1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This family of functions perform various local transformations to the 11 // program. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/Local.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/Hashing.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/TinyPtrVector.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/LazyValueInfo.h" 33 #include "llvm/Analysis/MemoryBuiltins.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/IR/Argument.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/CFG.h" 41 #include "llvm/IR/CallSite.h" 42 #include "llvm/IR/Constant.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DIBuilder.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalObject.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/KnownBits.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/ValueMapper.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <climits> 80 #include <cstdint> 81 #include <iterator> 82 #include <map> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace llvm::PatternMatch; 87 88 #define DEBUG_TYPE "local" 89 90 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 91 92 //===----------------------------------------------------------------------===// 93 // Local constant propagation. 94 // 95 96 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 97 /// constant value, convert it into an unconditional branch to the constant 98 /// destination. This is a nontrivial operation because the successors of this 99 /// basic block must have their PHI nodes updated. 100 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 101 /// conditions and indirectbr addresses this might make dead if 102 /// DeleteDeadConditions is true. 103 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 104 const TargetLibraryInfo *TLI, 105 DeferredDominance *DDT) { 106 TerminatorInst *T = BB->getTerminator(); 107 IRBuilder<> Builder(T); 108 109 // Branch - See if we are conditional jumping on constant 110 if (auto *BI = dyn_cast<BranchInst>(T)) { 111 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 112 BasicBlock *Dest1 = BI->getSuccessor(0); 113 BasicBlock *Dest2 = BI->getSuccessor(1); 114 115 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 116 // Are we branching on constant? 117 // YES. Change to unconditional branch... 118 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 119 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 120 121 // Let the basic block know that we are letting go of it. Based on this, 122 // it will adjust it's PHI nodes. 123 OldDest->removePredecessor(BB); 124 125 // Replace the conditional branch with an unconditional one. 126 Builder.CreateBr(Destination); 127 BI->eraseFromParent(); 128 if (DDT) 129 DDT->deleteEdge(BB, OldDest); 130 return true; 131 } 132 133 if (Dest2 == Dest1) { // Conditional branch to same location? 134 // This branch matches something like this: 135 // br bool %cond, label %Dest, label %Dest 136 // and changes it into: br label %Dest 137 138 // Let the basic block know that we are letting go of one copy of it. 139 assert(BI->getParent() && "Terminator not inserted in block!"); 140 Dest1->removePredecessor(BI->getParent()); 141 142 // Replace the conditional branch with an unconditional one. 143 Builder.CreateBr(Dest1); 144 Value *Cond = BI->getCondition(); 145 BI->eraseFromParent(); 146 if (DeleteDeadConditions) 147 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 148 return true; 149 } 150 return false; 151 } 152 153 if (auto *SI = dyn_cast<SwitchInst>(T)) { 154 // If we are switching on a constant, we can convert the switch to an 155 // unconditional branch. 156 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 157 BasicBlock *DefaultDest = SI->getDefaultDest(); 158 BasicBlock *TheOnlyDest = DefaultDest; 159 160 // If the default is unreachable, ignore it when searching for TheOnlyDest. 161 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 162 SI->getNumCases() > 0) { 163 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 164 } 165 166 // Figure out which case it goes to. 167 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { 168 // Found case matching a constant operand? 169 if (i->getCaseValue() == CI) { 170 TheOnlyDest = i->getCaseSuccessor(); 171 break; 172 } 173 174 // Check to see if this branch is going to the same place as the default 175 // dest. If so, eliminate it as an explicit compare. 176 if (i->getCaseSuccessor() == DefaultDest) { 177 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 178 unsigned NCases = SI->getNumCases(); 179 // Fold the case metadata into the default if there will be any branches 180 // left, unless the metadata doesn't match the switch. 181 if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { 182 // Collect branch weights into a vector. 183 SmallVector<uint32_t, 8> Weights; 184 for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; 185 ++MD_i) { 186 auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); 187 Weights.push_back(CI->getValue().getZExtValue()); 188 } 189 // Merge weight of this case to the default weight. 190 unsigned idx = i->getCaseIndex(); 191 Weights[0] += Weights[idx+1]; 192 // Remove weight for this case. 193 std::swap(Weights[idx+1], Weights.back()); 194 Weights.pop_back(); 195 SI->setMetadata(LLVMContext::MD_prof, 196 MDBuilder(BB->getContext()). 197 createBranchWeights(Weights)); 198 } 199 // Remove this entry. 200 BasicBlock *ParentBB = SI->getParent(); 201 DefaultDest->removePredecessor(ParentBB); 202 i = SI->removeCase(i); 203 e = SI->case_end(); 204 if (DDT) 205 DDT->deleteEdge(ParentBB, DefaultDest); 206 continue; 207 } 208 209 // Otherwise, check to see if the switch only branches to one destination. 210 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 211 // destinations. 212 if (i->getCaseSuccessor() != TheOnlyDest) 213 TheOnlyDest = nullptr; 214 215 // Increment this iterator as we haven't removed the case. 216 ++i; 217 } 218 219 if (CI && !TheOnlyDest) { 220 // Branching on a constant, but not any of the cases, go to the default 221 // successor. 222 TheOnlyDest = SI->getDefaultDest(); 223 } 224 225 // If we found a single destination that we can fold the switch into, do so 226 // now. 227 if (TheOnlyDest) { 228 // Insert the new branch. 229 Builder.CreateBr(TheOnlyDest); 230 BasicBlock *BB = SI->getParent(); 231 std::vector <DominatorTree::UpdateType> Updates; 232 if (DDT) 233 Updates.reserve(SI->getNumSuccessors() - 1); 234 235 // Remove entries from PHI nodes which we no longer branch to... 236 for (BasicBlock *Succ : SI->successors()) { 237 // Found case matching a constant operand? 238 if (Succ == TheOnlyDest) { 239 TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest 240 } else { 241 Succ->removePredecessor(BB); 242 if (DDT) 243 Updates.push_back({DominatorTree::Delete, BB, Succ}); 244 } 245 } 246 247 // Delete the old switch. 