Home | History | Annotate | Download | only in SystemZ
      1 //===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 //===----------------------------------------------------------------------===//
     11 // Stack allocation
     12 //===----------------------------------------------------------------------===//
     13 
     14 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
     15                               [(callseq_start timm:$amt)]>;
     16 def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
     17                               [(callseq_end timm:$amt1, timm:$amt2)]>;
     18 
     19 let hasSideEffects = 0 in {
     20   // Takes as input the value of the stack pointer after a dynamic allocation
     21   // has been made.  Sets the output to the address of the dynamically-
     22   // allocated area itself, skipping the outgoing arguments.
     23   //
     24   // This expands to an LA or LAY instruction.  We restrict the offset
     25   // to the range of LA and keep the LAY range in reserve for when
     26   // the size of the outgoing arguments is added.
     27   def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
     28                            [(set GR64:$dst, dynalloc12only:$src)]>;
     29 }
     30 
     31 //===----------------------------------------------------------------------===//
     32 // Control flow instructions
     33 //===----------------------------------------------------------------------===//
     34 
     35 // A return instruction (br %r14).
     36 let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
     37   def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
     38 
     39 // A conditional return instruction (bcr <cond>, %r14).
     40 let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
     41   def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
     42 
     43 // Fused compare and conditional returns.
     44 let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
     45   def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
     46   def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
     47   def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
     48   def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
     49   def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
     50   def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
     51   def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
     52   def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
     53 }
     54 
     55 // Unconditional branches.  R1 is the condition-code mask (all 1s).
     56 let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
     57   let isIndirectBranch = 1 in
     58     def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
     59                     "br\t$R2", [(brind ADDR64:$R2)]>;
     60 
     61   // An assembler extended mnemonic for BRC.
     62   def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
     63                  [(br bb:$I2)]>;
     64 
     65   // An assembler extended mnemonic for BRCL.  (The extension is "G"
     66   // rather than "L" because "JL" is "Jump if Less".)
     67   def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
     68 }
     69 
     70 // FIXME: This trap instruction should be marked as isTerminator, but there is
     71 // currently a general bug that allows non-terminators to be placed between
     72 // terminators. Temporarily leave this unmarked until the bug is fixed.
     73 let isBarrier = 1, hasCtrlDep = 1 in {
     74   def Trap : Alias<4, (outs), (ins), [(trap)]>;
     75 }
     76 
     77 let isTerminator = 1, hasCtrlDep = 1, Uses = [CC] in {
     78   def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
     79 }
     80 
     81 // Conditional branches.  It's easier for LLVM to handle these branches
     82 // in their raw BRC/BRCL form, with the 4-bit condition-code mask being
     83 // the first operand.  It seems friendlier to use mnemonic forms like
     84 // JE and JLH when writing out the assembly though.
     85 let isBranch = 1, isTerminator = 1, Uses = [CC] in {
     86   let isCodeGenOnly = 1, CCMaskFirst = 1 in {
     87     def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1,
     88                                          brtarget16:$I2), "j$R1\t$I2",
     89                      [(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>;
     90     def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1,
     91                                            brtarget32:$I2), "jg$R1\t$I2", []>;
     92     let isIndirectBranch = 1 in
     93       def BCR : InstRR<0x07, (outs), (ins cond4:$valid, cond4:$R1, GR64:$R2),
     94                        "b${R1}r\t$R2", []>;
     95   }
     96   def AsmBRC : InstRI<0xA74, (outs), (ins imm32zx4:$R1, brtarget16:$I2),
     97                       "brc\t$R1, $I2", []>;
     98   def AsmBRCL : InstRIL<0xC04, (outs), (ins imm32zx4:$R1, brtarget32:$I2),
     99                         "brcl\t$R1, $I2", []>;
    100   let isIndirectBranch = 1 in {
    101     def AsmBC : InstRX<0x47, (outs), (ins imm32zx4:$R1, bdxaddr12only:$XBD2),
    102                        "bc\t$R1, $XBD2", []>;
    103     def AsmBCR : InstRR<0x07, (outs), (ins imm32zx4:$R1, GR64:$R2),
    104                         "bcr\t$R1, $R2", []>;
    105   }
    106 }
    107 
    108 def AsmNop  : InstAlias<"nop\t$XBD", (AsmBC 0, bdxaddr12only:$XBD), 0>;
    109 def AsmNopR : InstAlias<"nopr\t$R", (AsmBCR 0, GR64:$R), 0>;
    110 
    111 // Fused compare-and-branch instructions.  As for normal branches,
    112 // we handle these instructions internally in their raw CRJ-like form,
    113 // but use assembly macros like CRJE when writing them out.
    114 //
    115 // These instructions do not use or clobber the condition codes.
    116 // We nevertheless pretend that they clobber CC, so that we can lower
    117 // them to separate comparisons and BRCLs if the branch ends up being
    118 // out of range.
    119 multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
    120   let isBranch = 1, isTerminator = 1, Defs = [CC] in {
    121     def RJ  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
    122                                             brtarget16:$RI4),
    123                        "crj"##pos1##"\t$R1, $R2"##pos2##", $RI4", []>;
    124     def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
    125                                             brtarget16:$RI4),
    126                        "cgrj"##pos1##"\t$R1, $R2"##pos2##", $RI4", []>;
    127     def IJ  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
    128                                             brtarget16:$RI4),
    129                        "cij"##pos1##"\t$R1, $I2"##pos2##", $RI4", []>;
    130     def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
    131                                             brtarget16:$RI4),
    132                        "cgij"##pos1##"\t$R1, $I2"##pos2##", $RI4", []>;
    133     def LRJ  : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
    134                                              brtarget16:$RI4),
    135                         "clrj"##pos1##"\t$R1, $R2"##pos2##", $RI4", []>;
    136     def LGRJ : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
    137                                              brtarget16:$RI4),
    138                         "clgrj"##pos1##"\t$R1, $R2"##pos2##", $RI4", []>;
    139     def LIJ  : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2, ccmask:$M3,
    140                                              brtarget16:$RI4),
    141                         "clij"##pos1##"\t$R1, $I2"##pos2##", $RI4", []>;
    142     def LGIJ : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2, ccmask:$M3,
    143                                              brtarget16:$RI4),
    144                         "clgij"##pos1##"\t$R1, $I2"##pos2##", $RI4", []>;
    145     let isIndirectBranch = 1 in {
    146       def RB  : InstRRS<0xECF6, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
    147                                              bdaddr12only:$BD4),
    148                         "crb"##pos1##"\t$R1, $R2"##pos2##", $BD4", []>;
    149       def GRB : InstRRS<0xECE4, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
    150                                              bdaddr12only:$BD4),
    151                         "cgrb"##pos1##"\t$R1, $R2"##pos2##", $BD4", []>;
    152       def IB  : InstRIS<0xECFE, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
    153                                              bdaddr12only:$BD4),
    154                         "cib"##pos1##"\t$R1, $I2"##pos2##", $BD4", []>;
    155       def GIB : InstRIS<0xECFC, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
    156                                              bdaddr12only:$BD4),
    157                         "cgib"##pos1##"\t$R1, $I2"##pos2##", $BD4", []>;
    158       def LRB  : InstRRS<0xECF7, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
    159                                               bdaddr12only:$BD4),
    160                          "clrb"##pos1##"\t$R1, $R2"##pos2##", $BD4", []>;
    161       def LGRB : InstRRS<0xECE5, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
    162                                               bdaddr12only:$BD4),
    163                          "clgrb"##pos1##"\t$R1, $R2"##pos2##", $BD4", []>;
    164       def LIB  : InstRIS<0xECFF, (outs), (ins GR32:$R1, imm32zx8:$I2, ccmask:$M3,
    165                                               bdaddr12only:$BD4),
    166                          "clib"##pos1##"\t$R1, $I2"##pos2##", $BD4", []>;
    167       def LGIB : InstRIS<0xECFD, (outs), (ins GR64:$R1, imm64zx8:$I2, ccmask:$M3,
    168                                               bdaddr12only:$BD4),
    169                          "clgib"##pos1##"\t$R1, $I2"##pos2##", $BD4", []>;
    170     }
    171   }
    172 
    173   let isTerminator = 1, hasCtrlDep = 1 in {
