Home | History | Annotate | Download | only in Utils
      1 //===- Local.h - Functions to perform local transformations -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform various local transformations to the
     11 // program.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
     16 #define LLVM_TRANSFORMS_UTILS_LOCAL_H
     17 
     18 #include "llvm/ADT/ArrayRef.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SmallPtrSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/TinyPtrVector.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/Analysis/Utils/Local.h"
     25 #include "llvm/IR/CallSite.h"
     26 #include "llvm/IR/Constant.h"
     27 #include "llvm/IR/Constants.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/Dominators.h"
     30 #include "llvm/IR/GetElementPtrTypeIterator.h"
     31 #include "llvm/IR/Operator.h"
     32 #include "llvm/IR/Type.h"
     33 #include "llvm/IR/User.h"
     34 #include "llvm/IR/Value.h"
     35 #include "llvm/Support/Casting.h"
     36 #include <cstdint>
     37 #include <limits>
     38 
     39 namespace llvm {
     40 
     41 class AllocaInst;
     42 class AssumptionCache;
     43 class BasicBlock;
     44 class BranchInst;
     45 class CallInst;
     46 class DbgInfoIntrinsic;
     47 class DbgValueInst;
     48 class DIBuilder;
     49 class Function;
     50 class Instruction;
     51 class LazyValueInfo;
     52 class LoadInst;
     53 class MDNode;
     54 class PHINode;
     55 class StoreInst;
     56 class TargetLibraryInfo;
     57 class TargetTransformInfo;
     58 
     59 /// A set of parameters used to control the transforms in the SimplifyCFG pass.
     60 /// Options may change depending on the position in the optimization pipeline.
     61 /// For example, canonical form that includes switches and branches may later be
     62 /// replaced by lookup tables and selects.
     63 struct SimplifyCFGOptions {
     64   int BonusInstThreshold;
     65   bool ForwardSwitchCondToPhi;
     66   bool ConvertSwitchToLookupTable;
     67   bool NeedCanonicalLoop;
     68   bool SinkCommonInsts;
     69   AssumptionCache *AC;
     70 
     71   SimplifyCFGOptions(unsigned BonusThreshold = 1,
     72                      bool ForwardSwitchCond = false,
     73                      bool SwitchToLookup = false, bool CanonicalLoops = true,
     74                      bool SinkCommon = false,
     75                      AssumptionCache *AssumpCache = nullptr)
     76       : BonusInstThreshold(BonusThreshold),
     77         ForwardSwitchCondToPhi(ForwardSwitchCond),
     78         ConvertSwitchToLookupTable(SwitchToLookup),
     79         NeedCanonicalLoop(CanonicalLoops),
     80         SinkCommonInsts(SinkCommon),
     81         AC(AssumpCache) {}
     82 
     83   // Support 'builder' pattern to set members by name at construction time.
     84   SimplifyCFGOptions &bonusInstThreshold(int I) {
     85     BonusInstThreshold = I;
     86     return *this;
     87   }
     88   SimplifyCFGOptions &forwardSwitchCondToPhi(bool B) {
     89     ForwardSwitchCondToPhi = B;
     90     return *this;
     91   }
     92   SimplifyCFGOptions &convertSwitchToLookupTable(bool B) {
     93     ConvertSwitchToLookupTable = B;
     94     return *this;
     95   }
     96   SimplifyCFGOptions &needCanonicalLoops(bool B) {
     97     NeedCanonicalLoop = B;
     98     return *this;
     99   }
    100   SimplifyCFGOptions &sinkCommonInsts(bool B) {
    101     SinkCommonInsts = B;
    102     return *this;
    103   }
    104   SimplifyCFGOptions &setAssumptionCache(AssumptionCache *Cache) {
    105     AC = Cache;
    106     return *this;
    107   }
    108 };
    109 
    110 //===----------------------------------------------------------------------===//
    111 //  Local constant propagation.
    112 //
    113 
    114 /// If a terminator instruction is predicated on a constant value, convert it
    115 /// into an unconditional branch to the constant destination.
    116 /// This is a nontrivial operation because the successors of this basic block
    117 /// must have their PHI nodes updated.
