/external/tensorflow/tensorflow/python/kernel_tests/ |
conv2d_backprop_filter_grad_test.py | 42 filter_shape = [3, 3, 4, 6] 47 array_ops.zeros(filter_shape), 56 filter_shape, 62 output, filter_shape) 76 filter_shape = [3, 3, 4, 6] 81 array_ops.zeros(filter_shape), 91 filter_shape, 98 output, filter_shape)
|
conv3d_backprop_filter_v2_grad_test.py | 42 filter_shape = [3, 3, 3, 2, 3] 47 array_ops.zeros(filter_shape), strides, 53 output = nn_ops.conv3d_backprop_filter_v2(in_val, filter_shape, 58 output, filter_shape)
|
conv_ops_3d_test.py | 275 self, batch, input_shape, filter_shape, in_depth, out_depth, stride, 279 filter_planes, filter_rows, filter_cols = filter_shape 282 filter_shape = [ 307 for x in filter_shape: 327 filter_data, shape=filter_shape, dtype=data_type, name="filter") 352 filter_tensor, filter_shape, conv, output_shape) 374 filter_shape=(3, 3, 3), 385 filter_shape=(2, 2, 2), 396 filter_shape=(3, 3, 3), 407 filter_shape=(2, 2, 2) [all...] |
atrous_convolution_test.py | 98 def _test_atrous_convolution(self, add_check, input_shape, filter_shape, 101 np.prod(filter_shape), dtype=np.float32).reshape(filter_shape) 137 filter_shape=[kernel_height, kernel_width, 2, 2], 154 filter_shape=[ 171 filter_shape=[kernel_width, 2, 2], 187 filter_shape=[3, 2, 2], 195 filter_shape=[3, 3, 2, 2],
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
conv_ops.cc | 51 const TensorShape& filter_shape, DataType dtype, 54 ExpandedFilterShapeForDepthwiseConvolution(filter_shape); 91 const TensorShape& filter_shape, xla::ComputationBuilder* builder) { 93 ExpandedFilterShapeForDepthwiseConvolution(filter_shape); 94 int64 depthwise_multiplier = filter_shape.dim_size(filter_shape.dims() - 1); 95 int64 input_feature = filter_shape.dim_size(filter_shape.dims() - 2); 130 const TensorShape& filter_shape, DataType dtype, 133 int64 depthwise_multiplier = filter_shape.dim_size(filter_shape.dims() - 1) 225 const TensorShape filter_shape = ctx->InputShape(1); variable 376 const TensorShape filter_shape = ctx->InputShape(1); variable 529 TensorShape filter_shape; variable [all...] |
/external/tensorflow/tensorflow/core/kernels/ |
conv_grad_ops.cc | 49 const TensorShape& filter_shape, const TensorShape& output_shape, 54 dim->filter_size = filter_shape.dim_size(filter_spatial_dim); 88 const TensorShape& filter_shape, const TensorShape& output_shape, 93 label, input_shape, filter_shape, output_shape, one_dilations, strides, 99 const TensorShape& filter_shape, const TensorShape& out_backprop_shape, 108 if (filter_shape.dims() != num_dims) { 130 if (dims->in_depth != filter_shape.dim_size(num_dims - 2)) { 134 dims->out_depth = filter_shape.dim_size(num_dims - 1); 144 label, input_shape, filter_shape, out_backprop_shape, dilations, 152 const TensorShape& filter_shape, [all...] |
mkl_conv_grad_input_ops.cc | 87 GetMklShape(context, 1, &(mkl_context.filter_shape)); 88 bool filter_in_mkl_format = mkl_context.filter_shape.IsMklTensor(); 94 TensorShape input_shape, filter_shape, outback_shape; variable 107 OP_REQUIRES(context, mkl_context.filter_shape.GetDimension() == 4, 112 (const int64*)mkl_context.filter_shape.GetSizes(); 113 const int64 filter_dims = mkl_context.filter_shape.GetDimension(); 116 filter_sizes, filter_dims, &filter_shape)); 118 filter_shape = filter.shape(); 138 filter_shape, outback_shape, strides, padding, data_format, &dims)); 247 MklShape filter_shape, outback_shape member in struct:tensorflow::MklConv2DCustomBackpropInputOp::__anon39840 [all...] |