    174     def RT   : InstRRFc<0xB972, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3),
    175                         "crt"##pos1##"\t$R1, $R2"##pos2, []>;
    176     def GRT  : InstRRFc<0xB960, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3),
    177                         "cgrt"##pos1##"\t$R1, $R2"##pos2, []>;
    178     def LRT  : InstRRFc<0xB973, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3),
    179                         "clrt"##pos1##"\t$R1, $R2"##pos2, []>;
    180     def LGRT : InstRRFc<0xB961, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3),
    181                         "clgrt"##pos1##"\t$R1, $R2"##pos2, []>;
    182     def IT   : InstRIEa<0xEC72, (outs), (ins GR32:$R1, imm32sx16:$I2, ccmask:$M3),
    183                          "cit"##pos1##"\t$R1, $I2"##pos2, []>;
    184     def GIT  : InstRIEa<0xEC70, (outs), (ins GR64:$R1, imm32sx16:$I2, ccmask:$M3),
    185                          "cgit"##pos1##"\t$R1, $I2"##pos2, []>;
    186     def LFIT : InstRIEa<0xEC73, (outs), (ins GR32:$R1, imm32zx16:$I2, ccmask:$M3),
    187                          "clfit"##pos1##"\t$R1, $I2"##pos2, []>;
    188     def LGIT : InstRIEa<0xEC71, (outs), (ins GR64:$R1, imm32zx16:$I2, ccmask:$M3),
    189                          "clgit"##pos1##"\t$R1, $I2"##pos2, []>;
    190   }
    191 }
    192 let isCodeGenOnly = 1 in
    193   defm C : CompareBranches<cond4, "$M3", "">;
    194 defm AsmC : CompareBranches<imm32zx4, "", ", $M3">;
    195 
    196 // Define AsmParser mnemonics for each general condition-code mask
    197 // (integer or floating-point)
    198 multiclass CondExtendedMnemonicA<bits<4> ccmask, string name> {
    199   let isBranch = 1, isTerminator = 1, R1 = ccmask in {
    200     def J : InstRI<0xA74, (outs), (ins brtarget16:$I2),
    201                    "j"##name##"\t$I2", []>;
    202     def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
    203                      "jg"##name##"\t$I2", []>;
    204     def BR : InstRR<0x07, (outs), (ins ADDR64:$R2), "b"##name##"r\t$R2", []>;
    205   }
    206   def LOCR  : FixedCondUnaryRRF<"locr"##name,  0xB9F2, GR32, GR32, ccmask>;
    207   def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>;
    208   def LOCHI : FixedCondUnaryRIE<"lochi"##name,  0xEC42, GR64, imm32sx16,
    209                                 ccmask>;
    210   def LOCGHI: FixedCondUnaryRIE<"locghi"##name, 0xEC46, GR64, imm64sx16,
    211                                 ccmask>;
    212   def LOC   : FixedCondUnaryRSY<"loc"##name,   0xEBF2, GR32, ccmask, 4>;
    213   def LOCG  : FixedCondUnaryRSY<"locg"##name,  0xEBE2, GR64, ccmask, 8>;
    214   def STOC  : FixedCondStoreRSY<"stoc"##name,  0xEBF3, GR32, ccmask, 4>;
    215   def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>;
    216 }
    217 
    218 multiclass CondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
    219   : CondExtendedMnemonicA<ccmask, name1> {
    220   let isAsmParserOnly = 1 in
    221     defm Alt : CondExtendedMnemonicA<ccmask, name2>;
    222 }
    223 
    224 defm AsmO   : CondExtendedMnemonicA<1,  "o">;
    225 defm AsmH   : CondExtendedMnemonic<2,  "h", "p">;
    226 defm AsmNLE : CondExtendedMnemonicA<3,  "nle">;
    227 defm AsmL   : CondExtendedMnemonic<4,  "l", "m">;
    228 defm AsmNHE : CondExtendedMnemonicA<5,  "nhe">;
    229 defm AsmLH  : CondExtendedMnemonicA<6,  "lh">;
    230 defm AsmNE  : CondExtendedMnemonic<7,  "ne", "nz">;
    231 defm AsmE   : CondExtendedMnemonic<8,  "e", "z">;
    232 defm AsmNLH : CondExtendedMnemonicA<9,  "nlh">;
    233 defm AsmHE  : CondExtendedMnemonicA<10, "he">;
    234 defm AsmNL  : CondExtendedMnemonic<11, "nl", "nm">;
    235 defm AsmLE  : CondExtendedMnemonicA<12, "le">;
    236 defm AsmNH  : CondExtendedMnemonic<13, "nh", "np">;
    237 defm AsmNO  : CondExtendedMnemonicA<14, "no">;
    238 
    239 // Define AsmParser mnemonics for each integer condition-code mask.
    240 // This is like the list above, except that condition 3 is not possible
    241 // and that the low bit of the mask is therefore always 0.  This means
    242 // that each condition has two names.  Conditions "o" and "no" are not used.
    243 //
    244 // We don't make one of the two names an alias of the other because
    245 // we need the custom parsing routines to select the correct register class.
    246 multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
    247   let isBranch = 1, isTerminator = 1, M3 = ccmask in {
    248     def CRJ  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
    249                                              brtarget16:$RI4),
    250                         "crj"##name##"\t$R1, $R2, $RI4", []>;
    251     def CGRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
    252                                              brtarget16:$RI4),
    253                         "cgrj"##name##"\t$R1, $R2, $RI4", []>;
    254     def CIJ  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
    255                                              brtarget16:$RI4),
    256                         "cij"##name##"\t$R1, $I2, $RI4", []>;
    257     def CGIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
    258                                              brtarget16:$RI4),
    259                         "cgij"##name##"\t$R1, $I2, $RI4", []>;
    260     def CLRJ  : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2,
    261                                              brtarget16:$RI4),
    262                          "clrj"##name##"\t$R1, $R2, $RI4", []>;
    263     def CLGRJ : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2,
    264                                               brtarget16:$RI4),
    265                          "clgrj"##name##"\t$R1, $R2, $RI4", []>;
    266     def CLIJ  : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2,
    267                                               brtarget16:$RI4),
    268                          "clij"##name##"\t$R1, $I2, $RI4", []>;
    269     def CLGIJ : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2,
    270                                               brtarget16:$RI4),
    271                          "clgij"##name##"\t$R1, $I2, $RI4", []>;
    272     let isIndirectBranch = 1 in {
    273       def CRB  : InstRRS<0xECF6, (outs), (ins GR32:$R1, GR32:$R2,
    274                                               bdaddr12only:$BD4),
    275                          "crb"##name##"\t$R1, $R2, $BD4", []>;
    276       def CGRB : InstRRS<0xECE4, (outs), (ins GR64:$R1, GR64:$R2,
    277                                               bdaddr12only:$BD4),
    278                          "cgrb"##name##"\t$R1, $R2, $BD4", []>;
    279       def CIB  : InstRIS<0xECFE, (outs), (ins GR32:$R1, imm32sx8:$I2,
    280                                               bdaddr12only:$BD4),
    281                          "cib"##name##"\t$R1, $I2, $BD4", []>;
    282       def CGIB : InstRIS<0xECFC, (outs), (ins GR64:$R1, imm64sx8:$I2,
    283                                               bdaddr12only:$BD4),
    284                          "cgib"##name##"\t$R1, $I2, $BD4", []>;
    285       def CLRB  : InstRRS<0xECF7, (outs), (ins GR32:$R1, GR32:$R2,
    286                                               bdaddr12only:$BD4),
    287                           "clrb"##name##"\t$R1, $R2, $BD4", []>;
    288       def CLGRB : InstRRS<0xECE5, (outs), (ins GR64:$R1, GR64:$R2,
    289                                                bdaddr12only:$BD4),
    290                           "clgrb"##name##"\t$R1, $R2, $BD4", []>;
    291       def CLIB  : InstRIS<0xECFF, (outs), (ins GR32:$R1, imm32zx8:$I2,
    292                                                bdaddr12only:$BD4),
    293                           "clib"##name##"\t$R1, $I2, $BD4", []>;
    294       def CLGIB : InstRIS<0xECFD, (outs), (ins GR64:$R1, imm64zx8:$I2,
    295                                                bdaddr12only:$BD4),
    296                           "clgib"##name##"\t$R1, $I2, $BD4", []>;
    297     }
    298   }
    299 
    300   let hasCtrlDep = 1, isTerminator = 1, M3 = ccmask in {
    301       def CRT   : InstRRFc<0xB972, (outs), (ins GR32:$R1, GR32:$R2),
    302                           "crt"##name##"\t$R1, $R2", []>;
    303       def CGRT  : InstRRFc<0xB960, (outs), (ins GR64:$R1, GR64:$R2),
    304                           "cgrt"##name##"\t$R1, $R2", []>;
    305       def CLRT  : InstRRFc<0xB973, (outs), (ins GR32:$R1, GR32:$R2),
    306                           "clrt"##name##"\t$R1, $R2", []>;
    307       def CLGRT : InstRRFc<0xB961, (outs), (ins GR64:$R1, GR64:$R2),
    308                           "clgrt"##name##"\t$R1, $R2", []>;
    309       def CIT   : InstRIEa<0xEC72, (outs), (ins GR32:$R1, imm32sx16:$I2),
    310                            "cit"##name##"\t$R1, $I2", []>;
    311       def CGIT  : InstRIEa<0xEC70, (outs), (ins GR64:$R1, imm32sx16:$I2),
    312                            "cgit"##name##"\t$R1, $I2", []>;
    313       def CLFIT : InstRIEa<0xEC73, (outs), (ins GR32:$R1, imm32zx16:$I2),
    314                            "clfit"##name##"\t$R1, $I2", []>;
    315       def CLGIT : InstRIEa<0xEC71, (outs), (ins GR64:$R1, imm32zx16:$I2),
    316                            "clgit"##name##"\t$R1, $I2", []>;
    317   }
    318 }
    319 multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
    320   : IntCondExtendedMnemonicA<ccmask, name1> {
    321   let isAsmParserOnly = 1 in
    322     defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
    323 }
    324 defm AsmJH   : IntCondExtendedMnemonic<2,  "h",  "nle">;
    325 defm AsmJL   : IntCondExtendedMnemonic<4,  "l",  "nhe">;
    326 defm AsmJLH  : IntCondExtendedMnemonic<6,  "lh", "ne">;
    327 defm AsmJE   : IntCondExtendedMnemonic<8,  "e",  "nlh">;
    328 defm AsmJHE  : IntCondExtendedMnemonic<10, "he", "nl">;
    329 defm AsmJLE  : IntCondExtendedMnemonic<12, "le", "nh">;
    330 
    331 // Decrement a register and branch if it is nonzero.  These don't clobber CC,
    332 // but we might need to split long branches into sequences that do.