248 Value *Cond = SI->getCondition(); 249 SI->eraseFromParent(); 250 if (DeleteDeadConditions) 251 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 252 if (DDT) 253 DDT->applyUpdates(Updates); 254 return true; 255 } 256 257 if (SI->getNumCases() == 1) { 258 // Otherwise, we can fold this switch into a conditional branch 259 // instruction if it has only one non-default destination. 260 auto FirstCase = *SI->case_begin(); 261 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 262 FirstCase.getCaseValue(), "cond"); 263 264 // Insert the new branch. 265 BranchInst *NewBr = Builder.CreateCondBr(Cond, 266 FirstCase.getCaseSuccessor(), 267 SI->getDefaultDest()); 268 MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); 269 if (MD && MD->getNumOperands() == 3) { 270 ConstantInt *SICase = 271 mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 272 ConstantInt *SIDef = 273 mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 274 assert(SICase && SIDef); 275 // The TrueWeight should be the weight for the single case of SI. 276 NewBr->setMetadata(LLVMContext::MD_prof, 277 MDBuilder(BB->getContext()). 278 createBranchWeights(SICase->getValue().getZExtValue(), 279 SIDef->getValue().getZExtValue())); 280 } 281 282 // Update make.implicit metadata to the newly-created conditional branch. 283 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 284 if (MakeImplicitMD) 285 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 286 287 // Delete the old switch. 288 SI->eraseFromParent(); 289 return true; 290 } 291 return false; 292 } 293 294 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 295 // indirectbr blockaddress(@F, @BB) -> br label @BB 296 if (auto *BA = 297 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 298 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 299 std::vector <DominatorTree::UpdateType> Updates; 300 if (DDT) 301 Updates.reserve(IBI->getNumDestinations() - 1); 302 303 // Insert the new branch. 304 Builder.CreateBr(TheOnlyDest); 305 306 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 307 if (IBI->getDestination(i) == TheOnlyDest) { 308 TheOnlyDest = nullptr; 309 } else { 310 BasicBlock *ParentBB = IBI->getParent(); 311 BasicBlock *DestBB = IBI->getDestination(i); 312 DestBB->removePredecessor(ParentBB); 313 if (DDT) 314 Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); 315 } 316 } 317 Value *Address = IBI->getAddress(); 318 IBI->eraseFromParent(); 319 if (DeleteDeadConditions) 320 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 321 322 // If we didn't find our destination in the IBI successor list, then we 323 // have undefined behavior. Replace the unconditional branch with an 324 // 'unreachable' instruction. 325 if (TheOnlyDest) { 326 BB->getTerminator()->eraseFromParent(); 327 new UnreachableInst(BB->getContext(), BB); 328 } 329 330 if (DDT) 331 DDT->applyUpdates(Updates); 332 return true; 333 } 334 } 335 336 return false; 337 } 338 339 //===----------------------------------------------------------------------===// 340 // Local dead code elimination. 341 // 342 343 /// isInstructionTriviallyDead - Return true if the result produced by the 344 /// instruction is not used, and the instruction has no side effects. 345 /// 346 bool llvm::isInstructionTriviallyDead(Instruction *I, 347 const TargetLibraryInfo *TLI) { 348 if (!I->use_empty()) 349 return false; 350 return wouldInstructionBeTriviallyDead(I, TLI); 351 } 352 353 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, 354 const TargetLibraryInfo *TLI) { 355 if (isa<TerminatorInst>(I)) 356 return false; 357 358 // We don't want the landingpad-like instructions removed by anything this 359 // general. 360 if (I->isEHPad()) 361 return false; 362 363 // We don't want debug info removed by anything this general, unless 364 // debug info is empty. 365 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { 366 if (DDI->getAddress()) 367 return false; 368 return true; 369 } 370 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { 371 if (DVI->getValue()) 372 return false; 373 return true; 374 } 375 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 376 if (DLI->getLabel()) 377 return false; 378 return true; 379 } 380 381 if (!I->mayHaveSideEffects()) 382 return true; 383 384 // Special case intrinsics that "may have side effects" but can be deleted 385 // when dead. 386 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 387 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 388 if (II->getIntrinsicID() == Intrinsic::stacksave || 389 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 390 return true; 391 392 // Lifetime intrinsics are dead when their right-hand is undef. 393 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 394 II->getIntrinsicID() == Intrinsic::lifetime_end) 395 return isa<UndefValue>(II->getArgOperand(1)); 396 397 // Assumptions are dead if their condition is trivially true. Guards on 398 // true are operationally no-ops. In the future we can consider more 399 // sophisticated tradeoffs for guards considering potential for check 400 // widening, but for now we keep things simple. 401 if (II->getIntrinsicID() == Intrinsic::assume || 402 II->getIntrinsicID() == Intrinsic::experimental_guard) { 403 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 404 return !Cond->isZero(); 405 406 return false; 407 } 408 } 409 410 if (isAllocLikeFn(I, TLI)) 411 return true; 412 413 if (CallInst *CI = isFreeCall(I, TLI)) 414 if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) 415 return C->isNullValue() || isa<UndefValue>(C); 416 417 if (CallSite CS = CallSite(I)) 418 if (isMathLibCallNoop(CS, TLI)) 419 return true; 420 421 return false; 422 } 423 424 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 425 /// trivially dead instruction, delete it. If that makes any of its operands 426 /// trivially dead, delete them too, recursively. Return true if any 427 /// instructions were deleted. 428 bool 429 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V, 430 const TargetLibraryInfo *TLI) { 431 Instruction *I = dyn_cast<Instruction>(V); 432 if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI)) 433 return false; 434 435 SmallVector<Instruction*, 16> DeadInsts; 436 DeadInsts.push_back(I); 437 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); 438 439 return true; 440 } 441 442 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 443 SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI) { 444 // Process the dead instruction list until empty. 445 while (!DeadInsts.empty()) { 446 Instruction &I = *DeadInsts.pop_back_val(); 447 assert(I.use_empty() && "Instructions with uses are not dead."); 448 assert(isInstructionTriviallyDead(&I, TLI) && 449 "Live instruction found in dead worklist!"); 450 451 // Don't lose the debug info while deleting the instructions. 