/external/tensorflow/tensorflow/core/api_def/python_api/ |
api_def_Sigmoid.pbtxt | 2 graph_op_name: "Sigmoid"
|
/external/tensorflow/tensorflow/core/api_def/base_api/ |
api_def_Sigmoid.pbtxt | 2 graph_op_name: "Sigmoid" 3 summary: "Computes sigmoid of `x` element-wise."
|
api_def_SigmoidGrad.pbtxt | 4 summary: "Computes the gradient of the sigmoid of `x` wrt its input." 6 Specifically, `grad = dy * y * (1 - y)`, where `y = sigmoid(x)`, and
|
/external/tensorflow/tensorflow/contrib/distributions/python/ops/bijectors/ |
sigmoid.py | 15 """Sigmoid bijector.""" 27 "Sigmoid", 31 class Sigmoid(bijector.Bijector): 34 def __init__(self, validate_args=False, name="sigmoid"): 35 super(Sigmoid, self).__init__( 39 return math_ops.sigmoid(x)
|
__init__.py | 34 @@Sigmoid 67 from tensorflow.contrib.distributions.python.ops.bijectors.sigmoid import *
|
/external/tensorflow/tensorflow/core/kernels/ |
cwise_op_sigmoid.cc | 20 REGISTER5(UnaryOp, CPU, "Sigmoid", functor::sigmoid, float, Eigen::half, double, 23 REGISTER3(UnaryOp, GPU, "Sigmoid", functor::sigmoid, float, Eigen::half, 27 REGISTER(UnaryOp, SYCL, "Sigmoid", functor::sigmoid, float);
|
cwise_op_gpu_sigmoid.cu.cc | 23 DEFINE_UNARY3(sigmoid, Eigen::half, float, double);
|
/external/tensorflow/tensorflow/contrib/distributions/python/kernel_tests/bijectors/ |
sigmoid_test.py | 15 """Sigmoid Tests.""" 24 from tensorflow.contrib.distributions.python.ops.bijectors.sigmoid import Sigmoid 35 self.assertEqual("sigmoid", Sigmoid().name) 39 self.assertAllClose(y, Sigmoid().forward(x).eval(), atol=0., rtol=1e-2) 40 self.assertAllClose(x, Sigmoid().inverse(y).eval(), atol=0., rtol=1e-4) 41 self.assertAllClose(ildj, Sigmoid().inverse_log_det_jacobian(y).eval(), 43 self.assertAllClose(-ildj, Sigmoid().forward_log_det_jacobian(x).eval(), 48 assert_scalar_congruency(Sigmoid(), lower_x=-7., upper_x=7. [all...] |
sigmoid_centered_test.py | 32 sigmoid = SigmoidCentered() 33 self.assertEqual("sigmoid_centered", sigmoid.name) 42 self.assertAllClose(y, sigmoid.forward(x).eval()) 43 self.assertAllClose(x, sigmoid.inverse(y).eval()) 46 sigmoid.inverse_log_det_jacobian(y).eval(), 50 -sigmoid.inverse_log_det_jacobian(y).eval(), 51 sigmoid.forward_log_det_jacobian(x).eval(),
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
target_column_test.py | 65 # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) 79 # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) 104 # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) 116 # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) 139 # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x) [all...] |
/external/tensorflow/tensorflow/core/util/ |
activation_mode.cc | 27 } else if (str_value == "Sigmoid") { 28 *value = SIGMOID;
|
activation_mode.h | 32 SIGMOID = 1,
|
/external/tensorflow/tensorflow/contrib/model_pruning/python/layers/ |
rnn_cells.py | 139 sigmoid = math_ops.sigmoid 161 multiply(c, sigmoid(add(f, forget_bias_tensor))), 162 multiply(sigmoid(i), self._activation(j))) 163 new_h = multiply(self._activation(new_c), sigmoid(o)) 299 sigmoid = math_ops.sigmoid 321 sigmoid(f + self._forget_bias + self._w_f_diag * c_prev) * c_prev + 322 sigmoid(i + self._w_i_diag * c_prev) * self._activation(j)) 325 sigmoid(f + self._forget_bias) * c_prev [all...] |
/external/tensorflow/tensorflow/contrib/distributions/python/ops/ |