mkl_conv_ops.h | 142 const TensorShape& filter_shape, 146 OP_REQUIRES(context_, filter_shape.dims() == 4, 148 filter_shape.DebugString())); 152 FastBoundsCheck(filter_shape.dim_size(i), 159 OP_REQUIRES(context_, input_depth == filter_shape.dim_size(2), 162 " vs ", filter_shape.dim_size(2))); 165 int filter_rows = static_cast<int>(filter_shape.dim_size(0)); 166 int filter_cols = static_cast<int>(filter_shape.dim_size(1)); 167 int in_depth = static_cast<int>(filter_shape.dim_size(2)); 168 int out_depth = static_cast<int>(filter_shape.dim_size(3)) [all...] |
conv_grad_ops_3d.cc | 53 context, filter_shape.dims() == 5, \ 68 const std::array<int64, 3> filter_size = {{filter_shape.dim_size(0), \ 69 filter_shape.dim_size(1), \ 70 filter_shape.dim_size(2)}}; \ 74 OP_REQUIRES(context, in_depth == filter_shape.dim_size(3), \ 77 const int64 out_depth = filter_shape.dim_size(4); \ 169 const TensorShape& filter_shape = filter.shape(); variable 280 TensorShape filter_shape; variable 285 filter_sizes.vec<int32>(), &filter_shape)); 287 filter_shape = context->input(1).shape() 456 const TensorShape& filter_shape = filter.shape(); variable 802 TensorShape filter_shape; variable [all...] |
conv_grad_filter_ops.cc | 226 TensorShape filter_shape; variable 228 filter_sizes.vec<int32>(), &filter_shape)); 234 type_string(), /*num_spatial_dims=*/2, input.shape(), filter_shape, 239 context->allocate_output(0, filter_shape, &filter_backprop)); 242 if (filter_shape.num_elements() == 0) { 340 TensorShape filter_shape; variable 342 filter_sizes.vec<int32>(), &filter_shape)); 348 input.shape(), filter_shape, out_backprop.shape(), 353 context->allocate_output(0, filter_shape, &filter_backprop)); 356 if (filter_shape.num_elements() == 0) 587 TensorShape filter_shape; variable 647 TensorShape filter_shape = filter_backprop->shape(); local [all...] |
/external/tensorflow/tensorflow/python/ops/ |
conv2d_benchmark.py | 34 def build_graph(device, input_shape, filter_shape, strides, padding, dtype, 41 filter_shape: Shape of the filter tensor. 57 random_ops.truncated_normal(filter_shape, dtype=dtype)) 84 def _run_graph(self, device, input_shape, filter_shape, strides, padding, 91 filter_shape: Shape of the filter tensor. 106 warmup_outputs, outputs = build_graph(device, input_shape, filter_shape, 120 str(filter_shape).replace(" ", ""), 132 filtershape=str(filter_shape).replace(" ", ""),
|
nn_ops.py | 100 filter_shape = filter.get_shape() 103 filter_shape=filter_shape, 115 __call__ are compatible with input_shape and filter_shape passed to the 120 filter_shape: static filter shape, i.e. filter.get_shape(). 130 filter_shape, # pylint: disable=redefined-builtin 135 filter_shape = filter_shape.with_rank(input_shape.ndims) 138 input_shape = input_shape.with_rank(filter_shape.ndims) 214 filter_shape=None [all...] |
/external/tensorflow/tensorflow/compiler/xla/tests/ |