    333 let Defs = [CC] in {
    334   def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
    335   def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
    336 }
    337 
    338 //===----------------------------------------------------------------------===//
    339 // Select instructions
    340 //===----------------------------------------------------------------------===//
    341 
    342 def Select32Mux : SelectWrapper<GRX32>, Requires<[FeatureHighWord]>;
    343 def Select32    : SelectWrapper<GR32>;
    344 def Select64    : SelectWrapper<GR64>;
    345 
    346 // We don't define 32-bit Mux stores because the low-only STOC should
    347 // always be used if possible.
    348 defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
    349                                  nonvolatile_anyextloadi8, bdxaddr20only>,
    350                       Requires<[FeatureHighWord]>;
    351 defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
    352                                  nonvolatile_anyextloadi16, bdxaddr20only>,
    353                       Requires<[FeatureHighWord]>;
    354 defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
    355                                  nonvolatile_anyextloadi8, bdxaddr20only>;
    356 defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
    357                                  nonvolatile_anyextloadi16, bdxaddr20only>;
    358 defm CondStore32    : CondStores<GR32, nonvolatile_store,
    359                                  nonvolatile_load, bdxaddr20only>;
    360 
    361 defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
    362                     nonvolatile_anyextloadi8, bdxaddr20only>;
    363 defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
    364                     nonvolatile_anyextloadi16, bdxaddr20only>;
    365 defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
    366                     nonvolatile_anyextloadi32, bdxaddr20only>;
    367 defm CondStore64 : CondStores<GR64, nonvolatile_store,
    368                               nonvolatile_load, bdxaddr20only>;
    369 
    370 //===----------------------------------------------------------------------===//
    371 // Call instructions
    372 //===----------------------------------------------------------------------===//
    373 
    374 let isCall = 1, Defs = [R14D, CC] in {
    375   def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
    376                         [(z_call pcrel32:$I2)]>;
    377   def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
    378                         [(z_call ADDR64:$R2)]>;
    379 }
    380 
    381 // Sibling calls.  Indirect sibling calls must be via R1, since R2 upwards
    382 // are argument registers and since branching to R0 is a no-op.
    383 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
    384   def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
    385                      [(z_sibcall pcrel32:$I2)]>;
    386   let Uses = [R1D] in
    387     def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
    388 }
    389 
    390 let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
    391   def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
    392                                    pcrel32:$I2), []>;
    393 
    394   let Uses = [R1D] in
    395     def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
    396 }
    397 
    398 // Fused compare and conditional sibling calls.
    399 let isCall = 1, isTerminator = 1, isReturn = 1, Uses = [R1D] in {
    400   def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
    401   def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
    402   def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
    403   def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
    404   def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
    405   def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
    406   def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
    407   def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
    408 }
    409 
    410 // TLS calls.  These will be lowered into a call to __tls_get_offset,
    411 // with an extra relocation specifying the TLS symbol.
    412 let isCall = 1, Defs = [R14D, CC] in {
    413   def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
    414                          [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
    415   def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
    416                          [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
    417 }
    418 
    419 // Define the general form of the call instructions for the asm parser.
    420 // These instructions don't hard-code %r14 as the return address register.
    421 // Allow an optional TLS marker symbol to generate TLS call relocations.
    422 let isCall = 1, Defs = [CC] in {
    423   def BRAS  : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16tls:$I2),
    424                      "bras\t$R1, $I2", []>;
    425   def BRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32tls:$I2),
    426                       "brasl\t$R1, $I2", []>;
    427   def BASR  : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
    428                      "basr\t$R1, $R2", []>;
    429 }
    430 
    431 //===----------------------------------------------------------------------===//
    432 // Move instructions
    433 //===----------------------------------------------------------------------===//
    434 
    435 // Register moves.
    436 let hasSideEffects = 0 in {
    437   // Expands to LR, RISBHG or RISBLG, depending on the choice of registers.
    438   def LRMux : UnaryRRPseudo<"l", null_frag, GRX32, GRX32>,
    439               Requires<[FeatureHighWord]>;
    440   def LR  : UnaryRR <"l",  0x18,   null_frag, GR32, GR32>;
    441   def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>;
    442 }
    443 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
    444   def LTR  : UnaryRR <"lt",  0x12,   null_frag, GR32, GR32>;
    445   def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>;
    446 }
    447 
    448 // Move on condition.
    449 let isCodeGenOnly = 1, Uses = [CC] in {
    450   def LOCR  : CondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
    451   def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
    452 }
    453 let Uses = [CC] in {
    454   def AsmLOCR  : AsmCondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
    455   def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
    456 }
    457 let isCodeGenOnly = 1, Uses = [CC] in {
    458   def LOCHI  : CondUnaryRIE<"lochi",  0xEC42, GR32, imm32sx16>;
    459   def LOCGHI : CondUnaryRIE<"locghi", 0xEC46, GR64, imm64sx16>;
    460 }
    461 let Uses = [CC] in {
    462   def AsmLOCHI  : AsmCondUnaryRIE<"lochi",  0xEC42, GR32, imm32sx16>;
    463   def AsmLOCGHI : AsmCondUnaryRIE<"locghi", 0xEC46, GR64, imm64sx16>;
    464 }
    465 
    466 // Immediate moves.
    467 let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
    468     isReMaterializable = 1 in {
    469   // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
    470   // deopending on the choice of register.
    471   def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
    472                Requires<[FeatureHighWord]>;
    473   def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
    474   def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
    475 
    476   // Other 16-bit immediates.
    477   def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
    478   def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
    479   def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
    480   def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
    481 
    482   // 32-bit immediates.
    483   def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
    484   def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
    485   def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
    486 }
    487 
    488 // Register loads.
    489 let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
    490   // Expands to L, LY or LFH, depending on the choice of register.
    491   def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
    492              Requires<[FeatureHighWord]>;
    493   defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
    494   def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
    495             Requires<[FeatureHighWord]>;
    496   def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
    497 
    498   // These instructions are split after register allocation, so we don't
    499   // want a custom inserter.
    500   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    501     def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
    502                       [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
    503   }
    504 }
    505 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
    506   def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
    507   def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
    508 }
    509 
    510 let canFoldAsLoad = 1 in {
    511   def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
    512   def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
    513 }
    514 
    515 // Load on condition.
    516 let isCodeGenOnly = 1, Uses = [CC] in {
    517   def LOC  : CondUnaryRSY<"loc",  0xEBF2, nonvolatile_load, GR32, 4>;
    518   def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
    519 }
    520 let Uses = [CC] in {
    521   def AsmLOC  : AsmCondUnaryRSY<"loc",  0xEBF2, GR32, 4>;
    522   def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>;
    523 }
    524 
    525 // Register stores.
    526 let SimpleBDXStore = 1 in {
    527   // Expands to ST, STY or STFH, depending on the choice of register.
    528   def STMux : StoreRXYPseudo<store, GRX32, 4>,
    529               Requires<[FeatureHighWord]>;
    530   defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
    531   def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
    532              Requires<[FeatureHighWord]>;
    533   def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
    534 
    535   // These instructions are split after register allocation, so we don't
    536   // want a custom inserter.
    537   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
    538     def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
    539                        [(store GR128:$src, bdxaddr20only128:$dst)]>;
    540   }
    541 }
    542 def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
    543 def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
    544 
    545 // Store on condition.
