Home | History | Annotate | Download | only in jpeg
      1 // Copyright 2009 The Go Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style
      3 // license that can be found in the LICENSE file.
      4 
      5 // Package jpeg implements a JPEG image decoder and encoder.
      6 //
      7 // JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf.
      8 package jpeg
      9 
     10 import (
     11 	"image"
     12 	"image/color"
     13 	"image/internal/imageutil"
     14 	"io"
     15 )
     16 
     17 // TODO(nigeltao): fix up the doc comment style so that sentences start with
     18 // the name of the type or function that they annotate.
     19 
     20 // A FormatError reports that the input is not a valid JPEG.
     21 type FormatError string
     22 
     23 func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }
     24 
     25 // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
     26 type UnsupportedError string
     27 
     28 func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }
     29 
     30 var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio")
     31 
     32 // Component specification, specified in section B.2.2.
     33 type component struct {
     34 	h  int   // Horizontal sampling factor.
     35 	v  int   // Vertical sampling factor.
     36 	c  uint8 // Component identifier.
     37 	tq uint8 // Quantization table destination selector.
     38 }
     39 
     40 const (
     41 	dcTable = 0
     42 	acTable = 1
     43 	maxTc   = 1
     44 	maxTh   = 3
     45 	maxTq   = 3
     46 
     47 	maxComponents = 4
     48 )
     49 
     50 const (
     51 	sof0Marker = 0xc0 // Start Of Frame (Baseline Sequential).
     52 	sof1Marker = 0xc1 // Start Of Frame (Extended Sequential).
     53 	sof2Marker = 0xc2 // Start Of Frame (Progressive).
     54 	dhtMarker  = 0xc4 // Define Huffman Table.
     55 	rst0Marker = 0xd0 // ReSTart (0).
     56 	rst7Marker = 0xd7 // ReSTart (7).
     57 	soiMarker  = 0xd8 // Start Of Image.
     58 	eoiMarker  = 0xd9 // End Of Image.
     59 	sosMarker  = 0xda // Start Of Scan.
     60 	dqtMarker  = 0xdb // Define Quantization Table.
     61 	driMarker  = 0xdd // Define Restart Interval.
     62 	comMarker  = 0xfe // COMment.
     63 	// "APPlication specific" markers aren't part of the JPEG spec per se,
     64 	// but in practice, their use is described at
     65 	// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html
     66 	app0Marker  = 0xe0
     67 	app14Marker = 0xee
     68 	app15Marker = 0xef
     69 )
     70 
     71 // See http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
     72 const (
     73 	adobeTransformUnknown = 0
     74 	adobeTransformYCbCr   = 1
     75 	adobeTransformYCbCrK  = 2
     76 )
     77 
     78 // unzig maps from the zig-zag ordering to the natural ordering. For example,
     79 // unzig[3] is the column and row of the fourth element in zig-zag order. The
     80 // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
     81 var unzig = [blockSize]int{
     82 	0, 1, 8, 16, 9, 2, 3, 10,
     83 	17, 24, 32, 25, 18, 11, 4, 5,
     84 	12, 19, 26, 33, 40, 48, 41, 34,
     85 	27, 20, 13, 6, 7, 14, 21, 28,
     86 	35, 42, 49, 56, 57, 50, 43, 36,
     87 	29, 22, 15, 23, 30, 37, 44, 51,
     88 	58, 59, 52, 45, 38, 31, 39, 46,
     89 	53, 60, 61, 54, 47, 55, 62, 63,
     90 }
     91 
     92 // Deprecated: Reader is deprecated.
     93 type Reader interface {
     94 	io.ByteReader
     95 	io.Reader
     96 }
     97 
     98 // bits holds the unprocessed bits that have been taken from the byte-stream.
     99 // The n least significant bits of a form the unread bits, to be read in MSB to
    100 // LSB order.
    101 type bits struct {
    102 	a uint32 // accumulator.
    103 	m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0.
    104 	n int32  // the number of unread bits in a.
    105 }
    106 
    107 type decoder struct {
    108 	r    io.Reader
    109 	bits bits
    110 	// bytes is a byte buffer, similar to a bufio.Reader, except that it
    111 	// has to be able to unread more than 1 byte, due to byte stuffing.