452 salvageDebugInfo(I); 453 454 // Null out all of the instruction's operands to see if any operand becomes 455 // dead as we go. 456 for (Use &OpU : I.operands()) { 457 Value *OpV = OpU.get(); 458 OpU.set(nullptr); 459 460 if (!OpV->use_empty()) 461 continue; 462 463 // If the operand is an instruction that became dead as we nulled out the 464 // operand, and if it is 'trivially' dead, delete it in a future loop 465 // iteration. 466 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 467 if (isInstructionTriviallyDead(OpI, TLI)) 468 DeadInsts.push_back(OpI); 469 } 470 471 I.eraseFromParent(); 472 } 473 } 474 475 /// areAllUsesEqual - Check whether the uses of a value are all the same. 476 /// This is similar to Instruction::hasOneUse() except this will also return 477 /// true when there are no uses or multiple uses that all refer to the same 478 /// value. 479 static bool areAllUsesEqual(Instruction *I) { 480 Value::user_iterator UI = I->user_begin(); 481 Value::user_iterator UE = I->user_end(); 482 if (UI == UE) 483 return true; 484 485 User *TheUse = *UI; 486 for (++UI; UI != UE; ++UI) { 487 if (*UI != TheUse) 488 return false; 489 } 490 return true; 491 } 492 493 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 494 /// dead PHI node, due to being a def-use chain of single-use nodes that 495 /// either forms a cycle or is terminated by a trivially dead instruction, 496 /// delete it. If that makes any of its operands trivially dead, delete them 497 /// too, recursively. Return true if a change was made. 498 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 499 const TargetLibraryInfo *TLI) { 500 SmallPtrSet<Instruction*, 4> Visited; 501 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 502 I = cast<Instruction>(*I->user_begin())) { 503 if (I->use_empty()) 504 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 505 506 // If we find an instruction more than once, we're on a cycle that 507 // won't prove fruitful. 508 if (!Visited.insert(I).second) { 509 // Break the cycle and delete the instruction and its operands. 510 I->replaceAllUsesWith(UndefValue::get(I->getType())); 511 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); 512 return true; 513 } 514 } 515 return false; 516 } 517 518 static bool 519 simplifyAndDCEInstruction(Instruction *I, 520 SmallSetVector<Instruction *, 16> &WorkList, 521 const DataLayout &DL, 522 const TargetLibraryInfo *TLI) { 523 if (isInstructionTriviallyDead(I, TLI)) { 524 salvageDebugInfo(*I); 525 526 // Null out all of the instruction's operands to see if any operand becomes 527 // dead as we go. 528 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 529 Value *OpV = I->getOperand(i); 530 I->setOperand(i, nullptr); 531 532 if (!OpV->use_empty() || I == OpV) 533 continue; 534 535 // If the operand is an instruction that became dead as we nulled out the 536 // operand, and if it is 'trivially' dead, delete it in a future loop 537 // iteration. 538 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 539 if (isInstructionTriviallyDead(OpI, TLI)) 540 WorkList.insert(OpI); 541 } 542 543 I->eraseFromParent(); 544 545 return true; 546 } 547 548 if (Value *SimpleV = SimplifyInstruction(I, DL)) { 549 // Add the users to the worklist. CAREFUL: an instruction can use itself, 550 // in the case of a phi node. 551 for (User *U : I->users()) { 552 if (U != I) { 553 WorkList.insert(cast<Instruction>(U)); 554 } 555 } 556 557 // Replace the instruction with its simplified value. 558 bool Changed = false; 559 if (!I->use_empty()) { 560 I->replaceAllUsesWith(SimpleV); 561 Changed = true; 562 } 563 if (isInstructionTriviallyDead(I, TLI)) { 564 I->eraseFromParent(); 565 Changed = true; 566 } 567 return Changed; 568 } 569 return false; 570 } 571 572 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 573 /// simplify any instructions in it and recursively delete dead instructions. 574 /// 575 /// This returns true if it changed the code, note that it can delete 576 /// instructions in other blocks as well in this block. 577 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 578 const TargetLibraryInfo *TLI) { 579 bool MadeChange = false; 580 const DataLayout &DL = BB->getModule()->getDataLayout(); 581 582 #ifndef NDEBUG 583 // In debug builds, ensure that the terminator of the block is never replaced 584 // or deleted by these simplifications. The idea of simplification is that it 585 // cannot introduce new instructions, and there is no way to replace the 586 // terminator of a block without introducing a new instruction. 587 AssertingVH<Instruction> TerminatorVH(&BB->back()); 588 #endif 589 590 SmallSetVector<Instruction *, 16> WorkList; 591 // Iterate over the original function, only adding insts to the worklist 592 // if they actually need to be revisited. This avoids having to pre-init 593 // the worklist with the entire function's worth of instructions. 594 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 595 BI != E;) { 596 assert(!BI->isTerminator()); 597 Instruction *I = &*BI; 598 ++BI; 599 600 // We're visiting this instruction now, so make sure it's not in the 601 // worklist from an earlier visit. 602 if (!WorkList.count(I)) 603 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 604 } 605 606 while (!WorkList.empty()) { 607 Instruction *I = WorkList.pop_back_val(); 608 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 609 } 610 return MadeChange; 611 } 612 613 //===----------------------------------------------------------------------===// 614 // Control Flow Graph Restructuring. 615 // 616 617 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this 618 /// method is called when we're about to delete Pred as a predecessor of BB. If 619 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. 620 /// 621 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI 622 /// nodes that collapse into identity values. For example, if we have: 623 /// x = phi(1, 0, 0, 0) 624 /// y = and x, z 625 /// 626 /// .. and delete the predecessor corresponding to the '1', this will attempt to 627 /// recursively fold the and to 0. 628 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, 629 DeferredDominance *DDT) { 630 // This only adjusts blocks with PHI nodes. 631 if (!isa<PHINode>(BB->begin())) 632 return; 633 634 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify 635 // them down. This will leave us with single entry phi nodes and other phis 636 // that can be removed. 637 BB->removePredecessor(Pred, true); 638 639 WeakTrackingVH PhiIt = &BB->front(); 640 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { 641 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); 642 Value *OldPhiIt = PhiIt; 643 644 if (!recursivelySimplifyInstruction(PN)) 645 continue; 646 647 // If recursive simplification ended up deleting the next PHI node we would 648 // iterate to, then our iterator is invalid, restart scanning from the top 649 // of the block. 