    118 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
    119 /// conditions and indirectbr addresses this might make dead if
    120 /// DeleteDeadConditions is true.
    121 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
    122                             const TargetLibraryInfo *TLI = nullptr,
    123                             DeferredDominance *DDT = nullptr);
    124 
    125 //===----------------------------------------------------------------------===//
    126 //  Local dead code elimination.
    127 //
    128 
    129 /// Return true if the result produced by the instruction is not used, and the
    130 /// instruction has no side effects.
    131 bool isInstructionTriviallyDead(Instruction *I,
    132                                 const TargetLibraryInfo *TLI = nullptr);
    133 
    134 /// Return true if the result produced by the instruction would have no side
    135 /// effects if it was not used. This is equivalent to checking whether
    136 /// isInstructionTriviallyDead would be true if the use count was 0.
    137 bool wouldInstructionBeTriviallyDead(Instruction *I,
    138                                      const TargetLibraryInfo *TLI = nullptr);
    139 
    140 /// If the specified value is a trivially dead instruction, delete it.
    141 /// If that makes any of its operands trivially dead, delete them too,
    142 /// recursively. Return true if any instructions were deleted.
    143 bool RecursivelyDeleteTriviallyDeadInstructions(Value *V,
    144                                         const TargetLibraryInfo *TLI = nullptr);
    145 
    146 /// Delete all of the instructions in `DeadInsts`, and all other instructions
    147 /// that deleting these in turn causes to be trivially dead.
    148 ///
    149 /// The initial instructions in the provided vector must all have empty use
    150 /// lists and satisfy `isInstructionTriviallyDead`.
    151 ///
    152 /// `DeadInsts` will be used as scratch storage for this routine and will be
    153 /// empty afterward.
    154 void RecursivelyDeleteTriviallyDeadInstructions(
    155     SmallVectorImpl<Instruction *> &DeadInsts,
    156     const TargetLibraryInfo *TLI = nullptr);
    157 
    158 /// If the specified value is an effectively dead PHI node, due to being a
    159 /// def-use chain of single-use nodes that either forms a cycle or is terminated
    160 /// by a trivially dead instruction, delete it. If that makes any of its
    161 /// operands trivially dead, delete them too, recursively. Return true if a
    162 /// change was made.
    163 bool RecursivelyDeleteDeadPHINode(PHINode *PN,
    164                                   const TargetLibraryInfo *TLI = nullptr);
    165 
    166 /// Scan the specified basic block and try to simplify any instructions in it
    167 /// and recursively delete dead instructions.
    168 ///
    169 /// This returns true if it changed the code, note that it can delete
    170 /// instructions in other blocks as well in this block.
    171 bool SimplifyInstructionsInBlock(BasicBlock *BB,
    172                                  const TargetLibraryInfo *TLI = nullptr);
    173 
    174 //===----------------------------------------------------------------------===//
    175 //  Control Flow Graph Restructuring.
    176 //
    177 
    178 /// Like BasicBlock::removePredecessor, this method is called when we're about
    179 /// to delete Pred as a predecessor of BB. If BB contains any PHI nodes, this
    180 /// drops the entries in the PHI nodes for Pred.
    181 ///
    182 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
    183 /// nodes that collapse into identity values.  For example, if we have:
    184 ///   x = phi(1, 0, 0, 0)
    185 ///   y = and x, z
    186 ///
    187 /// .. and delete the predecessor corresponding to the '1', this will attempt to
    188 /// recursively fold the 'and' to 0.
    189 void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
    190                                   DeferredDominance *DDT = nullptr);
    191 
    192 /// BB is a block with one predecessor and its predecessor is known to have one
    193 /// successor (BB!). Eliminate the edge between them, moving the instructions in
    194 /// the predecessor into BB. This deletes the predecessor block.
    195 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DominatorTree *DT = nullptr,
    196                                  DeferredDominance *DDT = nullptr);
    197 
    198 /// BB is known to contain an unconditional branch, and contains no instructions
    199 /// other than PHI nodes, potential debug intrinsics and the branch. If
    200 /// possible, eliminate BB by rewriting all the predecessors to branch to the
    201 /// successor block and return true. If we can't transform, return false.