    112 	// Byte stuffing is specified in section F.1.2.3.
    113 	bytes struct {
    114 		// buf[i:j] are the buffered bytes read from the underlying
    115 		// io.Reader that haven't yet been passed further on.
    116 		buf  [4096]byte
    117 		i, j int
    118 		// nUnreadable is the number of bytes to back up i after
    119 		// overshooting. It can be 0, 1 or 2.
    120 		nUnreadable int
    121 	}
    122 	width, height int
    123 
    124 	img1        *image.Gray
    125 	img3        *image.YCbCr
    126 	blackPix    []byte
    127 	blackStride int
    128 
    129 	ri    int // Restart Interval.
    130 	nComp int
    131 
    132 	// As per section 4.5, there are four modes of operation (selected by the
    133 	// SOF? markers): sequential DCT, progressive DCT, lossless and
    134 	// hierarchical, although this implementation does not support the latter
    135 	// two non-DCT modes. Sequential DCT is further split into baseline and
    136 	// extended, as per section 4.11.
    137 	baseline    bool
    138 	progressive bool
    139 
    140 	jfif                bool
    141 	adobeTransformValid bool
    142 	adobeTransform      uint8
    143 	eobRun              uint16 // End-of-Band run, specified in section G.1.2.2.
    144 
    145 	comp       [maxComponents]component
    146 	progCoeffs [maxComponents][]block // Saved state between progressive-mode scans.
    147 	huff       [maxTc + 1][maxTh + 1]huffman
    148 	quant      [maxTq + 1]block // Quantization tables, in zig-zag order.
    149 	tmp        [2 * blockSize]byte
    150 }
    151 
    152 // fill fills up the d.bytes.buf buffer from the underlying io.Reader. It
    153 // should only be called when there are no unread bytes in d.bytes.
    154 func (d *decoder) fill() error {
    155 	if d.bytes.i != d.bytes.j {
    156 		panic("jpeg: fill called when unread bytes exist")
    157 	}
    158 	// Move the last 2 bytes to the start of the buffer, in case we need
    159 	// to call unreadByteStuffedByte.
    160 	if d.bytes.j > 2 {
    161 		d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2]
    162 		d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1]
    163 		d.bytes.i, d.bytes.j = 2, 2
    164 	}
    165 	// Fill in the rest of the buffer.
    166 	n, err := d.r.Read(d.bytes.buf[d.bytes.j:])
    167 	d.bytes.j += n
    168 	if n > 0 {
    169 		err = nil
    170 	}
    171 	return err
    172 }
    173 
    174 // unreadByteStuffedByte undoes the most recent readByteStuffedByte call,
    175 // giving a byte of data back from d.bits to d.bytes. The Huffman look-up table
    176 // requires at least 8 bits for look-up, which means that Huffman decoding can
    177 // sometimes overshoot and read one or two too many bytes. Two-byte overshoot
    178 // can happen when expecting to read a 0xff 0x00 byte-stuffed byte.
    179 func (d *decoder) unreadByteStuffedByte() {
    180 	d.bytes.i -= d.bytes.nUnreadable
    181 	d.bytes.nUnreadable = 0
    182 	if d.bits.n >= 8 {
    183 		d.bits.a >>= 8
    184 		d.bits.n -= 8
    185 		d.bits.m >>= 8
    186 	}
    187 }
    188 
    189 // readByte returns the next byte, whether buffered or not buffered. It does
    190 // not care about byte stuffing.
    191 func (d *decoder) readByte() (x byte, err error) {
    192 	for d.bytes.i == d.bytes.j {
    193 		if err = d.fill(); err != nil {
    194 			return 0, err
    195 		}
    196 	}
    197 	x = d.bytes.buf[d.bytes.i]
    198 	d.bytes.i++
    199 	d.bytes.nUnreadable = 0
    200 	return x, nil
    201 }
    202 
    203 // errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a
    204 // marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00.
    205 var errMissingFF00 = FormatError("missing 0xff00 sequence")
    206 
    207 // readByteStuffedByte is like readByte but is for byte-stuffed Huffman data.
    208 func (d *decoder) readByteStuffedByte() (x byte, err error) {
    209 	// Take the fast path if d.bytes.buf contains at least two bytes.