    546 let isCodeGenOnly = 1, Uses = [CC] in {
    547   def STOC  : CondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
    548   def STOCG : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
    549 }
    550 let Uses = [CC] in {
    551   def AsmSTOC  : AsmCondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
    552   def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
    553 }
    554 
    555 // 8-bit immediate stores to 8-bit fields.
    556 defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
    557 
    558 // 16-bit immediate stores to 16-, 32- or 64-bit fields.
    559 def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
    560 def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
    561 def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
    562 
    563 // Memory-to-memory moves.
    564 let mayLoad = 1, mayStore = 1 in
    565   defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
    566 
    567 // String moves.
    568 let mayLoad = 1, mayStore = 1, Defs = [CC] in
    569   defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
    570 
    571 //===----------------------------------------------------------------------===//
    572 // Sign extensions
    573 //===----------------------------------------------------------------------===//
    574 //
    575 // Note that putting these before zero extensions mean that we will prefer
    576 // them for anyextload*.  There's not really much to choose between the two
    577 // either way, but signed-extending loads have a short LH and a long LHY,
    578 // while zero-extending loads have only the long LLH.
    579 //
    580 //===----------------------------------------------------------------------===//
    581 
    582 // 32-bit extensions from registers.
    583 let hasSideEffects = 0 in {
    584   def LBR : UnaryRRE<"lb", 0xB926, sext8,  GR32, GR32>;
    585   def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
    586 }
    587 
    588 // 64-bit extensions from registers.
    589 let hasSideEffects = 0 in {
    590   def LGBR : UnaryRRE<"lgb", 0xB906, sext8,  GR64, GR64>;
    591   def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
    592   def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
    593 }
    594 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
    595   def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR32>;
    596 
    597 // Match 32-to-64-bit sign extensions in which the source is already
    598 // in a 64-bit register.
    599 def : Pat<(sext_inreg GR64:$src, i32),
    600           (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
    601 
    602 // 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
    603 // depending on the choice of register.
    604 def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
    605             Requires<[FeatureHighWord]>;
    606 def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
    607 def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
    608           Requires<[FeatureHighWord]>;
    609 
    610 // 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
    611 // depending on the choice of register.
    612 def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
    613             Requires<[FeatureHighWord]>;
    614 defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
    615 def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
    616             Requires<[FeatureHighWord]>;
    617 def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
    618 
    619 // 64-bit extensions from memory.
    620 def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
    621 def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
    622 def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
    623 def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
    624 def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
    625 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
    626   def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
    627 
    628 //===----------------------------------------------------------------------===//
    629 // Zero extensions
    630 //===----------------------------------------------------------------------===//
    631 
    632 // 32-bit extensions from registers.
    633 let hasSideEffects = 0 in {
    634   // Expands to LLCR or RISB[LH]G, depending on the choice of registers.
    635   def LLCRMux : UnaryRRPseudo<"llc", zext8, GRX32, GRX32>,
    636                 Requires<[FeatureHighWord]>;
    637   def LLCR    : UnaryRRE<"llc", 0xB994, zext8,  GR32, GR32>;
    638   // Expands to LLHR or RISB[LH]G, depending on the choice of registers.
    639   def LLHRMux : UnaryRRPseudo<"llh", zext16, GRX32, GRX32>,
    640                 Requires<[FeatureHighWord]>;
    641   def LLHR    : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>;
    642 }
    643 
    644 // 64-bit extensions from registers.
    645 let hasSideEffects = 0 in {
    646   def LLGCR : UnaryRRE<"llgc", 0xB984, zext8,  GR64, GR64>;
    647   def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
    648   def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
    649 }
    650 
    651 // Match 32-to-64-bit zero extensions in which the source is already
    652 // in a 64-bit register.
    653 def : Pat<(and GR64:$src, 0xffffffff),
    654           (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
    655 
    656 // 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
    657 // depending on the choice of register.
    658 def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
    659              Requires<[FeatureHighWord]>;
    660 def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
    661 def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
    662            Requires<[FeatureHighWord]>;
    663 
    664 // 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
    665 // depending on the choice of register.
    666 def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
    667              Requires<[FeatureHighWord]>;
    668 def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
    669 def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
    670             Requires<[FeatureHighWord]>;
    671 def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
    672 
    673 // 64-bit extensions from memory.
    674 def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
    675 def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
    676 def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
    677 def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
    678 def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
    679 
    680 //===----------------------------------------------------------------------===//
    681 // Truncations
    682 //===----------------------------------------------------------------------===//
    683 
    684 // Truncations of 64-bit registers to 32-bit registers.
    685 def : Pat<(i32 (trunc GR64:$src)),
    686           (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
    687 
    688 // Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
    689 // STC, STCY or STCH, depending on the choice of register.
    690 def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
    691              Requires<[FeatureHighWord]>;
    692 defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
    693 def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
    694            Requires<[FeatureHighWord]>;
    695 
    696 // Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
    697 // STH, STHY or STHH, depending on the choice of register.
    698 def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
    699              Requires<[FeatureHighWord]>;
    700 defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
    701 def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
    702            Requires<[FeatureHighWord]>;
    703 def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
    704 
    705 // Truncations of 64-bit registers to memory.
    706 defm : StoreGR64Pair<STC, STCY, truncstorei8>;
    707 defm : StoreGR64Pair<STH, STHY, truncstorei16>;
    708 def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
    709 defm : StoreGR64Pair<ST, STY, truncstorei32>;
    710 def  : StoreGR64PC<STRL, aligned_truncstorei32>;
    711 
    712 //===----------------------------------------------------------------------===//
    713 // Multi-register moves
    714 //===----------------------------------------------------------------------===//
    715 
    716 // Multi-register loads.
    717 defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
    718 def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
    719 def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
    720 
    721 // Multi-register stores.
    722 defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
    723 def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
    724 def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;
    725 
    726 //===----------------------------------------------------------------------===//
    727 // Byte swaps
    728 //===----------------------------------------------------------------------===//
    729 
    730 // Byte-swapping register moves.
    731 let hasSideEffects = 0 in {
    732   def LRVR  : UnaryRRE<"lrv",  0xB91F, bswap, GR32, GR32>;
    733   def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
    734 }
    735 
    736 // Byte-swapping loads.  Unlike normal loads, these instructions are
    737 // allowed to access storage more than once.
    738 def LRVH : UnaryRXY<"lrvh", 0xE31F, z_lrvh, GR32, 2>;
    739 def LRV  : UnaryRXY<"lrv",  0xE31E, z_lrv,  GR32, 4>;
    740 def LRVG : UnaryRXY<"lrvg", 0xE30F, z_lrvg, GR64, 8>;
    741 
    742 // Likewise byte-swapping stores.
    743 def STRVH : StoreRXY<"strvh", 0xE33F, z_strvh, GR32, 2>;
    744 def STRV  : StoreRXY<"strv",  0xE33E, z_strv,  GR32, 4>;
    745 def STRVG : StoreRXY<"strvg", 0xE32F, z_strvg, GR64, 8>;
    746 
    747 //===----------------------------------------------------------------------===//
    748 // Load address instructions
    749 //===----------------------------------------------------------------------===//
    750 
    751 // Load BDX-style addresses.
    752 let hasSideEffects = 0, isAsCheapAsAMove = 1, isReMaterializable = 1,
    753     DispKey = "la" in {
    754   let DispSize = "12" in
    755     def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
    756                     "la\t$R1, $XBD2",
    757                     [(set GR64:$R1, laaddr12pair:$XBD2)]>;
    758   let DispSize = "20" in
    759     def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
    760                       "lay\t$R1, $XBD2",
    761                       [(set GR64:$R1, laaddr20pair:$XBD2)]>;
    762 }
    763 
    764 // Load a PC-relative address.  There's no version of this instruction
    765 // with a 16-bit offset, so there's no relaxation.
    766 let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
    767     isReMaterializable = 1 in {
    768   def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
    769                      "larl\t$R1, $I2",
    770                      [(set GR64:$R1, pcrel32:$I2)]>;
    771 }
    772 
    773 // Load the Global Offset Table address.  This will be lowered into a
    774 //     larl $R1, _GLOBAL_OFFSET_TABLE_
    775 // instruction.