    202 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
    203                                              DeferredDominance *DDT = nullptr);
    204 
    205 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
    206 /// to be clever about PHI nodes which differ only in the order of the incoming
    207 /// values, but instcombine orders them so it usually won't matter.
    208 bool EliminateDuplicatePHINodes(BasicBlock *BB);
    209 
    210 /// This function is used to do simplification of a CFG.  For example, it
    211 /// adjusts branches to branches to eliminate the extra hop, it eliminates
    212 /// unreachable basic blocks, and does other peephole optimization of the CFG.
    213 /// It returns true if a modification was made, possibly deleting the basic
    214 /// block that was pointed to. LoopHeaders is an optional input parameter
    215 /// providing the set of loop headers that SimplifyCFG should not eliminate.
    216 bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
    217                  const SimplifyCFGOptions &Options = {},
    218                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders = nullptr);
    219 
    220 /// This function is used to flatten a CFG. For example, it uses parallel-and
    221 /// and parallel-or mode to collapse if-conditions and merge if-regions with
    222 /// identical statements.
    223 bool FlattenCFG(BasicBlock *BB, AliasAnalysis *AA = nullptr);
    224 
    225 /// If this basic block is ONLY a setcc and a branch, and if a predecessor
    226 /// branches to us and one of our successors, fold the setcc into the
    227 /// predecessor and use logical operations to pick the right destination.
    228 bool FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold = 1);
    229 
    230 /// This function takes a virtual register computed by an Instruction and
    231 /// replaces it with a slot in the stack frame, allocated via alloca.
    232 /// This allows the CFG to be changed around without fear of invalidating the
    233 /// SSA information for the value. It returns the pointer to the alloca inserted
    234 /// to create a stack slot for X.
    235 AllocaInst *DemoteRegToStack(Instruction &X,
    236                              bool VolatileLoads = false,
    237                              Instruction *AllocaPoint = nullptr);
    238 
    239 /// This function takes a virtual register computed by a phi node and replaces
    240 /// it with a slot in the stack frame, allocated via alloca. The phi node is
    241 /// deleted and it returns the pointer to the alloca inserted.
    242 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
    243 
    244 /// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If
    245 /// the owning object can be modified and has an alignment less than \p
    246 /// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment
    247 /// cannot be increased, the known alignment of the value is returned.
    248 ///
    249 /// It is not always possible to modify the alignment of the underlying object,
    250 /// so if alignment is important, a more reliable approach is to simply align
    251 /// all global variables and allocation instructions to their preferred
    252 /// alignment from the beginning.
    253 unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
    254                                     const DataLayout &DL,
    255                                     const Instruction *CxtI = nullptr,
    256                                     AssumptionCache *AC = nullptr,
    257                                     const DominatorTree *DT = nullptr);
    258 
    259 /// Try to infer an alignment for the specified pointer.
    260 inline unsigned getKnownAlignment(Value *V, const DataLayout &DL,
    261                                   const Instruction *CxtI = nullptr,
    262                                   AssumptionCache *AC = nullptr,
    263                                   const DominatorTree *DT = nullptr) {
    264   return getOrEnforceKnownAlignment(V, 0, DL, CxtI, AC, DT);
    265 }
    266 
    267 ///===---------------------------------------------------------------------===//
    268 ///  Dbg Intrinsic utilities
    269 ///
    270 
    271 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
    272 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
    273 void ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
    274                                      StoreInst *SI, DIBuilder &Builder);
    275 
    276 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
    277 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
    278 void ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
    279                                      LoadInst *LI, DIBuilder &Builder);
    280 
    281 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
    282 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
    283 void ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII,
    284                                      PHINode *LI, DIBuilder &Builder);
    285 
    286 /// Lowers llvm.dbg.declare intrinsics into appropriate set of
    287 /// llvm.dbg.value intrinsics.