relaxed_bernoulli.py | 24 from tensorflow.contrib.distributions.python.ops.bijectors.sigmoid import Sigmoid 56 random variable followed by a `tf.sigmoid` op, one solution is to treat 57 the Logistic as the random variable and `tf.sigmoid` as downstream. The 58 KL divergences of two Logistics, which are always followed by a `tf.sigmoid` 91 Creates three continuous distributions, whose sigmoid approximate 3 Bernoullis 99 sigmoid_samples = tf.sigmoid(samples) 150 event is sigmoid(logits). Only one of `logits` or `probs` should be 182 bijector=Sigmoid(validate_args=validate_args),
|
/frameworks/rs/tests/java_api/VrDemo/src/com/example/android/rs/vr/engine/ |
bugdroid.rs | 25 static float sigmoid(float f) {
38 return (short) (max * sigmoid(pillDistance(p1, p2, img) - rad));
45 * sigmoid(pillDistance(p1, p2, img) - rad * (1 + angle / 2)));
58 return (short) (max * sigmoid(cylinderDistance(p1, p2, img) - rad));
65 * sigmoid(cylinderDistance(p1, p2, img) - rad * (1 + angle / 5)));
80 * sigmoid(distanceCircle(center, circleRadius, normal, img) - rad));
99 * sigmoid(distanceDisk(center, circleRadius, normal, img) - rad));
108 * sigmoid(
|
/external/eigen/unsupported/test/ |
cxx11_tensor_math.cpp | 34 Tensor<float, 1> vec2 = vec1.sigmoid();
|
/external/tensorflow/tensorflow/tools/api/golden/ |
tensorflow.keras.activations.pbtxt | 36 name: "sigmoid"
|
/external/webrtc/webrtc/modules/video_coding/ |
nack_fec_tables.h | 17 // Table values are built as a sigmoid function, ranging from 0 to 100, based on
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/estimators/ |
head_test.py | 504 # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) 764 # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) 788 # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) [all...] |
/external/tensorflow/tensorflow/contrib/rnn/python/ops/ |
rnn_cell.py | 239 sigmoid = math_ops.sigmoid 287 f_act = sigmoid(f + self._forget_bias + w_f_diag * c_prev) 289 f_act = sigmoid(f + self._forget_bias) 297 m = sigmoid(o + w_o_diag * c) * self._activation(c) 299 m = sigmoid(o) * self._activation(c) 400 sigmoid = math_ops.sigmoid 443 sigmoid(f + self._forget_bias + w_f_diag * c_prev) * c_prev + 444 sigmoid(i + w_i_diag * c_prev) * tanh(j) [all...] |
/external/tensorflow/tensorflow/contrib/estimator/python/estimator/ |
head_test.py | 85 """Returns sigmoid cross entropy averaged over classes.""" 274 # loss = labels * -log(sigmoid(logits)) + 275 # (1 - labels) * -log(1 - sigmoid(logits)) 295 # loss = labels * -log(sigmoid(logits)) + 296 # (1 - labels) * -log(1 - sigmoid(logits)) 438 # loss = labels * -log(sigmoid(logits)) + 439 # (1 - labels) * -log(1 - sigmoid(logits)) 468 # loss = labels * -log(sigmoid(logits)) + 469 # (1 - labels) * -log(1 - sigmoid(logits)) 499 # labels * -log(sigmoid(logits)) [all...] |
/external/tensorflow/tensorflow/contrib/specs/python/ |
specs_ops.py | 81 Cs = Fun(layers.conv2d, activation_fn=math_ops.sigmoid) 90 Fs = Fun(layers.fully_connected, activation_fn=math_ops.sigmoid) 119 Sig = Fun(math_ops.sigmoid) 125 """Depth-wise convolution + sigmoid (used after LSTM)."""
|
/external/tensorflow/tensorflow/python/keras/_impl/keras/ |
activations_test.py | 37 'sigmoid', 'hard_sigmoid', 'linear', 117 sigmoid = np.vectorize(ref_sigmoid) 121 f = keras.backend.function([x], [keras.activations.sigmoid(x)]) 124 expected = sigmoid(test_values)
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
bernoulli.py | 54 where the probability of an event is sigmoid(logits). Only one of 146 return (-self.logits * (math_ops.sigmoid(self.logits) - 1) + 177 return (math_ops.sigmoid(a.logits) * delta_probs0 178 + math_ops.sigmoid(-a.logits) * delta_probs1)
|
/external/webrtc/webrtc/modules/audio_processing/ns/ |
defines.h | 39 #define WIDTH_PR_MAP (float)4.0 // width parameter in sigmoid map for prior model
|