Ones());
46
VERIFY_RAISES_ASSERT(m.
bdcSvd
().matrixU());
47
VERIFY_RAISES_ASSERT(m.
bdcSvd
().matrixV());
48
VERIFY_IS_APPROX(m.
bdcSvd
(ComputeFullU|ComputeFullV).solve(m), m);
56
BDCSVD
<MatrixType> bdc_svd(m);
67
CALL_SUBTEST_3(( svd_verify_assert<
BDCSVD
<Matrix3f> >(Matrix3f()) ))
[
all
...]
boostmultiprec.cpp
55
#include "
bdcsvd
.cpp"
199
CALL_SUBTEST_10((
bdcsvd
(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
CMakeLists.txt
225
ei_add_test(
bdcsvd
)
/external/eigen/failtest/
bdcsvd_int.cpp
13
BDCSVD
<Matrix<SCALAR,Dynamic,Dynamic> > qr(Matrix<SCALAR,Dynamic,Dynamic>::Random(10,10));
/external/eigen/Eigen/
SVD
24
* -
BDCSVD
implementing a recursive divide & conquer strategy on top of an upper-bidiagonalization which remains fast for large problems.
27
* - MatrixBase::
bdcSvd
()
38
#include "src/SVD/
BDCSVD
.h"
/external/eigen/bench/
dense_solvers.cpp
57
BDCSVD
<MatDyn>
bdcsvd
(A.rows(),A.cols());
72
BENCH(t_bdcsvd, tries, rep,
bdcsvd
.compute(A,svd_opt));
83
results["
BDCSVD
"][id] = t_bdcsvd.best();
98
labels.push_back("
BDCSVD
");
185
// cout << "
BDCSVD
(%) " << (results["
BDCSVD
"]/results["LLT"]).format(fmt) << "\n";
/external/eigen/Eigen/src/SVD/
BDCSVD.h
31
template<typename _MatrixType> class
BDCSVD
;
36
struct traits<
BDCSVD
<_MatrixType> >
47
* \class
BDCSVD
56
* For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones,
BDCSVD
is highly
67
class
BDCSVD
: public SVDBase<
BDCSVD
<_MatrixType> >
69
typedef SVDBase<
BDCSVD
> Base;
106
* perform decompositions via
BDCSVD
::compute(const MatrixType&).
108
BDCSVD
() : m_algoswap(16), m_numIters(0)
116
* \sa
BDCSVD
()
[
all
...]
SVDBase.h
45
* \sa class
BDCSVD
, class JacobiSVD
/external/eigen/unsupported/bench/
bench_svd.cpp
48
BDCSVD
<MatrixType> bdc_matrix(m);
79
BDCSVD
<MatrixType> bdc_matrix(m, ComputeFullU|ComputeFullV);
/external/tensorflow/tensorflow/core/kernels/
svd_op_impl.h
88
Eigen::
BDCSVD
<Matrix> svd(inputs[0], options);
/external/eigen/doc/
DenseDecompositionBenchmark.dox
27
<tr class="alt"><td>
BDCSVD
</td><td>1.07 (x19.7)</td><td>21.83 (x51.5)</td><td>331.77 (x56.9)</td><td>18587.9 (x49.6)</td><td>110.53 (x16.3)</td><td>397.67 (x13.2)</td><td>2975 (x12.6)</td><td>48593.2 (x12.6)</td></tr>
35
+ For large problem sizes, only the decomposition implementing a cache-friendly blocking strategy scale well. Those include LLT, PartialPivLU, HouseholderQR, and
BDCSVD
. This explain why for a 4k x 4k matrix, HouseholderQR is faster than LDLT. In the future, LDLT and ColPivHouseholderQR will also implement blocking strategies.
QuickReference.dox
21
<tr class="alt"><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decompositions with least-squares solver (JacobiSVD,
BDCSVD
)</td></tr>
/external/eigen/lapack/
svd.cpp
56
BDCSVD
<PlainMatrixType> svd(mat,option);
/external/eigen/Eigen/src/Core/
MatrixBase.h
375
inline
BDCSVD
<PlainObject>
bdcSvd
(unsigned int computationOptions = 0) const;
/external/eigen/Eigen/src/Core/util/
ForwardDeclarations.h
259
template<typename MatrixType> class
BDCSVD
;
Completed in 235 milliseconds