    288 bool LowerDbgDeclare(Function &F);
    289 
    290 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
    291 void insertDebugValuesForPHIs(BasicBlock *BB,
    292                               SmallVectorImpl<PHINode *> &InsertedPHIs);
    293 
    294 /// Finds all intrinsics declaring local variables as living in the memory that
    295 /// 'V' points to. This may include a mix of dbg.declare and
    296 /// dbg.addr intrinsics.
    297 TinyPtrVector<DbgInfoIntrinsic *> FindDbgAddrUses(Value *V);
    298 
    299 /// Finds the llvm.dbg.value intrinsics describing a value.
    300 void findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V);
    301 
    302 /// Finds the debug info intrinsics describing a value.
    303 void findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgInsts, Value *V);
    304 
    305 /// Replaces llvm.dbg.declare instruction when the address it
    306 /// describes is replaced with a new value. If Deref is true, an
    307 /// additional DW_OP_deref is prepended to the expression. If Offset
    308 /// is non-zero, a constant displacement is added to the expression
    309 /// (between the optional Deref operations). Offset can be negative.
    310 bool replaceDbgDeclare(Value *Address, Value *NewAddress,
    311                        Instruction *InsertBefore, DIBuilder &Builder,
    312                        bool DerefBefore, int Offset, bool DerefAfter);
    313 
    314 /// Replaces llvm.dbg.declare instruction when the alloca it describes
    315 /// is replaced with a new value. If Deref is true, an additional
    316 /// DW_OP_deref is prepended to the expression. If Offset is non-zero,
    317 /// a constant displacement is added to the expression (between the
    318 /// optional Deref operations). Offset can be negative. The new
    319 /// llvm.dbg.declare is inserted immediately after AI.
    320 bool replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
    321                                 DIBuilder &Builder, bool DerefBefore,
    322                                 int Offset, bool DerefAfter);
    323 
    324 /// Replaces multiple llvm.dbg.value instructions when the alloca it describes
    325 /// is replaced with a new value. If Offset is non-zero, a constant displacement
    326 /// is added to the expression (after the mandatory Deref). Offset can be
    327 /// negative. New llvm.dbg.value instructions are inserted at the locations of
    328 /// the instructions they replace.
    329 void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
    330                               DIBuilder &Builder, int Offset = 0);
    331 
    332 /// Assuming the instruction \p I is going to be deleted, attempt to salvage
    333 /// debug users of \p I by writing the effect of \p I in a DIExpression.
    334 /// Returns true if any debug users were updated.
    335 bool salvageDebugInfo(Instruction &I);
    336 
    337 /// Point debug users of \p From to \p To or salvage them. Use this function
    338 /// only when replacing all uses of \p From with \p To, with a guarantee that
    339 /// \p From is going to be deleted.
    340 ///
    341 /// Follow these rules to prevent use-before-def of \p To:
    342 ///   . If \p To is a linked Instruction, set \p DomPoint to \p To.
    343 ///   . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction
    344 ///     \p To will be inserted after.
    345 ///   . If \p To is not an Instruction (e.g a Constant), the choice of
    346 ///     \p DomPoint is arbitrary. Pick \p From for simplicity.
    347 ///
    348 /// If a debug user cannot be preserved without reordering variable updates or
    349 /// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo)
    350 /// or deleted. Returns true if any debug users were updated.
    351 bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint,
    352                            DominatorTree &DT);
    353 
    354 /// Remove all instructions from a basic block other than it's terminator
    355 /// and any present EH pad instructions.
    356 unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);
    357 
    358 /// Insert an unreachable instruction before the specified
    359 /// instruction, making it and the rest of the code in the block dead.
    360 unsigned changeToUnreachable(Instruction *I, bool UseLLVMTrap,
    361                              bool PreserveLCSSA = false,
    362                              DeferredDominance *DDT = nullptr);
    363 
    364 /// Convert the CallInst to InvokeInst with the specified unwind edge basic
    365 /// block.  This also splits the basic block where CI is located, because
    366 /// InvokeInst is a terminator instruction.  Returns the newly split basic
    367 /// block.
    368 BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI,
    369                                              BasicBlock *UnwindEdge);
    370 
    371 /// Replace 'BB's terminator with one that does not have an unwind successor
    372 /// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
    373 /// successor.