650 if (PhiIt != OldPhiIt) PhiIt = &BB->front(); 651 } 652 if (DDT) 653 DDT->deleteEdge(Pred, BB); 654 } 655 656 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its 657 /// predecessor is known to have one successor (DestBB!). Eliminate the edge 658 /// between them, moving the instructions in the predecessor into DestBB and 659 /// deleting the predecessor block. 660 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT, 661 DeferredDominance *DDT) { 662 assert(!(DT && DDT) && "Cannot call with both DT and DDT."); 663 664 // If BB has single-entry PHI nodes, fold them. 665 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 666 Value *NewVal = PN->getIncomingValue(0); 667 // Replace self referencing PHI with undef, it must be dead. 668 if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); 669 PN->replaceAllUsesWith(NewVal); 670 PN->eraseFromParent(); 671 } 672 673 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 674 assert(PredBB && "Block doesn't have a single predecessor!"); 675 676 bool ReplaceEntryBB = false; 677 if (PredBB == &DestBB->getParent()->getEntryBlock()) 678 ReplaceEntryBB = true; 679 680 // Deferred DT update: Collect all the edges that enter PredBB. These 681 // dominator edges will be redirected to DestBB. 682 std::vector <DominatorTree::UpdateType> Updates; 683 if (DDT && !ReplaceEntryBB) { 684 Updates.reserve(1 + (2 * pred_size(PredBB))); 685 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 686 for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { 687 Updates.push_back({DominatorTree::Delete, *I, PredBB}); 688 // This predecessor of PredBB may already have DestBB as a successor. 689 if (llvm::find(successors(*I), DestBB) == succ_end(*I)) 690 Updates.push_back({DominatorTree::Insert, *I, DestBB}); 691 } 692 } 693 694 // Zap anything that took the address of DestBB. Not doing this will give the 695 // address an invalid value. 696 if (DestBB->hasAddressTaken()) { 697 BlockAddress *BA = BlockAddress::get(DestBB); 698 Constant *Replacement = 699 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 700 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 701 BA->getType())); 702 BA->destroyConstant(); 703 } 704 705 // Anything that branched to PredBB now branches to DestBB. 706 PredBB->replaceAllUsesWith(DestBB); 707 708 // Splice all the instructions from PredBB to DestBB. 709 PredBB->getTerminator()->eraseFromParent(); 710 DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); 711 712 // If the PredBB is the entry block of the function, move DestBB up to 713 // become the entry block after we erase PredBB. 714 if (ReplaceEntryBB) 715 DestBB->moveAfter(PredBB); 716 717 if (DT) { 718 // For some irreducible CFG we end up having forward-unreachable blocks 719 // so check if getNode returns a valid node before updating the domtree. 720 if (DomTreeNode *DTN = DT->getNode(PredBB)) { 721 BasicBlock *PredBBIDom = DTN->getIDom()->getBlock(); 722 DT->changeImmediateDominator(DestBB, PredBBIDom); 723 DT->eraseNode(PredBB); 724 } 725 } 726 727 if (DDT) { 728 DDT->deleteBB(PredBB); // Deferred deletion of BB. 729 if (ReplaceEntryBB) 730 // The entry block was removed and there is no external interface for the 731 // dominator tree to be notified of this change. In this corner-case we 732 // recalculate the entire tree. 733 DDT->recalculate(*(DestBB->getParent())); 734 else 735 DDT->applyUpdates(Updates); 736 } else { 737 PredBB->eraseFromParent(); // Nuke BB. 738 } 739 } 740 741 /// CanMergeValues - Return true if we can choose one of these values to use 742 /// in place of the other. Note that we will always choose the non-undef 743 /// value to keep. 744 static bool CanMergeValues(Value *First, Value *Second) { 745 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 746 } 747 748 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an 749 /// almost-empty BB ending in an unconditional branch to Succ, into Succ. 750 /// 751 /// Assumption: Succ is the single successor for BB. 752 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 753 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 754 755 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 756 << Succ->getName() << "\n"); 757 // Shortcut, if there is only a single predecessor it must be BB and merging 758 // is always safe 759 if (Succ->getSinglePredecessor()) return true; 760 761 // Make a list of the predecessors of BB 762 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); 763 764 // Look at all the phi nodes in Succ, to see if they present a conflict when 765 // merging these blocks 766 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 767 PHINode *PN = cast<PHINode>(I); 768 769 // If the incoming value from BB is again a PHINode in 770 // BB which has the same incoming value for *PI as PN does, we can 771 // merge the phi nodes and then the blocks can still be merged 772 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 773 if (BBPN && BBPN->getParent() == BB) { 774 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 775 BasicBlock *IBB = PN->getIncomingBlock(PI); 776 if (BBPreds.count(IBB) && 777 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 778 PN->getIncomingValue(PI))) { 779 LLVM_DEBUG(dbgs() 780 << "Can't fold, phi node " << PN->getName() << " in " 781 << Succ->getName() << " is conflicting with " 782 << BBPN->getName() << " with regard to common predecessor " 783 << IBB->getName() << "\n"); 784 return false; 785 } 786 } 787 } else { 788 Value* Val = PN->getIncomingValueForBlock(BB); 789 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 790 // See if the incoming value for the common predecessor is equal to the 791 // one for BB, in which case this phi node will not prevent the merging 792 // of the block. 793 BasicBlock *IBB = PN->getIncomingBlock(PI); 794 if (BBPreds.count(IBB) && 795 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 796 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 797 << " in " << Succ->getName() 798 << " is conflicting with regard to common " 799 << "predecessor " << IBB->getName() << "\n"); 800 return false; 801 } 802 } 803 } 804 } 805 806 return true; 807 } 808 809 using PredBlockVector = SmallVector<BasicBlock *, 16>; 810 using IncomingValueMap = DenseMap<BasicBlock *, Value *>; 811 812 /// Determines the value to use as the phi node input for a block. 813 /// 814 /// Select between \p OldVal any value that we know flows from \p BB 815 /// to a particular phi on the basis of which one (if either) is not 816 /// undef. Update IncomingValues based on the selected value. 817 /// 818 /// \param OldVal The value we are considering selecting. 819 /// \param BB The block that the value flows in from. 820 /// \param IncomingValues A map from block-to-value for other phi inputs 821 /// that we have examined. 822 /// 823 /// \returns the selected value. 