    776 def GOT : Alias<6, (outs GR64:$R1), (ins),
    777                 [(set GR64:$R1, (global_offset_table))]>;
    778 
    779 //===----------------------------------------------------------------------===//
    780 // Absolute and Negation
    781 //===----------------------------------------------------------------------===//
    782 
    783 let Defs = [CC] in {
    784   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    785     def LPR  : UnaryRR <"lp",  0x10,   z_iabs, GR32, GR32>;
    786     def LPGR : UnaryRRE<"lpg", 0xB900, z_iabs, GR64, GR64>;
    787   }
    788   let CCValues = 0xE, CompareZeroCCMask = 0xE in
    789     def LPGFR : UnaryRRE<"lpgf", 0xB910, null_frag, GR64, GR32>;
    790 }
    791 def : Pat<(z_iabs32 GR32:$src), (LPR  GR32:$src)>;
    792 def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>;
    793 defm : SXU<z_iabs,   LPGFR>;
    794 defm : SXU<z_iabs64, LPGFR>;
    795 
    796 let Defs = [CC] in {
    797   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    798     def LNR  : UnaryRR <"ln",  0x11,   z_inegabs, GR32, GR32>;
    799     def LNGR : UnaryRRE<"lng", 0xB901, z_inegabs, GR64, GR64>;
    800   }
    801   let CCValues = 0xE, CompareZeroCCMask = 0xE in
    802     def LNGFR : UnaryRRE<"lngf", 0xB911, null_frag, GR64, GR32>;
    803 }
    804 def : Pat<(z_inegabs32 GR32:$src), (LNR  GR32:$src)>;
    805 def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>;
    806 defm : SXU<z_inegabs,   LNGFR>;
    807 defm : SXU<z_inegabs64, LNGFR>;
    808 
    809 let Defs = [CC] in {
    810   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    811     def LCR  : UnaryRR <"lc",  0x13,   ineg, GR32, GR32>;
    812     def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>;
    813   }
    814   let CCValues = 0xE, CompareZeroCCMask = 0xE in
    815     def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>;
    816 }
    817 defm : SXU<ineg, LCGFR>;
    818 
    819 //===----------------------------------------------------------------------===//
    820 // Insertion
    821 //===----------------------------------------------------------------------===//
    822 
    823 let isCodeGenOnly = 1 in
    824   defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
    825 defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
    826 
    827 defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
    828 defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
    829 
    830 defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
    831 defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
    832 
    833 let Defs = [CC] in {
    834   defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
    835   def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
    836 }
    837 
    838 // Insertions of a 16-bit immediate, leaving other bits unaffected.
    839 // We don't have or_as_insert equivalents of these operations because
    840 // OI is available instead.
    841 //
    842 // IIxMux expands to II[LH]x, depending on the choice of register.
    843 def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
    844              Requires<[FeatureHighWord]>;
    845 def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
    846              Requires<[FeatureHighWord]>;
    847 def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
    848 def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
    849 def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
    850 def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
    851 def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
    852 def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
    853 def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
    854 def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
    855 
    856 // ...likewise for 32-bit immediates.  For GR32s this is a general
    857 // full-width move.  (We use IILF rather than something like LLILF
    858 // for 32-bit moves because IILF leaves the upper 32 bits of the
    859 // GR64 unchanged.)
    860 let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
    861   def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
    862                Requires<[FeatureHighWord]>;
    863   def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
    864   def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
    865 }
    866 def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
    867 def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
    868 
    869 // An alternative model of inserthf, with the first operand being
    870 // a zero-extended value.
    871 def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
    872           (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
    873                   imm64hf32:$imm)>;
    874 
    875 //===----------------------------------------------------------------------===//
    876 // Addition
    877 //===----------------------------------------------------------------------===//
    878 
    879 // Plain addition.
    880 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    881   // Addition of a register.
    882   let isCommutable = 1 in {
    883     defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>;
    884     defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>;
    885   }
    886   def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>;
    887 
    888   // Addition of signed 16-bit immediates.
    889   defm AHIMux : BinaryRIAndKPseudo<"ahimux", add, GRX32, imm32sx16>;
    890   defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, add, GR32, imm32sx16>;
    891   defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>;
    892 
    893   // Addition of signed 32-bit immediates.
    894   def AFIMux : BinaryRIPseudo<add, GRX32, simm32>,
    895                Requires<[FeatureHighWord]>;
    896   def AFI  : BinaryRIL<"afi",  0xC29, add, GR32, simm32>;
    897   def AIH  : BinaryRIL<"aih",  0xCC8, add, GRH32, simm32>,
    898              Requires<[FeatureHighWord]>;
    899   def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
    900 
    901   // Addition of memory.
    902   defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, asextloadi16, 2>;
    903   defm A   : BinaryRXPair<"a",  0x5A, 0xE35A, add, GR32, load, 4>;
    904   def  AGF : BinaryRXY<"agf", 0xE318, add, GR64, asextloadi32, 4>;
    905   def  AG  : BinaryRXY<"ag",  0xE308, add, GR64, load, 8>;
    906 
    907   // Addition to memory.
    908   def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
    909   def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
    910 }
    911 defm : SXB<add, GR64, AGFR>;
    912 
    913 // Addition producing a carry.
    914 let Defs = [CC] in {
    915   // Addition of a register.
    916   let isCommutable = 1 in {
    917     defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>;
    918     defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>;
    919   }
    920   def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>;
    921 
    922   // Addition of signed 16-bit immediates.
    923   def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, addc, GR32, imm32sx16>,
    924                 Requires<[FeatureDistinctOps]>;
    925   def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>,
    926                 Requires<[FeatureDistinctOps]>;
    927 
    928   // Addition of unsigned 32-bit immediates.
    929   def ALFI  : BinaryRIL<"alfi",  0xC2B, addc, GR32, uimm32>;
    930   def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
    931 
    932   // Addition of memory.
    933   defm AL   : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
    934   def  ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, azextloadi32, 4>;
    935   def  ALG  : BinaryRXY<"alg",  0xE30A, addc, GR64, load, 8>;
    936 }
    937 defm : ZXB<addc, GR64, ALGFR>;
    938 
    939 // Addition producing and using a carry.
    940 let Defs = [CC], Uses = [CC] in {
    941   // Addition of a register.
    942   def ALCR  : BinaryRRE<"alc",  0xB998, adde, GR32, GR32>;
    943   def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>;
    944 
    945   // Addition of memory.
    946   def ALC  : BinaryRXY<"alc",  0xE398, adde, GR32, load, 4>;
    947   def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
    948 }
    949 
    950 //===----------------------------------------------------------------------===//
    951 // Subtraction
    952 //===----------------------------------------------------------------------===//
    953 
    954 // Plain subtraction.  Although immediate forms exist, we use the
    955 // add-immediate instruction instead.
    956 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
    957   // Subtraction of a register.
    958   defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>;
    959   def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>;
    960   defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>;
    961 
    962   // Subtraction of memory.
    963   defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, asextloadi16, 2>;
    964   defm S   : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
    965   def  SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, asextloadi32, 4>;
    966   def  SG  : BinaryRXY<"sg",  0xE309, sub, GR64, load, 8>;
    967 }
    968 defm : SXB<sub, GR64, SGFR>;
    969 
    970 // Subtraction producing a carry.
    971 let Defs = [CC] in {
    972   // Subtraction of a register.
    973   defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>;
    974   def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>;
    975   defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>;
    976 
    977   // Subtraction of unsigned 32-bit immediates.  These don't match
    978   // subc because we prefer addc for constants.
    979   def SLFI  : BinaryRIL<"slfi",  0xC25, null_frag, GR32, uimm32>;
    980   def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
    981 
    982   // Subtraction of memory.
    983   defm SL   : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
    984   def  SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, azextloadi32, 4>;
    985   def  SLG  : BinaryRXY<"slg",  0xE30B, subc, GR64, load, 8>;
    986 }
    987 defm : ZXB<subc, GR64, SLGFR>;
    988 
    989 // Subtraction producing and using a carry.
    990 let Defs = [CC], Uses = [CC] in {
    991   // Subtraction of a register.
    992   def SLBR  : BinaryRRE<"slb",  0xB999, sube, GR32, GR32>;
    993   def SLBGR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>;
    994 
    995   // Subtraction of memory.
    996   def SLB  : BinaryRXY<"slb",  0xE399, sube, GR32, load, 4>;
    997   def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
    998 }
    999 
   1000 //===----------------------------------------------------------------------===//
   1001 // AND
   1002 //===----------------------------------------------------------------------===//
   1003 
   1004 let Defs = [CC] in {
   1005   // ANDs of a register.
   1006   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
   1007     defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>;
   1008     defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>;
   1009   }
   1010 
   1011   let isConvertibleToThreeAddress = 1 in {
   1012     // ANDs of a 16-bit immediate, leaving other bits unaffected.
   1013     // The CC result only reflects the 16-bit field, not the full register.
   1014     //
   1015     // NIxMux expands to NI[LH]x, depending on the choice of register.
   1016     def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
   1017                  Requires<[FeatureHighWord]>;
   1018     def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
   1019                  Requires<[FeatureHighWord]>;
   1020     def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
   1021     def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
   1022     def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
   1023     def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
   1024     def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
   1025     def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
   1026     def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
   1027     def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
   1028 
   1029     // ANDs of a 32-bit immediate, leaving other bits unaffected.
   1030     // The CC result only reflects the 32-bit field, which means we can
   1031     // use it as a zero indicator for i32 operations but not otherwise.