convolution_test.cc | 126 Shape filter_shape = MakeShapeWrapper<T>({1, 1, 1, 2}); local 128 auto filter = builder.Parameter(1, filter_shape, "filter"); 157 Shape filter_shape = MakeShapeWrapper<T>({1, 1, 2, 2}); local 159 auto filter = builder.Parameter(1, filter_shape, "filter"); 191 Shape filter_shape = MakeShapeWrapper<T>({1, 1, 2, 2}); local 193 auto filter = builder.Parameter(1, filter_shape, "filter"); 227 Shape filter_shape = MakeShapeWrapper<T>({1, 1, 3, 3}); local 229 auto filter = builder.Parameter(1, filter_shape, "filter"); 255 Shape filter_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); local 257 auto filter = builder.Parameter(1, filter_shape, "filter") 285 Shape filter_shape = MakeShapeWrapper<T>({1, 2, 2}); local 321 Shape filter_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); local 352 Shape filter_shape = ShapeUtil::MakeShape(F32, {1, 2, 2}); local 386 Shape filter_shape = MakeShapeWrapper<T>({1, 2, 2}); local 424 Shape filter_shape = ShapeUtil::MakeShape(F32, filter_dims); local 491 Shape filter_shape = MakeShapeWrapper<T>(filter_dims); local 557 Shape filter_shape = ShapeUtil::MakeShape(F32, {4, 10}); local 616 Shape filter_shape = MakeShapeWrapper<T>(filter_dims); local 744 Shape filter_shape = ShapeUtil::MakeShape(BF16, {1, 1, 1, 2}); local [all...] |
/external/tensorflow/tensorflow/contrib/fused_conv/python/ops/ |
fused_conv2d_bias_activation_benchmark.py | 32 def build_conv_bias_relu_graph(device, input_shape, filter_shape, strides, 39 filter_shape: Shape of the filter tensor. 57 filt = variables.Variable(random_ops.truncated_normal(filter_shape)) 58 bias_shape = [filter_shape[-1]] 77 def build_fused_conv_bias_relu_graph(device, input_shape, filter_shape, strides, 84 filter_shape: Shape of the filter tensor. 102 filt = variables.Variable(random_ops.truncated_normal(filter_shape)) 103 bias_shape = [filter_shape[-1]] 134 def _run_graph(self, device, input_shape, filter_shape, strides, padding, 141 filter_shape: Shape of the filter tensor [all...] |
/external/tensorflow/tensorflow/compiler/xla/service/gpu/ |
cudnn_convolution_runner.cc | 75 CudnnConvKind kind, const Shape& input_shape, const Shape& filter_shape, 86 VLOG(3) << "filter shape: { " << ShapeUtil::HumanString(filter_shape) << " }"; 133 filter_shape.dimensions(dnums.kernel_input_feature_dimension())) 135 filter_shape.dimensions(dnums.kernel_output_feature_dimension())); 139 filter_shape.dimensions(dnums.kernel_spatial_dimensions(dim))); 217 CudnnConvKind kind, const Shape& input_shape, const Shape& filter_shape, 227 return RunCudnnConvolution(kind, input_shape, filter_shape, output_shape, 234 CudnnConvKind kind, const Shape& input_shape, const Shape& filter_shape, 248 kind, input_shape, filter_shape, output_shape, 253 return RunCudnnConvolution(kind, input_shape, filter_shape, output_shape [all...] |
gpu_layout_assignment.cc | 49 Shape filter_shape; local 54 filter_shape = instr->operand(1)->shape(); 58 filter_shape = instr->operand(1)->shape(); 62 filter_shape = instr->shape().tuple_shapes(0); 92 *filter_shape.mutable_layout() = LayoutUtil::MakeLayout(filter_layout); 113 TF_RETURN_IF_ERROR(constraints->SetOperandLayout(filter_shape, instr, 1)); 118 TF_RETURN_IF_ERROR(constraints->SetOperandLayout(filter_shape, instr, 1)); 125 constraints->SetBufferLayout(filter_shape.layout(), *call_result_buf));