824 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 825 IncomingValueMap &IncomingValues) { 826 if (!isa<UndefValue>(OldVal)) { 827 assert((!IncomingValues.count(BB) || 828 IncomingValues.find(BB)->second == OldVal) && 829 "Expected OldVal to match incoming value from BB!"); 830 831 IncomingValues.insert(std::make_pair(BB, OldVal)); 832 return OldVal; 833 } 834 835 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 836 if (It != IncomingValues.end()) return It->second; 837 838 return OldVal; 839 } 840 841 /// Create a map from block to value for the operands of a 842 /// given phi. 843 /// 844 /// Create a map from block to value for each non-undef value flowing 845 /// into \p PN. 846 /// 847 /// \param PN The phi we are collecting the map for. 848 /// \param IncomingValues [out] The map from block to value for this phi. 849 static void gatherIncomingValuesToPhi(PHINode *PN, 850 IncomingValueMap &IncomingValues) { 851 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 852 BasicBlock *BB = PN->getIncomingBlock(i); 853 Value *V = PN->getIncomingValue(i); 854 855 if (!isa<UndefValue>(V)) 856 IncomingValues.insert(std::make_pair(BB, V)); 857 } 858 } 859 860 /// Replace the incoming undef values to a phi with the values 861 /// from a block-to-value map. 862 /// 863 /// \param PN The phi we are replacing the undefs in. 864 /// \param IncomingValues A map from block to value. 865 static void replaceUndefValuesInPhi(PHINode *PN, 866 const IncomingValueMap &IncomingValues) { 867 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 868 Value *V = PN->getIncomingValue(i); 869 870 if (!isa<UndefValue>(V)) continue; 871 872 BasicBlock *BB = PN->getIncomingBlock(i); 873 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 874 if (It == IncomingValues.end()) continue; 875 876 PN->setIncomingValue(i, It->second); 877 } 878 } 879 880 /// Replace a value flowing from a block to a phi with 881 /// potentially multiple instances of that value flowing from the 882 /// block's predecessors to the phi. 883 /// 884 /// \param BB The block with the value flowing into the phi. 885 /// \param BBPreds The predecessors of BB. 886 /// \param PN The phi that we are updating. 887 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 888 const PredBlockVector &BBPreds, 889 PHINode *PN) { 890 Value *OldVal = PN->removeIncomingValue(BB, false); 891 assert(OldVal && "No entry in PHI for Pred BB!"); 892 893 IncomingValueMap IncomingValues; 894 895 // We are merging two blocks - BB, and the block containing PN - and 896 // as a result we need to redirect edges from the predecessors of BB 897 // to go to the block containing PN, and update PN 898 // accordingly. Since we allow merging blocks in the case where the 899 // predecessor and successor blocks both share some predecessors, 900 // and where some of those common predecessors might have undef 901 // values flowing into PN, we want to rewrite those values to be 902 // consistent with the non-undef values. 903 904 gatherIncomingValuesToPhi(PN, IncomingValues); 905 906 // If this incoming value is one of the PHI nodes in BB, the new entries 907 // in the PHI node are the entries from the old PHI. 908 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 909 PHINode *OldValPN = cast<PHINode>(OldVal); 910 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 911 // Note that, since we are merging phi nodes and BB and Succ might 912 // have common predecessors, we could end up with a phi node with 913 // identical incoming branches. This will be cleaned up later (and 914 // will trigger asserts if we try to clean it up now, without also 915 // simplifying the corresponding conditional branch). 916 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 917 Value *PredVal = OldValPN->getIncomingValue(i); 918 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, 919 IncomingValues); 920 921 // And add a new incoming value for this predecessor for the 922 // newly retargeted branch. 923 PN->addIncoming(Selected, PredBB); 924 } 925 } else { 926 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { 927 // Update existing incoming values in PN for this 928 // predecessor of BB. 929 BasicBlock *PredBB = BBPreds[i]; 930 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, 931 IncomingValues); 932 933 // And add a new incoming value for this predecessor for the 934 // newly retargeted branch. 935 PN->addIncoming(Selected, PredBB); 936 } 937 } 938 939 replaceUndefValuesInPhi(PN, IncomingValues); 940 } 941 942 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an 943 /// unconditional branch, and contains no instructions other than PHI nodes, 944 /// potential side-effect free intrinsics and the branch. If possible, 945 /// eliminate BB by rewriting all the predecessors to branch to the successor 946 /// block and return true. If we can't transform, return false. 947 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 948 DeferredDominance *DDT) { 949 assert(BB != &BB->getParent()->getEntryBlock() && 950 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 951 952 // We can't eliminate infinite loops. 953 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 954 if (BB == Succ) return false; 955 956 // Check to see if merging these blocks would cause conflicts for any of the 957 // phi nodes in BB or Succ. If not, we can safely merge. 958 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; 959 960 // Check for cases where Succ has multiple predecessors and a PHI node in BB 961 // has uses which will not disappear when the PHI nodes are merged. It is 962 // possible to handle such cases, but difficult: it requires checking whether 963 // BB dominates Succ, which is non-trivial to calculate in the case where 964 // Succ has multiple predecessors. Also, it requires checking whether 965 // constructing the necessary self-referential PHI node doesn't introduce any 966 // conflicts; this isn't too difficult, but the previous code for doing this 967 // was incorrect. 968 // 969 // Note that if this check finds a live use, BB dominates Succ, so BB is 970 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 971 // folding the branch isn't profitable in that case anyway. 972 if (!Succ->getSinglePredecessor()) { 973 BasicBlock::iterator BBI = BB->begin(); 974 while (isa<PHINode>(*BBI)) { 975 for (Use &U : BBI->uses()) { 976 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 977 if (PN->getIncomingBlock(U) != BB) 978 return false; 979 } else { 980 return false; 981 } 982 } 983 ++BBI; 984 } 985 } 986 987 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 988 989 std::vector<DominatorTree::UpdateType> Updates; 990 if (DDT) { 991 Updates.reserve(1 + (2 * pred_size(BB))); 992 Updates.push_back({DominatorTree::Delete, BB, Succ}); 993 // All predecessors of BB will be moved to Succ. 994 for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { 995 Updates.push_back({DominatorTree::Delete, *I, BB}); 996 // This predecessor of BB may already have Succ as a successor. 