   1032     let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
   1033       // Expands to NILF or NIHF, depending on the choice of register.
   1034       def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
   1035                    Requires<[FeatureHighWord]>;
   1036       def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
   1037       def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
   1038     }
   1039     def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
   1040     def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
   1041   }
   1042 
   1043   // ANDs of memory.
   1044   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
   1045     defm N  : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
   1046     def  NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>;
   1047   }
   1048 
   1049   // AND to memory
   1050   defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
   1051 
   1052   // Block AND.
   1053   let mayLoad = 1, mayStore = 1 in
   1054     defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
   1055 }
   1056 defm : RMWIByte<and, bdaddr12pair, NI>;
   1057 defm : RMWIByte<and, bdaddr20pair, NIY>;
   1058 
   1059 //===----------------------------------------------------------------------===//
   1060 // OR
   1061 //===----------------------------------------------------------------------===//
   1062 
   1063 let Defs = [CC] in {
   1064   // ORs of a register.
   1065   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
   1066     defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>;
   1067     defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>;
   1068   }
   1069 
   1070   // ORs of a 16-bit immediate, leaving other bits unaffected.
   1071   // The CC result only reflects the 16-bit field, not the full register.
   1072   //
   1073   // OIxMux expands to OI[LH]x, depending on the choice of register.
   1074   def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
   1075                Requires<[FeatureHighWord]>;
   1076   def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
   1077                Requires<[FeatureHighWord]>;
   1078   def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
   1079   def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
   1080   def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
   1081   def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
   1082   def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
   1083   def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
   1084   def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
   1085   def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
   1086 
   1087   // ORs of a 32-bit immediate, leaving other bits unaffected.
   1088   // The CC result only reflects the 32-bit field, which means we can
   1089   // use it as a zero indicator for i32 operations but not otherwise.
   1090   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
   1091     // Expands to OILF or OIHF, depending on the choice of register.
   1092     def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
   1093                  Requires<[FeatureHighWord]>;
   1094     def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
   1095     def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
   1096   }
   1097   def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
   1098   def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
   1099 
   1100   // ORs of memory.
   1101   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
   1102     defm O  : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
   1103     def  OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
   1104   }
   1105 
   1106   // OR to memory
   1107   defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
   1108 
   1109   // Block OR.
   1110   let mayLoad = 1, mayStore = 1 in
   1111     defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
   1112 }
   1113 defm : RMWIByte<or, bdaddr12pair, OI>;
   1114 defm : RMWIByte<or, bdaddr20pair, OIY>;
   1115 
   1116 //===----------------------------------------------------------------------===//
   1117 // XOR
   1118 //===----------------------------------------------------------------------===//
   1119 
   1120 let Defs = [CC] in {
   1121   // XORs of a register.
   1122   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
   1123     defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>;
   1124     defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>;
   1125   }
   1126 
   1127   // XORs of a 32-bit immediate, leaving other bits unaffected.
   1128   // The CC result only reflects the 32-bit field, which means we can
   1129   // use it as a zero indicator for i32 operations but not otherwise.
   1130   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
   1131     // Expands to XILF or XIHF, depending on the choice of register.
   1132     def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
   1133                  Requires<[FeatureHighWord]>;
   1134     def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
   1135     def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
   1136   }
   1137   def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
   1138   def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
   1139 
   1140   // XORs of memory.
   1141   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
   1142     defm X  : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
   1143     def  XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
   1144   }
   1145 
   1146   // XOR to memory
   1147   defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
   1148 
   1149   // Block XOR.
   1150   let mayLoad = 1, mayStore = 1 in
   1151     defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
   1152 }
   1153 defm : RMWIByte<xor, bdaddr12pair, XI>;
   1154 defm : RMWIByte<xor, bdaddr20pair, XIY>;
   1155 
   1156 //===----------------------------------------------------------------------===//
   1157 // Multiplication
   1158 //===----------------------------------------------------------------------===//
   1159 
   1160 // Multiplication of a register.
   1161 let isCommutable = 1 in {
   1162   def MSR  : BinaryRRE<"ms",  0xB252, mul, GR32, GR32>;
   1163   def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>;
   1164 }
   1165 def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>;
   1166 defm : SXB<mul, GR64, MSGFR>;
   1167 
   1168 // Multiplication of a signed 16-bit immediate.
   1169 def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
   1170 def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
   1171 
   1172 // Multiplication of a signed 32-bit immediate.
   1173 def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
   1174 def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
   1175 
   1176 // Multiplication of memory.
   1177 defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
   1178 defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
   1179 def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
   1180 def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
   1181 
   1182 // Multiplication of a register, producing two results.
   1183 def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>;
   1184 
   1185 // Multiplication of memory, producing two results.
   1186 def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>;
   1187 
   1188 //===----------------------------------------------------------------------===//
   1189 // Division and remainder
   1190 //===----------------------------------------------------------------------===//
   1191 
   1192 // Division and remainder, from registers.
   1193 def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>;
   1194 def DSGR  : BinaryRRE<"dsg",  0xB90D, z_sdivrem64, GR128, GR64>;
   1195 def DLR   : BinaryRRE<"dl",   0xB997, z_udivrem32, GR128, GR32>;
   1196 def DLGR  : BinaryRRE<"dlg",  0xB987, z_udivrem64, GR128, GR64>;
   1197 
   1198 // Division and remainder, from memory.
   1199 def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>;
   1200 def DSG  : BinaryRXY<"dsg",  0xE30D, z_sdivrem64, GR128, load, 8>;
   1201 def DL   : BinaryRXY<"dl",   0xE397, z_udivrem32, GR128, load, 4>;
   1202 def DLG  : BinaryRXY<"dlg",  0xE387, z_udivrem64, GR128, load, 8>;
   1203 
   1204 //===----------------------------------------------------------------------===//
   1205 // Shifts
   1206 //===----------------------------------------------------------------------===//
   1207 
   1208 // Shift left.
   1209 let hasSideEffects = 0 in {
   1210   defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
   1211   defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
   1212   def SLLG : BinaryRSY<"sllg", 0xEB0D, shl, GR64>;
   1213 }
   1214 
   1215 // Logical shift right.
   1216 let hasSideEffects = 0 in {
   1217   defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
   1218   def SRLG : BinaryRSY<"srlg", 0xEB0C, srl, GR64>;
   1219 }
   1220 
   1221 // Arithmetic shift right.
   1222 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
   1223   defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>;
   1224   def SRAG : BinaryRSY<"srag", 0xEB0A, sra, GR64>;
   1225 }
   1226 
   1227 // Rotate left.
   1228 let hasSideEffects = 0 in {
   1229   def RLL  : BinaryRSY<"rll",  0xEB1D, rotl, GR32>;
   1230   def RLLG : BinaryRSY<"rllg", 0xEB1C, rotl, GR64>;
   1231 }
   1232 
   1233 // Rotate second operand left and inserted selected bits into first operand.
   1234 // These can act like 32-bit operands provided that the constant start and
   1235 // end bits (operands 2 and 3) are in the range [32, 64).
   1236 let Defs = [CC] in {
   1237   let isCodeGenOnly = 1 in
   1238     def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
   1239   let CCValues = 0xE, CompareZeroCCMask = 0xE in
   1240     def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
   1241 }
   1242 
   1243 // On zEC12 we have a variant of RISBG that does not set CC.
   1244 let Predicates = [FeatureMiscellaneousExtensions] in
   1245   def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
   1246 
   1247 // Forms of RISBG that only affect one word of the destination register.
   1248 // They do not set CC.
   1249 let Predicates = [FeatureHighWord] in {
   1250   def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
   1251   def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
   1252   def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
   1253   def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
   1254   def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
   1255   def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
   1256   def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
   1257 }
   1258 
   1259 // Rotate second operand left and perform a logical operation with selected
   1260 // bits of the first operand.  The CC result only describes the selected bits,
   1261 // so isn't useful for a full comparison against zero.
   1262 let Defs = [CC] in {
   1263   def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
   1264   def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
   1265   def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
   1266 }
   1267 
   1268 //===----------------------------------------------------------------------===//
   1269 // Comparison
   1270 //===----------------------------------------------------------------------===//
   1271 
   1272 // Signed comparisons.  We put these before the unsigned comparisons because
   1273 // some of the signed forms have COMPARE AND BRANCH equivalents whereas none
   1274 // of the unsigned forms do.
   1275 let Defs = [CC], CCValues = 0xE in {
   1276   // Comparison with a register.
   1277   def CR   : CompareRR <"c",   0x19,   z_scmp,    GR32, GR32>;
   1278   def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>;
   1279   def CGR  : CompareRRE<"cg",  0xB920, z_scmp,    GR64, GR64>;
   1280 
   1281   // Comparison with a signed 16-bit immediate.
