/external/tensorflow/tensorflow/core/api_def/base_api/ |
api_def_FractionalAvgPool.pbtxt | 12 output tensor after fractional avg pooling. 18 row pooling sequence, needed to calculate gradient. 24 column pooling sequence, needed to calculate gradient. 30 Pooling ratio for each dimension of `value`, currently only 32 pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements 33 must be 1.0 because we don't allow pooling on batch and channels 34 dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions 41 When set to True, generates the pooling sequence in a 43 Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) for 50 When set to True, it means when pooling, the values at the boundar [all...] |
api_def_FractionalAvgPoolGrad.pbtxt | 20 row pooling sequence, form pooling region with 27 column pooling sequence, form pooling region with 40 When set to True, it means when pooling, the values at the boundary 41 of adjacent pooling cells are used by both cells. For example: 47 If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. 48 The result would be [41/3, 26/3] for fractional avg pooling. 55 out_backprop to those indices that form the same pooling cell. Therefore, we
|
api_def_FractionalMaxPool.pbtxt | 12 output tensor after fractional max pooling. 18 row pooling sequence, needed to calculate gradient. 24 column pooling sequence, needed to calculate gradient. 30 Pooling ratio for each dimension of `value`, currently only 32 pooling ratio looks like [1.0, 1.44, 1.73, 1.0]. The first and last elements 33 must be 1.0 because we don't allow pooling on batch and channels 34 dimensions. 1.44 and 1.73 are pooling ratio on height and width dimensions 41 When set to True, generates the pooling sequence in a 43 Graham, Fractional Max-Pooling](http://arxiv.org/abs/1412.6071) for 50 When set to True, it means when pooling, the values at the boundar [all...] |
api_def_FractionalMaxPoolGrad.pbtxt | 26 row pooling sequence, form pooling region with 33 column pooling sequence, form pooling region with 46 When set to True, it means when pooling, the values at the boundary 47 of adjacent pooling cells are used by both cells. For example: 53 If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. 54 The result would be [20, 16] for fractional max pooling.
|
/external/tensorflow/tensorflow/tools/api/golden/ |
tensorflow.keras.applications.pbtxt | 41 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " 45 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " 49 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " 53 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " 57 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " 61 argspec: "args=[\'input_shape\', \'alpha\', \'depth_multiplier\', \'dropout\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'None\', \'1.0\', \'1\', \'0.001\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\'], " 65 argspec: "args=[\'input_shape\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\'], " 69 argspec: "args=[\'input_shape\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\'], " 73 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " 77 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\' (…) [all...] |
tensorflow.keras.applications.densenet.pbtxt | 5 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " 9 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], " 13 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], "
|
tensorflow.keras.applications.nasnet.pbtxt | 5 argspec: "args=[\'input_shape\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\'], " 9 argspec: "args=[\'input_shape\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'None\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\'], "
|
tensorflow.keras.applications.inception_resnet_v2.pbtxt | 5 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], "
|
tensorflow.keras.applications.inception_v3.pbtxt | 5 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], "
|
tensorflow.keras.applications.mobilenet.pbtxt | 5 argspec: "args=[\'input_shape\', \'alpha\', \'depth_multiplier\', \'dropout\', \'include_top\', \'weights\', \'input_tensor\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'None\', \'1.0\', \'1\', \'0.001\', \'True\', \'imagenet\', \'None\', \'None\', \'1000\'], "
|
tensorflow.keras.applications.resnet50.pbtxt | 5 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], "
|
tensorflow.keras.applications.vgg16.pbtxt | 5 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], "
|
tensorflow.keras.applications.vgg19.pbtxt | 5 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], "
|
tensorflow.keras.applications.xception.pbtxt | 5 argspec: "args=[\'include_top\', \'weights\', \'input_tensor\', \'input_shape\', \'pooling\', \'classes\'], varargs=None, keywords=None, defaults=[\'True\', \'imagenet\', \'None\', \'None\', \'None\', \'1000\'], "
|
/external/tensorflow/tensorflow/contrib/lite/kernels/ |
pooling.cc | 35 namespace pooling { namespace in namespace:tflite::ops::builtin 37 // This file has two implementation of each pooling op. 297 } // namespace pooling 300 static TfLiteRegistration r = {pooling::Init, pooling::Free, 301 pooling::GenericPrepare<pooling::kAverage>, 302 pooling::AverageEval<pooling::kReference>}; 307 static TfLiteRegistration r = {pooling::Init, pooling::Free [all...] |