997 if (llvm::find(successors(*I), Succ) == succ_end(*I)) 998 Updates.push_back({DominatorTree::Insert, *I, Succ}); 999 } 1000 } 1001 1002 if (isa<PHINode>(Succ->begin())) { 1003 // If there is more than one pred of succ, and there are PHI nodes in 1004 // the successor, then we need to add incoming edges for the PHI nodes 1005 // 1006 const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); 1007 1008 // Loop over all of the PHI nodes in the successor of BB. 1009 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1010 PHINode *PN = cast<PHINode>(I); 1011 1012 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); 1013 } 1014 } 1015 1016 if (Succ->getSinglePredecessor()) { 1017 // BB is the only predecessor of Succ, so Succ will end up with exactly 1018 // the same predecessors BB had. 1019 1020 // Copy over any phi, debug or lifetime instruction. 1021 BB->getTerminator()->eraseFromParent(); 1022 Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), 1023 BB->getInstList()); 1024 } else { 1025 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1026 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. 1027 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1028 PN->eraseFromParent(); 1029 } 1030 } 1031 1032 // If the unconditional branch we replaced contains llvm.loop metadata, we 1033 // add the metadata to the branch instructions in the predecessors. 1034 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); 1035 Instruction *TI = BB->getTerminator(); 1036 if (TI) 1037 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) 1038 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1039 BasicBlock *Pred = *PI; 1040 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); 1041 } 1042 1043 // Everything that jumped to BB now goes to Succ. 1044 BB->replaceAllUsesWith(Succ); 1045 if (!Succ->hasName()) Succ->takeName(BB); 1046 1047 if (DDT) { 1048 DDT->deleteBB(BB); // Deferred deletion of the old basic block. 1049 DDT->applyUpdates(Updates); 1050 } else { 1051 BB->eraseFromParent(); // Delete the old basic block. 1052 } 1053 return true; 1054 } 1055 1056 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI 1057 /// nodes in this block. This doesn't try to be clever about PHI nodes 1058 /// which differ only in the order of the incoming values, but instcombine 1059 /// orders them so it usually won't matter. 1060 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1061 // This implementation doesn't currently consider undef operands 1062 // specially. Theoretically, two phis which are identical except for 1063 // one having an undef where the other doesn't could be collapsed. 1064 1065 struct PHIDenseMapInfo { 1066 static PHINode *getEmptyKey() { 1067 return DenseMapInfo<PHINode *>::getEmptyKey(); 1068 } 1069 1070 static PHINode *getTombstoneKey() { 1071 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1072 } 1073 1074 static unsigned getHashValue(PHINode *PN) { 1075 // Compute a hash value on the operands. Instcombine will likely have 1076 // sorted them, which helps expose duplicates, but we have to check all 1077 // the operands to be safe in case instcombine hasn't run. 1078 return static_cast<unsigned>(hash_combine( 1079 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1080 hash_combine_range(PN->block_begin(), PN->block_end()))); 1081 } 1082 1083 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1084 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 1085 RHS == getEmptyKey() || RHS == getTombstoneKey()) 1086 return LHS == RHS; 1087 return LHS->isIdenticalTo(RHS); 1088 } 1089 }; 1090 1091 // Set of unique PHINodes. 1092 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1093 1094 // Examine each PHI. 1095 bool Changed = false; 1096 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1097 auto Inserted = PHISet.insert(PN); 1098 if (!Inserted.second) { 1099 // A duplicate. Replace this PHI with its duplicate. 1100 PN->replaceAllUsesWith(*Inserted.first); 1101 PN->eraseFromParent(); 1102 Changed = true; 1103 1104 // The RAUW can change PHIs that we already visited. Start over from the 1105 // beginning. 1106 PHISet.clear(); 1107 I = BB->begin(); 1108 } 1109 } 1110 1111 return Changed; 1112 } 1113 1114 /// enforceKnownAlignment - If the specified pointer points to an object that 1115 /// we control, modify the object's alignment to PrefAlign. This isn't 1116 /// often possible though. If alignment is important, a more reliable approach 1117 /// is to simply align all global variables and allocation instructions to 1118 /// their preferred alignment from the beginning. 1119 static unsigned enforceKnownAlignment(Value *V, unsigned Align, 1120 unsigned PrefAlign, 1121 const DataLayout &DL) { 1122 assert(PrefAlign > Align); 1123 1124 V = V->stripPointerCasts(); 1125 1126 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1127 // TODO: ideally, computeKnownBits ought to have used 1128 // AllocaInst::getAlignment() in its computation already, making 1129 // the below max redundant. But, as it turns out, 1130 // stripPointerCasts recurses through infinite layers of bitcasts, 1131 // while computeKnownBits is not allowed to traverse more than 6 1132 // levels. 1133 Align = std::max(AI->getAlignment(), Align); 1134 if (PrefAlign <= Align) 1135 return Align; 1136 1137 // If the preferred alignment is greater than the natural stack alignment 1138 // then don't round up. This avoids dynamic stack realignment. 1139 if (DL.exceedsNaturalStackAlignment(PrefAlign)) 1140 return Align; 1141 AI->setAlignment(PrefAlign); 1142 return PrefAlign; 1143 } 1144 1145 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1146 // TODO: as above, this shouldn't be necessary. 1147 Align = std::max(GO->getAlignment(), Align); 1148 if (PrefAlign <= Align) 1149 return Align; 1150 1151 // If there is a large requested alignment and we can, bump up the alignment 1152 // of the global. If the memory we set aside for the global may not be the 1153 // memory used by the final program then it is impossible for us to reliably 1154 // enforce the preferred alignment. 1155 if (!GO->canIncreaseAlignment()) 1156 return Align; 1157 1158 GO->setAlignment(PrefAlign); 1159 return PrefAlign; 1160 } 1161 1162 return Align; 1163 } 1164 1165 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, 1166 const DataLayout &DL, 1167 const Instruction *CxtI, 1168 AssumptionCache *AC, 1169 const DominatorTree *DT) { 1170 assert(V->getType()->isPointerTy() && 1171 "getOrEnforceKnownAlignment expects a pointer!"); 1172 1173 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1174 unsigned TrailZ = Known.countMinTrailingZeros(); 1175 1176 // Avoid trouble with ridiculously large TrailZ values, such as 1177 // those computed from a null pointer. 