   1282   def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
   1283   def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
   1284 
   1285   // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
   1286   // depending on the choice of register.
   1287   def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
   1288                Requires<[FeatureHighWord]>;
   1289   def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
   1290   def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
   1291              Requires<[FeatureHighWord]>;
   1292   def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
   1293 
   1294   // Comparison with memory.
   1295   defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
   1296   def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
   1297                Requires<[FeatureHighWord]>;
   1298   defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
   1299   def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
   1300                Requires<[FeatureHighWord]>;
   1301   def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
   1302   def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
   1303   def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
   1304   def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
   1305   def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
   1306   def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
   1307   def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
   1308   def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;
   1309 
   1310   // Comparison between memory and a signed 16-bit immediate.
   1311   def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
   1312   def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
   1313   def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
   1314 }
   1315 defm : SXB<z_scmp, GR64, CGFR>;
   1316 
   1317 // Unsigned comparisons.
   1318 let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
   1319   // Comparison with a register.
   1320   def CLR   : CompareRR <"cl",   0x15,   z_ucmp,    GR32, GR32>;
   1321   def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>;
   1322   def CLGR  : CompareRRE<"clg",  0xB921, z_ucmp,    GR64, GR64>;
   1323 
   1324   // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
   1325   // or CLIH, depending on the choice of register.
   1326   def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
   1327                 Requires<[FeatureHighWord]>;
   1328   def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
   1329   def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
   1330               Requires<[FeatureHighWord]>;
   1331   def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
   1332 
   1333   // Comparison with memory.
   1334   def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
   1335                 Requires<[FeatureHighWord]>;
   1336   defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
   1337   def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
   1338                 Requires<[FeatureHighWord]>;
   1339   def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
   1340   def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
   1341   def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
   1342                              aligned_azextloadi16>;
   1343   def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
   1344                              aligned_load>;
   1345   def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
   1346                              aligned_azextloadi16>;
   1347   def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
   1348                              aligned_azextloadi32>;
   1349   def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
   1350                              aligned_load>;
   1351 
   1352   // Comparison between memory and an unsigned 8-bit immediate.
   1353   defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
   1354 
   1355   // Comparison between memory and an unsigned 16-bit immediate.
   1356   def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
   1357   def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
   1358   def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
   1359 }
   1360 defm : ZXB<z_ucmp, GR64, CLGFR>;
   1361 
   1362 // Memory-to-memory comparison.
   1363 let mayLoad = 1, Defs = [CC] in
   1364   defm CLC : MemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
   1365 
   1366 // String comparison.
   1367 let mayLoad = 1, Defs = [CC] in
   1368   defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
   1369 
   1370 // Test under mask.
   1371 let Defs = [CC] in {
   1372   // TMxMux expands to TM[LH]x, depending on the choice of register.
   1373   def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
   1374                Requires<[FeatureHighWord]>;
   1375   def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
   1376                Requires<[FeatureHighWord]>;
   1377   def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
   1378   def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
   1379   def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
   1380   def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
   1381 
   1382   def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
   1383   def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
   1384   def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
   1385   def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
   1386 
   1387   defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
   1388 }
   1389 
   1390 def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
   1391 def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;
   1392 
   1393 //===----------------------------------------------------------------------===//
   1394 // Prefetch
   1395 //===----------------------------------------------------------------------===//
   1396 
   1397 def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
   1398 def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
   1399 
   1400 //===----------------------------------------------------------------------===//
   1401 // Atomic operations
   1402 //===----------------------------------------------------------------------===//
   1403 
   1404 // A serialization instruction that acts as a barrier for all memory
   1405 // accesses, which expands to "bcr 14, 0".
   1406 let hasSideEffects = 1 in
   1407 def Serialize : Alias<2, (outs), (ins), [(z_serialize)]>;
   1408 
   1409 // A pseudo instruction that serves as a compiler barrier.
   1410 let hasSideEffects = 1 in
   1411 def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>;
   1412 
   1413 let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
   1414   def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
   1415   def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
   1416   def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
   1417   def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
   1418   def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
   1419   def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
   1420   def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
   1421   def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
   1422   def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
   1423   def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
   1424 }
   1425 
   1426 def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
   1427 def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
   1428 def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
   1429 
   1430 def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
   1431 def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
   1432 let Predicates = [FeatureNoInterlockedAccess1] in {
   1433   def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>;
   1434   def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
   1435   def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
   1436   def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>;
   1437   def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
   1438   def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
   1439 }
   1440 
   1441 def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
   1442 def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>;
   1443 def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
   1444 
   1445 def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
   1446 def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
   1447 let Predicates = [FeatureNoInterlockedAccess1] in {
   1448   def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>;
   1449   def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32,
   1450                                                  imm32ll16c>;
   1451   def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32,
   1452                                                  imm32lh16c>;
   1453   def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
   1454   def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>;
   1455   def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1456                                                  imm64ll16c>;
   1457   def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1458                                                  imm64lh16c>;
   1459   def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1460                                                  imm64hl16c>;
   1461   def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1462                                                  imm64hh16c>;
   1463   def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1464                                                  imm64lf32c>;
   1465   def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
   1466                                                  imm64hf32c>;
   1467 }
   1468 
   1469 def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
   1470 def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
   1471 let Predicates = [FeatureNoInterlockedAccess1] in {
   1472   def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>;
   1473   def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
   1474   def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
   1475   def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
   1476   def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>;
   1477   def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
   1478   def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
   1479   def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
   1480   def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
   1481   def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
   1482   def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
   1483 }
   1484 
   1485 def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
   1486 def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
   1487 let Predicates = [FeatureNoInterlockedAccess1] in {
   1488   def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>;
   1489   def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
   1490   def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>;
   1491   def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
   1492   def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
   1493 }
   1494 
   1495 def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
   1496 def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
   1497                                                imm32lh16c>;
   1498 def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
   1499 def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
   1500                                                 imm32ll16c>;
   1501 def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
   1502                                                 imm32lh16c>;
   1503 def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
   1504 def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
   1505 def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1506                                                 imm64ll16c>;
   1507 def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1508                                                 imm64lh16c>;
   1509 def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1510                                                 imm64hl16c>;
   1511 def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1512                                                 imm64hh16c>;
   1513 def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1514                                                 imm64lf32c>;
   1515 def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
   1516                                                 imm64hf32c>;
   1517 
   1518 def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
   1519 def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
   1520 def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
   1521 
   1522 def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
   1523 def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
   1524 def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
   1525 
   1526 def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
   1527 def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
   1528 def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
   1529 
   1530 def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
   1531 def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
   1532 def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
   1533 
   1534 def ATOMIC_CMP_SWAPW
   1535   : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
   1536                                   ADDR32:$bitshift, ADDR32:$negbitshift,
   1537                                   uimm32:$bitsize),
   1538            [(set GR32:$dst,
   1539                  (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
   1540                                      ADDR32:$bitshift, ADDR32:$negbitshift,
   1541                                      uimm32:$bitsize))]> {
   1542   let Defs = [CC];
   1543   let mayLoad = 1;
   1544   let mayStore = 1;
   1545   let usesCustomInserter = 1;
   1546 }
   1547 
   1548 let Defs = [CC] in {
   1549   defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
   1550   def  CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
   1551 }
   1552 
   1553 //===----------------------------------------------------------------------===//
   1554 // Transactional execution
   1555 //===----------------------------------------------------------------------===//
   1556 
   1557 let Predicates = [FeatureTransactionalExecution] in {
   1558   // Transaction Begin
   1559   let hasSideEffects = 1, mayStore = 1,
   1560       usesCustomInserter = 1, Defs = [CC] in {
   1561     def TBEGIN : InstSIL<0xE560,
   1562                          (outs), (ins bdaddr12only:$BD1, imm32zx16:$I2),
   1563                          "tbegin\t$BD1, $I2",
   1564                          [(z_tbegin bdaddr12only:$BD1, imm32zx16:$I2)]>;
   1565     def TBEGIN_nofloat : Pseudo<(outs), (ins bdaddr12only:$BD1, imm32zx16:$I2),
   1566                                 [(z_tbegin_nofloat bdaddr12only:$BD1,
   1567                                                    imm32zx16:$I2)]>;
   1568     def TBEGINC : InstSIL<0xE561,
   1569                           (outs), (ins bdaddr12only:$BD1, imm32zx16:$I2),
   1570                           "tbeginc\t$BD1, $I2",
   1571                           [(int_s390_tbeginc bdaddr12only:$BD1,
   1572                                              imm32zx16:$I2)]>;
   1573   }
   1574 
   1575   // Transaction End
   1576   let hasSideEffects = 1, Defs = [CC], BD2 = 0 in
   1577     def TEND : InstS<0xB2F8, (outs), (ins), "tend", [(z_tend)]>;
   1578 
   1579   // Transaction Abort
   1580   let hasSideEffects = 1, isTerminator = 1, isBarrier = 1 in
   1581     def TABORT : InstS<0xB2FC, (outs), (ins bdaddr12only:$BD2),
   1582                        "tabort\t$BD2",
   1583                        [(int_s390_tabort bdaddr12only:$BD2)]>;
   1584 
   1585   // Nontransactional Store
   1586   let hasSideEffects = 1 in
   1587     def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
   1588 
   1589   // Extract Transaction Nesting Depth
   1590   let hasSideEffects = 1 in
   1591     def ETND : InherentRRE<"etnd", 0xB2EC, GR32, (int_s390_etnd)>;
   1592 }
   1593 
   1594 //===----------------------------------------------------------------------===//
   1595 // Processor assist
   1596 //===----------------------------------------------------------------------===//
   1597 
   1598 let Predicates = [FeatureProcessorAssist] in {
   1599   let hasSideEffects = 1, R4 = 0 in
   1600     def PPA : InstRRF<0xB2E8, (outs), (ins GR64:$R1, GR64:$R2, imm32zx4:$R3),
   1601                       "ppa\t$R1, $R2, $R3", []>;
   1602   def : Pat<(int_s390_ppa_txassist GR32:$src),
   1603             (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
   1604                  0, 1)>;
   1605 }
   1606 
   1607 //===----------------------------------------------------------------------===//
   1608 // Miscellaneous Instructions.