    210 	if d.bytes.i+2 <= d.bytes.j {
    211 		x = d.bytes.buf[d.bytes.i]
    212 		d.bytes.i++
    213 		d.bytes.nUnreadable = 1
    214 		if x != 0xff {
    215 			return x, err
    216 		}
    217 		if d.bytes.buf[d.bytes.i] != 0x00 {
    218 			return 0, errMissingFF00
    219 		}
    220 		d.bytes.i++
    221 		d.bytes.nUnreadable = 2
    222 		return 0xff, nil
    223 	}
    224 
    225 	d.bytes.nUnreadable = 0
    226 
    227 	x, err = d.readByte()
    228 	if err != nil {
    229 		return 0, err
    230 	}
    231 	d.bytes.nUnreadable = 1
    232 	if x != 0xff {
    233 		return x, nil
    234 	}
    235 
    236 	x, err = d.readByte()
    237 	if err != nil {
    238 		return 0, err
    239 	}
    240 	d.bytes.nUnreadable = 2
    241 	if x != 0x00 {
    242 		return 0, errMissingFF00
    243 	}
    244 	return 0xff, nil
    245 }
    246 
    247 // readFull reads exactly len(p) bytes into p. It does not care about byte
    248 // stuffing.
    249 func (d *decoder) readFull(p []byte) error {
    250 	// Unread the overshot bytes, if any.
    251 	if d.bytes.nUnreadable != 0 {
    252 		if d.bits.n >= 8 {
    253 			d.unreadByteStuffedByte()
    254 		}
    255 		d.bytes.nUnreadable = 0
    256 	}
    257 
    258 	for {
    259 		n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j])
    260 		p = p[n:]
    261 		d.bytes.i += n
    262 		if len(p) == 0 {
    263 			break
    264 		}
    265 		if err := d.fill(); err != nil {
    266 			if err == io.EOF {
    267 				err = io.ErrUnexpectedEOF
    268 			}
    269 			return err
    270 		}
    271 	}
    272 	return nil
    273 }
    274 
    275 // ignore ignores the next n bytes.
    276 func (d *decoder) ignore(n int) error {
    277 	// Unread the overshot bytes, if any.
    278 	if d.bytes.nUnreadable != 0 {
    279 		if d.bits.n >= 8 {
    280 			d.unreadByteStuffedByte()
    281 		}
    282 		d.bytes.nUnreadable = 0
    283 	}
    284 
    285 	for {
    286 		m := d.bytes.j - d.bytes.i
    287 		if m > n {
    288 			m = n
    289 		}
    290 		d.bytes.i += m
    291 		n -= m
    292 		if n == 0 {
    293 			break
    294 		}
    295 		if err := d.fill(); err != nil {
    296 			if err == io.EOF {
    297 				err = io.ErrUnexpectedEOF
    298 			}
    299 			return err
    300 		}
    301 	}
    302 	return nil
    303 }
    304 
    305 // Specified in section B.2.2.
    306 func (d *decoder) processSOF(n int) error {
    307 	if d.nComp != 0 {
    308 		return FormatError("multiple SOF markers")
    309 	}
    310 	switch n {
    311 	case 6 + 3*1: // Grayscale image.
    312 		d.nComp = 1
    313 	case 6 + 3*3: // YCbCr or RGB image.
    314 		d.nComp = 3
    315 	case 6 + 3*4: // YCbCrK or CMYK image.
    316 		d.nComp = 4
    317 	default:
    318 		return UnsupportedError("number of components")
    319 	}
    320 	if err := d.readFull(d.tmp[:n]); err != nil {
    321 		return err
    322 	}
    323 	// We only support 8-bit precision.
    324 	if d.tmp[0] != 8 {
    325 		return UnsupportedError("precision")
    326 	}
    327 	d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
    328 	d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
    329 	if int(d.tmp[5]) != d.nComp {
    330 		return FormatError("SOF has wrong length")
    331 	}
    332 
    333 	for i := 0; i < d.nComp; i++ {
    334 		d.comp[i].c = d.tmp[6+3*i]
    335 		// Section B.2.2 states that "the value of C_i shall be different from
    336 		// the values of C_1 through C_(i-1)".