    374 ///
    375 /// \param BB  Block whose terminator will be replaced.  Its terminator must
    376 ///            have an unwind successor.
    377 void removeUnwindEdge(BasicBlock *BB, DeferredDominance *DDT = nullptr);
    378 
    379 /// Remove all blocks that can not be reached from the function's entry.
    380 ///
    381 /// Returns true if any basic block was removed.
    382 bool removeUnreachableBlocks(Function &F, LazyValueInfo *LVI = nullptr,
    383                              DeferredDominance *DDT = nullptr);
    384 
    385 /// Combine the metadata of two instructions so that K can replace J
    386 ///
    387 /// Metadata not listed as known via KnownIDs is removed
    388 void combineMetadata(Instruction *K, const Instruction *J, ArrayRef<unsigned> KnownIDs);
    389 
    390 /// Combine the metadata of two instructions so that K can replace J. This
    391 /// specifically handles the case of CSE-like transformations.
    392 ///
    393 /// Unknown metadata is removed.
    394 void combineMetadataForCSE(Instruction *K, const Instruction *J);
    395 
    396 // Replace each use of 'From' with 'To', if that use does not belong to basic
    397 // block where 'From' is defined. Returns the number of replacements made.
    398 unsigned replaceNonLocalUsesWith(Instruction *From, Value *To);
    399 
    400 /// Replace each use of 'From' with 'To' if that use is dominated by
    401 /// the given edge.  Returns the number of replacements made.
    402 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
    403                                   const BasicBlockEdge &Edge);
    404 /// Replace each use of 'From' with 'To' if that use is dominated by
    405 /// the end of the given BasicBlock. Returns the number of replacements made.
    406 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
    407                                   const BasicBlock *BB);
    408 
    409 /// Return true if the CallSite CS calls a gc leaf function.
    410 ///
    411 /// A leaf function is a function that does not safepoint the thread during its
    412 /// execution.  During a call or invoke to such a function, the callers stack
    413 /// does not have to be made parseable.
    414 ///
    415 /// Most passes can and should ignore this information, and it is only used
    416 /// during lowering by the GC infrastructure.
    417 bool callsGCLeafFunction(ImmutableCallSite CS, const TargetLibraryInfo &TLI);
    418 
    419 /// Copy a nonnull metadata node to a new load instruction.
    420 ///
    421 /// This handles mapping it to range metadata if the new load is an integer
    422 /// load instead of a pointer load.
    423 void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI);
    424 
    425 /// Copy a range metadata node to a new load instruction.
    426 ///
    427 /// This handles mapping it to nonnull metadata if the new load is a pointer
    428 /// load instead of an integer load and the range doesn't cover null.
    429 void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N,
    430                        LoadInst &NewLI);
    431 
    432 //===----------------------------------------------------------------------===//
    433 //  Intrinsic pattern matching
    434 //
    435 
    436 /// Try to match a bswap or bitreverse idiom.
    437 ///
    438 /// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
    439 /// instructions are returned in \c InsertedInsts. They will all have been added
    440 /// to a basic block.
    441 ///
    442 /// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
    443 /// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
    444 /// to BW / 4 nodes to be searched, so is significantly faster.
    445 ///
    446 /// This function returns true on a successful match or false otherwise.
    447 bool recognizeBSwapOrBitReverseIdiom(
    448     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
    449     SmallVectorImpl<Instruction *> &InsertedInsts);
    450 
    451 //===----------------------------------------------------------------------===//
    452 //  Sanitizer utilities
    453 //
    454 
    455 /// Given a CallInst, check if it calls a string function known to CodeGen,
    456 /// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
    457 /// to intercept string functions and want to avoid converting them to target
    458 /// specific instructions.
    459 void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
    460                                             const TargetLibraryInfo *TLI);
    461 
    462 //===----------------------------------------------------------------------===//
    463 //  Transform predicates
    464 //
    465 
    466 /// Given an instruction, is it legal to set operand OpIdx to a non-constant
    467 /// value?
    468 bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx);
    469 
    470 } // end namespace llvm
    471 
    472 #endif // LLVM_TRANSFORMS_UTILS_LOCAL_H
    473