1178 TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); 1179 1180 unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); 1181 1182 // LLVM doesn't support alignments larger than this currently. 1183 Align = std::min(Align, +Value::MaximumAlignment); 1184 1185 if (PrefAlign > Align) 1186 Align = enforceKnownAlignment(V, Align, PrefAlign, DL); 1187 1188 // We don't need to make any adjustment. 1189 return Align; 1190 } 1191 1192 ///===---------------------------------------------------------------------===// 1193 /// Dbg Intrinsic utilities 1194 /// 1195 1196 /// See if there is a dbg.value intrinsic for DIVar before I. 1197 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, 1198 Instruction *I) { 1199 // Since we can't guarantee that the original dbg.declare instrinsic 1200 // is removed by LowerDbgDeclare(), we need to make sure that we are 1201 // not inserting the same dbg.value intrinsic over and over. 1202 BasicBlock::InstListType::iterator PrevI(I); 1203 if (PrevI != I->getParent()->getInstList().begin()) { 1204 --PrevI; 1205 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) 1206 if (DVI->getValue() == I->getOperand(0) && 1207 DVI->getVariable() == DIVar && 1208 DVI->getExpression() == DIExpr) 1209 return true; 1210 } 1211 return false; 1212 } 1213 1214 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1215 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1216 DIExpression *DIExpr, 1217 PHINode *APN) { 1218 // Since we can't guarantee that the original dbg.declare instrinsic 1219 // is removed by LowerDbgDeclare(), we need to make sure that we are 1220 // not inserting the same dbg.value intrinsic over and over. 1221 SmallVector<DbgValueInst *, 1> DbgValues; 1222 findDbgValues(DbgValues, APN); 1223 for (auto *DVI : DbgValues) { 1224 assert(DVI->getValue() == APN); 1225 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1226 return true; 1227 } 1228 return false; 1229 } 1230 1231 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1232 /// (or fragment of the variable) described by \p DII. 1233 /// 1234 /// This is primarily intended as a helper for the different 1235 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is 1236 /// converted describes an alloca'd variable, so we need to use the 1237 /// alloc size of the value when doing the comparison. E.g. an i1 value will be 1238 /// identified as covering an n-bit fragment, if the store size of i1 is at 1239 /// least n bits. 1240 static bool valueCoversEntireFragment(Type *ValTy, DbgInfoIntrinsic *DII) { 1241 const DataLayout &DL = DII->getModule()->getDataLayout(); 1242 uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1243 if (auto FragmentSize = DII->getFragmentSizeInBits()) 1244 return ValueSize >= *FragmentSize; 1245 // We can't always calculate the size of the DI variable (e.g. if it is a 1246 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1247 // intead. 1248 if (DII->isAddressOfVariable()) 1249 if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) 1250 if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) 1251 return ValueSize >= *FragmentSize; 1252 // Could not determine size of variable. Conservatively return false. 1253 return false; 1254 } 1255 1256 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1257 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1258 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1259 StoreInst *SI, DIBuilder &Builder) { 1260 assert(DII->isAddressOfVariable()); 1261 auto *DIVar = DII->getVariable(); 1262 assert(DIVar && "Missing variable"); 1263 auto *DIExpr = DII->getExpression(); 1264 Value *DV = SI->getOperand(0); 1265 1266 if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) { 1267 // FIXME: If storing to a part of the variable described by the dbg.declare, 1268 // then we want to insert a dbg.value for the corresponding fragment. 1269 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1270 << *DII << '\n'); 1271 // For now, when there is a store to parts of the variable (but we do not 1272 // know which part) we insert an dbg.value instrinsic to indicate that we 1273 // know nothing about the variable's content. 1274 DV = UndefValue::get(DV->getType()); 1275 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1276 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1277 SI); 1278 return; 1279 } 1280 1281 // If an argument is zero extended then use argument directly. The ZExt 1282 // may be zapped by an optimization pass in future. 1283 Argument *ExtendedArg = nullptr; 1284 if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) 1285 ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0)); 1286 if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) 1287 ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0)); 1288 if (ExtendedArg) { 1289 // If this DII was already describing only a fragment of a variable, ensure 1290 // that fragment is appropriately narrowed here. 1291 // But if a fragment wasn't used, describe the value as the original 1292 // argument (rather than the zext or sext) so that it remains described even 1293 // if the sext/zext is optimized away. This widens the variable description, 1294 // leaving it up to the consumer to know how the smaller value may be 1295 // represented in a larger register. 1296 if (auto Fragment = DIExpr->getFragmentInfo()) { 1297 unsigned FragmentOffset = Fragment->OffsetInBits; 1298 SmallVector<uint64_t, 3> Ops(DIExpr->elements_begin(), 1299 DIExpr->elements_end() - 3); 1300 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 1301 Ops.push_back(FragmentOffset); 1302 const DataLayout &DL = DII->getModule()->getDataLayout(); 1303 Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType())); 1304 DIExpr = Builder.createExpression(Ops); 1305 } 1306 DV = ExtendedArg; 1307 } 1308 if (!LdStHasDebugValue(DIVar, DIExpr, SI)) 1309 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), 1310 SI); 1311 } 1312 1313 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1314 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. 1315 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1316 LoadInst *LI, DIBuilder &Builder) { 1317 auto *DIVar = DII->getVariable(); 1318 auto *DIExpr = DII->getExpression(); 1319 assert(DIVar && "Missing variable"); 1320 1321 if (LdStHasDebugValue(DIVar, DIExpr, LI)) 1322 return; 1323 1324 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1325 // FIXME: If only referring to a part of the variable described by the 1326 // dbg.declare, then we want to insert a dbg.value for the corresponding 1327 // fragment. 1328 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1329 << *DII << '\n'); 1330 return; 1331 } 1332 1333 // We are now tracking the loaded value instead of the address. In the 1334 // future if multi-location support is added to the IR, it might be 1335 // preferable to keep tracking both the loaded value and the original 1336 // address in case the alloca can not be elided. 