    337 		for j := 0; j < i; j++ {
    338 			if d.comp[i].c == d.comp[j].c {
    339 				return FormatError("repeated component identifier")
    340 			}
    341 		}
    342 
    343 		d.comp[i].tq = d.tmp[8+3*i]
    344 		if d.comp[i].tq > maxTq {
    345 			return FormatError("bad Tq value")
    346 		}
    347 
    348 		hv := d.tmp[7+3*i]
    349 		h, v := int(hv>>4), int(hv&0x0f)
    350 		if h < 1 || 4 < h || v < 1 || 4 < v {
    351 			return FormatError("luma/chroma subsampling ratio")
    352 		}
    353 		if h == 3 || v == 3 {
    354 			return errUnsupportedSubsamplingRatio
    355 		}
    356 		switch d.nComp {
    357 		case 1:
    358 			// If a JPEG image has only one component, section A.2 says "this data
    359 			// is non-interleaved by definition" and section A.2.2 says "[in this
    360 			// case...] the order of data units within a scan shall be left-to-right
    361 			// and top-to-bottom... regardless of the values of H_1 and V_1". Section
    362 			// 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
    363 			// one data unit". Similarly, section A.1.1 explains that it is the ratio
    364 			// of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
    365 			// images, H_1 is the maximum H_j for all components j, so that ratio is
    366 			// always 1. The component's (h, v) is effectively always (1, 1): even if
    367 			// the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
    368 			// MCUs, not two 16x8 MCUs.
    369 			h, v = 1, 1
    370 
    371 		case 3:
    372 			// For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0,
    373 			// 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the
    374 			// (h, v) values for the Y component are either (1, 1), (1, 2),
    375 			// (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values
    376 			// must be a multiple of the Cb and Cr component's values. We also
    377 			// assume that the two chroma components have the same subsampling
    378 			// ratio.
    379 			switch i {
    380 			case 0: // Y.
    381 				// We have already verified, above, that h and v are both
    382 				// either 1, 2 or 4, so invalid (h, v) combinations are those
    383 				// with v == 4.
    384 				if v == 4 {
    385 					return errUnsupportedSubsamplingRatio
    386 				}
    387 			case 1: // Cb.
    388 				if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 {
    389 					return errUnsupportedSubsamplingRatio
    390 				}
    391 			case 2: // Cr.
    392 				if d.comp[1].h != h || d.comp[1].v != v {
    393 					return errUnsupportedSubsamplingRatio
    394 				}
    395 			}
    396 
    397 		case 4:
    398 			// For 4-component images (either CMYK or YCbCrK), we only support two
    399 			// hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22].
    400 			// Theoretically, 4-component JPEG images could mix and match hv values
    401 			// but in practice, those two combinations are the only ones in use,
    402 			// and it simplifies the applyBlack code below if we can assume that:
    403 			//	- for CMYK, the C and K channels have full samples, and if the M
    404 			//	  and Y channels subsample, they subsample both horizontally and
    405 			//	  vertically.
    406 			//	- for YCbCrK, the Y and K channels have full samples.
    407 			switch i {
    408 			case 0:
    409 				if hv != 0x11 && hv != 0x22 {
    410 					return errUnsupportedSubsamplingRatio
    411 				}
    412 			case 1, 2:
    413 				if hv != 0x11 {
    414 					return errUnsupportedSubsamplingRatio
    415 				}
    416 			case 3:
    417 				if d.comp[0].h != h || d.comp[0].v != v {
    418 					return errUnsupportedSubsamplingRatio
    419 				}
    420 			}
    421 		}
    422 
    423 		d.comp[i].h = h
    424 		d.comp[i].v = v
    425 	}
    426 	return nil
    427 }
    428 
    429 // Specified in section B.2.4.1.