/external/autotest/site_utils/lxc/container_pool/ |
__init__.py | 5 """This module provides code and classes related to container pooling."""
|
/external/tensorflow/tensorflow/contrib/keras/api/keras/layers/ |
__init__.py | 108 # Pooling layers. 109 from tensorflow.python.keras._impl.keras.layers.pooling import MaxPooling1D 110 from tensorflow.python.keras._impl.keras.layers.pooling import MaxPooling2D 111 from tensorflow.python.keras._impl.keras.layers.pooling import MaxPooling3D 112 from tensorflow.python.keras._impl.keras.layers.pooling import AveragePooling1D 113 from tensorflow.python.keras._impl.keras.layers.pooling import AveragePooling2D 114 from tensorflow.python.keras._impl.keras.layers.pooling import AveragePooling3D 115 from tensorflow.python.keras._impl.keras.layers.pooling import GlobalAveragePooling1D 116 from tensorflow.python.keras._impl.keras.layers.pooling import GlobalAveragePooling2D 117 from tensorflow.python.keras._impl.keras.layers.pooling import GlobalAveragePooling3 [all...] |
/external/tensorflow/tensorflow/python/layers/ |
layers.py | 105 # Pooling layers. 106 from tensorflow.python.layers.pooling import AveragePooling1D 107 from tensorflow.python.layers.pooling import MaxPooling1D 108 from tensorflow.python.layers.pooling import AveragePooling2D 109 from tensorflow.python.layers.pooling import MaxPooling2D 110 from tensorflow.python.layers.pooling import AveragePooling3D 111 from tensorflow.python.layers.pooling import MaxPooling3D 113 from tensorflow.python.layers.pooling import average_pooling1d 114 from tensorflow.python.layers.pooling import max_pooling1d 115 from tensorflow.python.layers.pooling import average_pooling2 [all...] |
pooling.py | 17 """Contains the pooling layer classes and their functional aliases. 33 """Pooling layer for arbitrary pooling functions, for 1D inputs. 38 pool_function: The pooling function to apply, e.g. `tf.nn.max_pool`. 40 representing the size of the pooling window. 42 strides of the pooling operation. 65 # There is no TF op for 1D pooling, hence we make the inputs 4D. 102 """Average Pooling layer for 1D inputs. 106 representing the size of the pooling window. 108 strides of the pooling operation [all...] |
/external/tensorflow/tensorflow/core/kernels/ |
fractional_pool_common.h | 38 // Generate pooling sequence for fractional pooling along one dimension. 40 // Regular max/avg pooling can be viewed as a special case, in which given the 43 // it will generate pooling sequence as 48 // In the case of fractional pooling, input_length is not an integer multiple of 49 // output_length, randomness plays a role when generating pooling sequence. 61 // valid pooling sequence: 72 // pooling_sequence: This is the cumulative pooling sequence.
|
mkl_pooling_ops_common.cc | 94 // We only support 2D pooling across width/height and depthwise 95 // pooling, not a combination. 99 "MaxPooling supports exactly one of pooling across depth " 100 "or pooling across width/height.")); 102 if (depth_window == 1) { // we are pooling in the H and W 124 } else { // we are pooling in the depth dimension 125 // Our current version of depthwise max pooling does not support 129 errors::Unimplemented("Depthwise max pooling requires the" 133 errors::Unimplemented("Depthwise max pooling requires the" 142 errors::Unimplemented("Depthwise max pooling is currently [all...] |
avgpooling_op.h | 53 // top_diff: backprop to the output of the pooling layer 58 // pooled_height: the height of the output to the pooling layer 59 // pooled_width: the width of the output to the pooling layer 60 // kernel_h: the height of the pooling kernel 61 // kernel_w: the width of the pooling kernel 66 // bottom_diff: backprop to the input of the pooling layer.
|
/external/swiftshader/third_party/subzero/tests_lit/llvm2ice_tests/ |
randomize-pool-immediate-basic.ll | 1 ; This is a smoke test of constant blinding and constant pooling. 15 ; RUN: | FileCheck %s --check-prefix=POOLING 19 ; RUN: | FileCheck %s --check-prefix=POOLING 35 ; POOLING-LABEL: add_arg_plus_200000 36 ; POOLING: mov e{{[a-z]*}},{{(DWORD PTR )?}}ds:0x0 {{[0-9a-f]*}}: R_386_32 .L$i32$00030d40 52 ; POOLING-LABEL: load_arg_plus_200000 53 ; POOLING: mov e{{[a-z]*}},{{(DWORD PTR )?}}ds:0x0 {{[0-9a-f]*}}: R_386_32 .L$i32$00030d40 72 ; POOLING-LABEL: add_arg_plus_64bits 73 ; POOLING: mov e{{[a-z]*}},{{(DWORD PTR )?}}ds:0x0 {{[0-9a-f]*}}: R_386_32 .L$i32$f46b0400 92 ; POOLING-LABEL: load_arg_plus_64bit [all...] |
/external/tensorflow/tensorflow/python/keras/_impl/keras/layers/ |
pooling_test.py | 15 """Tests for pooling layers.""" 30 testing_utils.layer_test(keras.layers.pooling.GlobalMaxPooling1D, 33 keras.layers.pooling.GlobalAveragePooling1D, input_shape=(3, 4, 5)) 38 keras.layers.pooling.GlobalMaxPooling2D, 42 keras.layers.pooling.GlobalMaxPooling2D, 46 keras.layers.pooling.GlobalAveragePooling2D, 50 keras.layers.pooling.GlobalAveragePooling2D, 57 keras.layers.pooling.GlobalMaxPooling3D, 61 keras.layers.pooling.GlobalMaxPooling3D, 65 keras.layers.pooling.GlobalAveragePooling3D [all...] |
/external/tensorflow/tensorflow/python/keras/layers/ |
__init__.py | 111 # Pooling layers. 112 from tensorflow.python.keras._impl.keras.layers.pooling import MaxPooling1D 113 from tensorflow.python.keras._impl.keras.layers.pooling import MaxPooling2D 114 from tensorflow.python.keras._impl.keras.layers.pooling import MaxPooling3D 115 from tensorflow.python.keras._impl.keras.layers.pooling import AveragePooling1D 116 from tensorflow.python.keras._impl.keras.layers.pooling import AveragePooling2D 117 from tensorflow.python.keras._impl.keras.layers.pooling import AveragePooling3D 118 from tensorflow.python.keras._impl.keras.layers.pooling import GlobalAveragePooling1D 119 from tensorflow.python.keras._impl.keras.layers.pooling import GlobalAveragePooling2D 120 from tensorflow.python.keras._impl.keras.layers.pooling import GlobalAveragePooling3 [all...] |