|
convolution_thunk.cc | 46 const Shape& filter_shape, const Shape& output_shape, const Window& window, 57 filter_shape_(filter_shape),
|
cudnn_convolution_algorithm_picker.cc | 168 CudnnConvKind kind, const Shape& input_shape, const Shape& filter_shape, 201 ShapeUtil::ByteSizeOf(filter_shape)); 225 kind, input_shape, filter_shape, output_shape, 275 /*filter_shape=*/rhs_shape, /*output_shape=*/conv_result_shape, 280 /*filter_shape=*/rhs_shape, /*output_shape=*/lhs_shape, instr->window(), 285 /*filter_shape=*/conv_result_shape, /*output_shape=*/rhs_shape,
|
cudnn_convolution_algorithm_picker.h | 51 CudnnConvKind kind, const Shape& input_shape, const Shape& filter_shape,
|
/external/tensorflow/tensorflow/core/framework/ |
common_shape_fns.cc | 399 ShapeHandle filter_shape; local 400 TF_RETURN_IF_ERROR(c->WithRank(c->input(1), rank, &filter_shape)); 402 CheckFormatConstraintsOnShape(data_format, filter_shape, "filter", c)); 437 filter_shape, GetFilterDimIndex<num_spatial_dims>(filter_format, 'O')); 439 filter_shape, GetFilterDimIndex<num_spatial_dims>(filter_format, 'H')); 441 filter_shape, GetFilterDimIndex<num_spatial_dims>(filter_format, 'W')); 445 c->Dim(filter_shape, 447 c->Dim(filter_shape, 452 filter_shape, GetFilterDimIndex<num_spatial_dims>(filter_format, 'I')); 484 ShapeHandle filter_shape; local 556 ShapeHandle filter_shape; local [all...] |
/external/tensorflow/tensorflow/python/framework/ |
common_shapes.py | 179 filter_shape = op.inputs[1].get_shape().with_rank(4) 195 filter_rows = filter_shape[0] 196 filter_cols = filter_shape[1] 197 depth_out = filter_shape[3] 199 input_shape[3].assert_is_compatible_with(filter_shape[2]) 248 filter_shape = op.inputs[1].get_shape().with_rank(4) 254 filter_rows = filter_shape[0] 255 filter_cols = filter_shape[1] 256 depth_out = filter_shape[3] * filter_shape[2 [all...] |
/external/tensorflow/tensorflow/core/grappler/costs/ |
op_level_cost_estimator.cc | 465 auto filter_shape = local 468 VLOG(2) << "Filter shape: " << filter_shape.DebugString(); 485 int64 kx = filter_shape.dim(0).size(); 486 int64 ky = filter_shape.dim(1).size(); 493 int64 oz = filter_shape.dim(3).size(); 496 if (iz != 1 && filter_shape.dim(2).size() != 1) { 497 CHECK_EQ(iz, filter_shape.dim(2).size()); 499 iz = std::max<int64>(iz, filter_shape.dim(2).size()); 780 TensorShapeProto filter_shape; local 785 filter_shape.add_dim()->set_size(value.int64_val(i)) [all...] |
/external/tensorflow/tensorflow/contrib/fused_conv/ops/ |
fused_conv2d_bias_activation_op.cc | 66 ShapeHandle filter_shape; 67 TF_RETURN_IF_ERROR(c->WithRank(c->input(1), rank, &filter_shape)); 70 c->Dim(filter_shape,
|
/external/tensorflow/tensorflow/compiler/tests/ |
conv3d_test.py | 46 filter_shape = [3, 3, 3, 2, 3] 51 array_ops.zeros(filter_shape), strides, 57 output = nn_ops.conv3d_backprop_filter_v2(in_val, filter_shape, 62 output, filter_shape)
|
/external/tensorflow/tensorflow/compiler/xla/service/cpu/ |
cpu_layout_assignment.cc | 115 Shape filter_shape(RowMajorShape(rhs_instruction->shape())); 121 constraints->SetOperandLayout(filter_shape, convolution, 1));
|