    430 func (d *decoder) processDQT(n int) error {
    431 loop:
    432 	for n > 0 {
    433 		n--
    434 		x, err := d.readByte()
    435 		if err != nil {
    436 			return err
    437 		}
    438 		tq := x & 0x0f
    439 		if tq > maxTq {
    440 			return FormatError("bad Tq value")
    441 		}
    442 		switch x >> 4 {
    443 		default:
    444 			return FormatError("bad Pq value")
    445 		case 0:
    446 			if n < blockSize {
    447 				break loop
    448 			}
    449 			n -= blockSize
    450 			if err := d.readFull(d.tmp[:blockSize]); err != nil {
    451 				return err
    452 			}
    453 			for i := range d.quant[tq] {
    454 				d.quant[tq][i] = int32(d.tmp[i])
    455 			}
    456 		case 1:
    457 			if n < 2*blockSize {
    458 				break loop
    459 			}
    460 			n -= 2 * blockSize
    461 			if err := d.readFull(d.tmp[:2*blockSize]); err != nil {
    462 				return err
    463 			}
    464 			for i := range d.quant[tq] {
    465 				d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1])
    466 			}
    467 		}
    468 	}
    469 	if n != 0 {
    470 		return FormatError("DQT has wrong length")
    471 	}
    472 	return nil
    473 }
    474 
    475 // Specified in section B.2.4.4.
    476 func (d *decoder) processDRI(n int) error {
    477 	if n != 2 {
    478 		return FormatError("DRI has wrong length")
    479 	}
    480 	if err := d.readFull(d.tmp[:2]); err != nil {
    481 		return err
    482 	}
    483 	d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
    484 	return nil
    485 }
    486 
    487 func (d *decoder) processApp0Marker(n int) error {
    488 	if n < 5 {
    489 		return d.ignore(n)
    490 	}
    491 	if err := d.readFull(d.tmp[:5]); err != nil {
    492 		return err
    493 	}
    494 	n -= 5
    495 
    496 	d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00'
    497 
    498 	if n > 0 {
    499 		return d.ignore(n)
    500 	}
    501 	return nil
    502 }
    503 
    504 func (d *decoder) processApp14Marker(n int) error {
    505 	if n < 12 {
    506 		return d.ignore(n)
    507 	}
    508 	if err := d.readFull(d.tmp[:12]); err != nil {
    509 		return err
    510 	}
    511 	n -= 12
    512 
    513 	if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' {
    514 		d.adobeTransformValid = true
    515 		d.adobeTransform = d.tmp[11]
    516 	}
    517 
    518 	if n > 0 {
    519 		return d.ignore(n)
    520 	}
    521 	return nil
    522 }
    523 
    524 // decode reads a JPEG image from r and returns it as an image.Image.
    525 func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
    526 	d.r = r
    527 
    528 	// Check for the Start Of Image marker.
    529 	if err := d.readFull(d.tmp[:2]); err != nil {
    530 		return nil, err
    531 	}
    532 	if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
    533 		return nil, FormatError("missing SOI marker")
    534 	}
    535 
    536 	// Process the remaining segments until the End Of Image marker.
    537 	for {
    538 		err := d.readFull(d.tmp[:2])
    539 		if err != nil {
    540 			return nil, err
    541 		}
    542 		for d.tmp[0] != 0xff {
    543 			// Strictly speaking, this is a format error. However, libjpeg is
    544 			// liberal in what it accepts. As of version 9, next_marker in
    545 			// jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
    546 			// continues to decode the stream. Even before next_marker sees
    547 			// extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
    548 			// bytes as it can, possibly past the end of a scan's data. It
    549 			// effectively puts back any markers that it overscanned (e.g. an
    550 			// "\xff\xd9" EOI marker), but it does not put back non-marker data,
    551 			// and thus it can silently ignore a small number of extraneous
    552 			// non-marker bytes before next_marker has a chance to see them (and
    553 			// print a warning).
    554 			//
    555 			// We are therefore also liberal in what we accept. Extraneous data
    556 			// is silently ignored.
    557 			//
    558 			// This is similar to, but not exactly the same as, the restart
    559 			// mechanism within a scan (the RST[0-7] markers).
    560 			//
    561 			// Note that extraneous 0xff bytes in e.g. SOS data are escaped as
    562 			// "\xff\x00", and so are detected a little further down below.
    563 			d.tmp[0] = d.tmp[1]
    564 			d.tmp[1], err = d.readByte()
    565 			if err != nil {
    566 				return nil, err
    567 			}
    568 		}
    569 		marker := d.tmp[1]
    570 		if marker == 0 {
    571 			// Treat "\xff\x00" as extraneous data.
    572 			continue
    573 		}
    574 		for marker == 0xff {
    575 			// Section B.1.1.2 says, "Any marker may optionally be preceded by any
    576 			// number of fill bytes, which are bytes assigned code X'FF'".