   1609 //===----------------------------------------------------------------------===//
   1610 
   1611 // Extract CC into bits 29 and 28 of a register.
   1612 let Uses = [CC] in
   1613   def IPM : InherentRRE<"ipm", 0xB222, GR32, (z_ipm)>;
   1614 
   1615 // Read a 32-bit access register into a GR32.  As with all GR32 operations,
   1616 // the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
   1617 // when a 64-bit address is stored in a pair of access registers.
   1618 def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
   1619                   "ear\t$R1, $R2",
   1620                   [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
   1621 
   1622 // Find leftmost one, AKA count leading zeros.  The instruction actually
   1623 // returns a pair of GR64s, the first giving the number of leading zeros
   1624 // and the second giving a copy of the source with the leftmost one bit
   1625 // cleared.  We only use the first result here.
   1626 let Defs = [CC] in {
   1627   def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>;
   1628 }
   1629 def : Pat<(ctlz GR64:$src),
   1630           (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
   1631 
   1632 // Population count.  Counts bits set per byte.
   1633 let Predicates = [FeaturePopulationCount], Defs = [CC] in {
   1634   def POPCNT : InstRRE<0xB9E1, (outs GR64:$R1), (ins GR64:$R2),
   1635                        "popcnt\t$R1, $R2",
   1636                        [(set GR64:$R1, (z_popcnt GR64:$R2))]>;
   1637 }
   1638 
   1639 // Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
   1640 def : Pat<(i64 (anyext GR32:$src)),
   1641           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
   1642 
   1643 // Extend GR32s and GR64s to GR128s.
   1644 let usesCustomInserter = 1 in {
   1645   def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
   1646   def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
   1647   def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
   1648 }
   1649 
   1650 // Search a block of memory for a character.
   1651 let mayLoad = 1, Defs = [CC] in
   1652   defm SRST : StringRRE<"srst", 0xb25e, z_search_string>;
   1653 
   1654 // Other instructions for inline assembly
   1655 let hasSideEffects = 1, Defs = [CC], isCall = 1 in
   1656   def SVC : InstI<0x0A, (outs), (ins imm32zx8:$I1),
   1657                   "svc\t$I1",
   1658                   []>;
   1659 let hasSideEffects = 1, Defs = [CC], mayStore = 1 in
   1660   def STCK : InstS<0xB205, (outs), (ins bdaddr12only:$BD2),
   1661                        "stck\t$BD2",
   1662                        []>;
   1663 let hasSideEffects = 1, Defs = [CC], mayStore = 1 in
   1664   def STCKF : InstS<0xB27C, (outs), (ins bdaddr12only:$BD2),
   1665                        "stckf\t$BD2",
   1666                        []>;
   1667 let hasSideEffects = 1, Defs = [CC], mayStore = 1 in
   1668   def STCKE : InstS<0xB278, (outs), (ins bdaddr12only:$BD2),
   1669                        "stcke\t$BD2",
   1670                        []>;
   1671 let hasSideEffects = 1, Defs = [CC], mayStore = 1 in
   1672   def STFLE : InstS<0xB2B0, (outs), (ins bdaddr12only:$BD2),
   1673                        "stfle\t$BD2",
   1674                        []>;
   1675 
   1676 let hasSideEffects = 1 in {
   1677   def EX   : InstRX<0x44, (outs), (ins GR64:$R1, bdxaddr12only:$XBD2),
   1678                   "ex\t$R1, $XBD2", []>;
   1679   def EXRL : InstRIL<0xC60, (outs), (ins GR64:$R1, pcrel32:$I2),
   1680                      "exrl\t$R1, $I2", []>;
   1681 }
   1682 
   1683 
   1684 //===----------------------------------------------------------------------===//
   1685 // Peepholes.
   1686 //===----------------------------------------------------------------------===//
   1687 
   1688 // Use AL* for GR64 additions of unsigned 32-bit values.
   1689 defm : ZXB<add, GR64, ALGFR>;
   1690 def  : Pat<(add GR64:$src1, imm64zx32:$src2),
   1691            (ALGFI GR64:$src1, imm64zx32:$src2)>;
   1692 def  : Pat<(add GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
   1693            (ALGF GR64:$src1, bdxaddr20only:$addr)>;
   1694 
   1695 // Use SL* for GR64 subtractions of unsigned 32-bit values.
   1696 defm : ZXB<sub, GR64, SLGFR>;
   1697 def  : Pat<(add GR64:$src1, imm64zx32n:$src2),
   1698            (SLGFI GR64:$src1, imm64zx32n:$src2)>;
   1699 def  : Pat<(sub GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
   1700            (SLGF GR64:$src1, bdxaddr20only:$addr)>;
   1701 
   1702 // Optimize sign-extended 1/0 selects to -1/0 selects.  This is important
   1703 // for vector legalization.
   1704 def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, imm32zx4:$valid, imm32zx4:$cc)),
   1705                          (i32 31)),
   1706                     (i32 31)),
   1707           (Select32 (LHI -1), (LHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
   1708 def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, imm32zx4:$valid,
   1709                                                        imm32zx4:$cc)))),
   1710                     (i32 63)),
   1711                (i32 63)),
   1712           (Select64 (LGHI -1), (LGHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
   1713 
   1714 // Avoid generating 2 XOR instructions. (xor (and x, y), y) is
   1715 // equivalent to (and (xor x, -1), y)
   1716 def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
   1717                           (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;
   1718 
   1719 // Shift/rotate instructions only use the last 6 bits of the second operand
   1720 // register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
   1721 // last 16 bits.
   1722 // Complexity is added so that we match this before we match NILF on the AND
   1723 // operation alone.
   1724 let AddedComplexity = 4 in {
   1725   def : Pat<(shl GR32:$val, (and GR32:$shift, uimm32:$imm)),
   1726             (SLL GR32:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;
   1727 
   1728   def : Pat<(sra GR32:$val, (and GR32:$shift, uimm32:$imm)),
   1729             (SRA GR32:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;
   1730 
   1731   def : Pat<(srl GR32:$val, (and GR32:$shift, uimm32:$imm)),
   1732             (SRL GR32:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;
   1733 
   1734   def : Pat<(shl GR64:$val, (and GR32:$shift, uimm32:$imm)),
   1735             (SLLG GR64:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;
   1736 
   1737   def : Pat<(sra GR64:$val, (and GR32:$shift, uimm32:$imm)),
   1738             (SRAG GR64:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;
   1739 
   1740   def : Pat<(srl GR64:$val, (and GR32:$shift, uimm32:$imm)),
   1741             (SRLG GR64:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;
   1742 
   1743   def : Pat<(rotl GR32:$val, (and GR32:$shift, uimm32:$imm)),
   1744             (RLL GR32:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;
   1745 
   1746   def : Pat<(rotl GR64:$val, (and GR32:$shift, uimm32:$imm)),
   1747             (RLLG GR64:$val, (NILL GR32:$shift, uimm32:$imm), 0)>;
   1748 }
   1749 
   1750 // Peepholes for turning scalar operations into block operations.
   1751 defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
   1752                       XCSequence, 1>;
   1753 defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
   1754                       XCSequence, 2>;
   1755 defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
   1756                       XCSequence, 4>;
   1757 defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
   1758                       OCSequence, XCSequence, 1>;
   1759 defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
   1760                       XCSequence, 2>;
   1761 defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
   1762                       XCSequence, 4>;
   1763 defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
   1764                       XCSequence, 8>;
   1765