    577 			marker, err = d.readByte()
    578 			if err != nil {
    579 				return nil, err
    580 			}
    581 		}
    582 		if marker == eoiMarker { // End Of Image.
    583 			break
    584 		}
    585 		if rst0Marker <= marker && marker <= rst7Marker {
    586 			// Figures B.2 and B.16 of the specification suggest that restart markers should
    587 			// only occur between Entropy Coded Segments and not after the final ECS.
    588 			// However, some encoders may generate incorrect JPEGs with a final restart
    589 			// marker. That restart marker will be seen here instead of inside the processSOS
    590 			// method, and is ignored as a harmless error. Restart markers have no extra data,
    591 			// so we check for this before we read the 16-bit length of the segment.
    592 			continue
    593 		}
    594 
    595 		// Read the 16-bit length of the segment. The value includes the 2 bytes for the
    596 		// length itself, so we subtract 2 to get the number of remaining bytes.
    597 		if err = d.readFull(d.tmp[:2]); err != nil {
    598 			return nil, err
    599 		}
    600 		n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
    601 		if n < 0 {
    602 			return nil, FormatError("short segment length")
    603 		}
    604 
    605 		switch marker {
    606 		case sof0Marker, sof1Marker, sof2Marker:
    607 			d.baseline = marker == sof0Marker
    608 			d.progressive = marker == sof2Marker
    609 			err = d.processSOF(n)
    610 			if configOnly && d.jfif {
    611 				return nil, err
    612 			}
    613 		case dhtMarker:
    614 			if configOnly {
    615 				err = d.ignore(n)
    616 			} else {
    617 				err = d.processDHT(n)
    618 			}
    619 		case dqtMarker:
    620 			if configOnly {
    621 				err = d.ignore(n)
    622 			} else {
    623 				err = d.processDQT(n)
    624 			}
    625 		case sosMarker:
    626 			if configOnly {
    627 				return nil, nil
    628 			}
    629 			err = d.processSOS(n)
    630 		case driMarker:
    631 			if configOnly {
    632 				err = d.ignore(n)
    633 			} else {
    634 				err = d.processDRI(n)
    635 			}
    636 		case app0Marker:
    637 			err = d.processApp0Marker(n)
    638 		case app14Marker:
    639 			err = d.processApp14Marker(n)
    640 		default:
    641 			if app0Marker <= marker && marker <= app15Marker || marker == comMarker {
    642 				err = d.ignore(n)
    643 			} else if marker < 0xc0 { // See Table B.1 "Marker code assignments".
    644 				err = FormatError("unknown marker")
    645 			} else {
    646 				err = UnsupportedError("unknown marker")
    647 			}
    648 		}
    649 		if err != nil {
    650 			return nil, err
    651 		}
    652 	}
    653 
    654 	if d.progressive {
    655 		if err := d.reconstructProgressiveImage(); err != nil {
    656 			return nil, err
    657 		}
    658 	}
    659 	if d.img1 != nil {
    660 		return d.img1, nil
    661 	}
    662 	if d.img3 != nil {
    663 		if d.blackPix != nil {
    664 			return d.applyBlack()
    665 		} else if d.isRGB() {
    666 			return d.convertToRGB()
    667 		}
    668 		return d.img3, nil
    669 	}
    670 	return nil, FormatError("missing SOS marker")
    671 }
    672 
    673 // applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula
    674 // used depends on whether the JPEG image is stored as CMYK or YCbCrK,
    675 // indicated by the APP14 (Adobe) metadata.
    676 //
    677 // Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full
    678 // ink, so we apply "v = 255 - v" at various points. Note that a double
    679 // inversion is a no-op, so inversions might be implicit in the code below.
    680 func (d *decoder) applyBlack() (image.Image, error) {
    681 	if !d.adobeTransformValid {
    682 		return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata")
    683 	}
    684 
    685 	// If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB
    686 	// or CMYK)" as per
    687 	// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
    688 	// we assume that it is YCbCrK. This matches libjpeg's jdapimin.c.
    689 	if d.adobeTransform != adobeTransformUnknown {
    690 		// Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get
    691 		// CMY, and patch in the original K. The RGB to CMY inversion cancels
    692 		// out the 'Adobe inversion' described in the applyBlack doc comment
    693 		// above, so in practice, only the fourth channel (black) is inverted.
    694 		bounds := d.img3.Bounds()
    695 		img := image.NewRGBA(bounds)
    696 		imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min)
    697 		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
    698 			for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
    699 				img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)]
    700 			}
    701 		}
    702 		return &image.CMYK{
    703 			Pix:    img.Pix,
    704 			Stride: img.Stride,
    705 			Rect:   img.Rect,
    706 		}, nil
    707 	}
    708 
    709 	// The first three channels (cyan, magenta, yellow) of the CMYK
    710 	// were decoded into d.img3, but each channel was decoded into a separate
    711 	// []byte slice, and some channels may be subsampled. We interleave the
    712 	// separate channels into an image.CMYK's single []byte slice containing 4
    713 	// contiguous bytes per pixel.
    714 	bounds := d.img3.Bounds()
    715 	img := image.NewCMYK(bounds)
    716 
    717 	translations := [4]struct {
    718 		src    []byte
    719 		stride int
    720 	}{
    721 		{d.img3.Y, d.img3.YStride},
    722 		{d.img3.Cb, d.img3.CStride},
    723 		{d.img3.Cr, d.img3.CStride},
    724 		{d.blackPix, d.blackStride},
    725 	}
    726 	for t, translation := range translations {
    727 		subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v
    728 		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
    729 			sy := y - bounds.Min.Y
    730 			if subsample {
    731 				sy /= 2
    732 			}
    733 			for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
    734 				sx := x - bounds.Min.X
    735 				if subsample {
    736 					sx /= 2
    737 				}
    738 				img.Pix[i] = 255 - translation.src[sy*translation.stride+sx]
    739 			}
    740 		}
    741 	}
    742 	return img, nil
    743 }
    744 
    745 func (d *decoder) isRGB() bool {
    746 	if d.jfif {
    747 		return false
    748 	}
    749 	if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown {
    750 		// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
    751 		// says that 0 means Unknown (and in practice RGB) and 1 means YCbCr.
    752 		return true
    753 	}
    754 	return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B'
    755 }
    756 
    757 func (d *decoder) convertToRGB() (image.Image, error) {
    758 	cScale := d.comp[0].h / d.comp[1].h
    759 	bounds := d.img3.Bounds()
    760 	img := image.NewRGBA(bounds)
    761 	for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
    762 		po := img.PixOffset(bounds.Min.X, y)
    763 		yo := d.img3.YOffset(bounds.Min.X, y)
    764 		co := d.img3.COffset(bounds.Min.X, y)
    765 		for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ {
    766 			img.Pix[po+4*i+0] = d.img3.Y[yo+i]
    767 			img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale]
    768 			img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale]
    769 			img.Pix[po+4*i+3] = 255
    770 		}
    771 	}
    772 	return img, nil
    773 }
    774 
    775 // Decode reads a JPEG image from r and returns it as an image.Image.
    776 func Decode(r io.Reader) (image.Image, error) {
    777 	var d decoder
    778 	return d.decode(r, false)
    779 }
    780 
    781 // DecodeConfig returns the color model and dimensions of a JPEG image without
    782 // decoding the entire image.
    783 func DecodeConfig(r io.Reader) (image.Config, error) {
    784 	var d decoder
    785 	if _, err := d.decode(r, true); err != nil {
    786 		return image.Config{}, err
    787 	}
    788 	switch d.nComp {
    789 	case 1:
    790 		return image.Config{
    791 			ColorModel: color.GrayModel,
    792 			Width:      d.width,
    793 			Height:     d.height,
    794 		}, nil
    795 	case 3:
    796 		cm := color.YCbCrModel
    797 		if d.isRGB() {
    798 			cm = color.RGBAModel
    799 		}
    800 		return image.Config{
    801 			ColorModel: cm,
    802 			Width:      d.width,
    803 			Height:     d.height,
    804 		}, nil
    805 	case 4:
    806 		return image.Config{
    807 			ColorModel: color.CMYKModel,
    808 			Width:      d.width,
    809 			Height:     d.height,
    810 		}, nil
    811 	}
    812 	return image.Config{}, FormatError("missing SOF marker")
    813 }
    814 
    815 func init() {
    816 	image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
    817 }
    818