1337 Instruction *DbgValue = Builder.insertDbgValueIntrinsic( 1338 LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); 1339 DbgValue->insertAfter(LI); 1340 } 1341 1342 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1343 /// llvm.dbg.declare or llvm.dbg.addr intrinsic. 1344 void llvm::ConvertDebugDeclareToDebugValue(DbgInfoIntrinsic *DII, 1345 PHINode *APN, DIBuilder &Builder) { 1346 auto *DIVar = DII->getVariable(); 1347 auto *DIExpr = DII->getExpression(); 1348 assert(DIVar && "Missing variable"); 1349 1350 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1351 return; 1352 1353 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1354 // FIXME: If only referring to a part of the variable described by the 1355 // dbg.declare, then we want to insert a dbg.value for the corresponding 1356 // fragment. 1357 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1358 << *DII << '\n'); 1359 return; 1360 } 1361 1362 BasicBlock *BB = APN->getParent(); 1363 auto InsertionPt = BB->getFirstInsertionPt(); 1364 1365 // The block may be a catchswitch block, which does not have a valid 1366 // insertion point. 1367 // FIXME: Insert dbg.value markers in the successors when appropriate. 1368 if (InsertionPt != BB->end()) 1369 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), 1370 &*InsertionPt); 1371 } 1372 1373 /// Determine whether this alloca is either a VLA or an array. 1374 static bool isArray(AllocaInst *AI) { 1375 return AI->isArrayAllocation() || 1376 AI->getType()->getElementType()->isArrayTy(); 1377 } 1378 1379 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1380 /// of llvm.dbg.value intrinsics. 1381 bool llvm::LowerDbgDeclare(Function &F) { 1382 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1383 SmallVector<DbgDeclareInst *, 4> Dbgs; 1384 for (auto &FI : F) 1385 for (Instruction &BI : FI) 1386 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) 1387 Dbgs.push_back(DDI); 1388 1389 if (Dbgs.empty()) 1390 return false; 1391 1392 for (auto &I : Dbgs) { 1393 DbgDeclareInst *DDI = I; 1394 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); 1395 // If this is an alloca for a scalar variable, insert a dbg.value 1396 // at each load and store to the alloca and erase the dbg.declare. 1397 // The dbg.values allow tracking a variable even if it is not 1398 // stored on the stack, while the dbg.declare can only describe 1399 // the stack slot (and at a lexical-scope granularity). Later 1400 // passes will attempt to elide the stack slot. 1401 if (!AI || isArray(AI)) 1402 continue; 1403 1404 // A volatile load/store means that the alloca can't be elided anyway. 1405 if (llvm::any_of(AI->users(), [](User *U) -> bool { 1406 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 1407 return LI->isVolatile(); 1408 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 1409 return SI->isVolatile(); 1410 return false; 1411 })) 1412 continue; 1413 1414 for (auto &AIUse : AI->uses()) { 1415 User *U = AIUse.getUser(); 1416 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1417 if (AIUse.getOperandNo() == 1) 1418 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 1419 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 1420 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 1421 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 1422 // This is a call by-value or some other instruction that takes a 1423 // pointer to the variable. Insert a *value* intrinsic that describes 1424 // the variable by dereferencing the alloca. 1425 auto *DerefExpr = 1426 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 1427 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, 1428 DDI->getDebugLoc(), CI); 1429 } 1430 } 1431 DDI->eraseFromParent(); 1432 } 1433 return true; 1434 } 1435 1436 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 1437 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 1438 SmallVectorImpl<PHINode *> &InsertedPHIs) { 1439 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 1440 if (InsertedPHIs.size() == 0) 1441 return; 1442 1443 // Map existing PHI nodes to their dbg.values. 1444 ValueToValueMapTy DbgValueMap; 1445 for (auto &I : *BB) { 1446 if (auto DbgII = dyn_cast<DbgInfoIntrinsic>(&I)) { 1447 if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) 1448 DbgValueMap.insert({Loc, DbgII}); 1449 } 1450 } 1451 if (DbgValueMap.size() == 0) 1452 return; 1453 1454 // Then iterate through the new PHIs and look to see if they use one of the 1455 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will 1456 // propagate the info through the new PHI. 1457 LLVMContext &C = BB->getContext(); 1458 for (auto PHI : InsertedPHIs) { 1459 BasicBlock *Parent = PHI->getParent(); 1460 // Avoid inserting an intrinsic into an EH block. 1461 if (Parent->getFirstNonPHI()->isEHPad()) 1462 continue; 1463 auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); 1464 for (auto VI : PHI->operand_values()) { 1465 auto V = DbgValueMap.find(VI); 1466 if (V != DbgValueMap.end()) { 1467 auto *DbgII = cast<DbgInfoIntrinsic>(V->second); 1468 Instruction *NewDbgII = DbgII->clone(); 1469 NewDbgII->setOperand(0, PhiMAV); 1470 auto InsertionPt = Parent->getFirstInsertionPt(); 1471 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 1472 NewDbgII->insertBefore(&*InsertionPt); 1473 } 1474 } 1475 } 1476 } 1477 1478 /// Finds all intrinsics declaring local variables as living in the memory that 1479 /// 'V' points to. This may include a mix of dbg.declare and 1480 /// dbg.addr intrinsics. 1481 TinyPtrVector<DbgInfoIntrinsic *> llvm::FindDbgAddrUses(Value *V) { 1482 // This function is hot. Check whether the value has any metadata to avoid a 1483 // DenseMap lookup. 1484 if (!V->isUsedByMetadata()) 1485 return {}; 1486 auto *L = LocalAsMetadata::getIfExists(V); 1487 if (!L) 1488 return {}; 1489 auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); 1490 if (!MDV) 1491 return {}; 1492 1493 TinyPtrVector<DbgInfoIntrinsic *> Declares; 1494 for (User *U : MDV->users()) { 1495 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1496 if (DII->isAddressOfVariable()) 1497 Declares.push_back(DII); 1498 } 1499 1500 return Declares; 1501 } 1502 1503 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { 1504 // This function is hot. Check whether the value has any metadata to avoid a 1505 // DenseMap lookup. 1506 if (!V->isUsedByMetadata()) 1507 return; 1508 if (auto *L = LocalAsMetadata::getIfExists(V)) 1509 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1510 for (User *U : MDV->users()) 1511 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) 1512 DbgValues.push_back(DVI); 1513 } 1514 1515 void llvm::findDbgUsers(SmallVectorImpl<DbgInfoIntrinsic *> &DbgUsers, 1516 Value *V) { 1517 // This function is hot. Check whether the value has any metadata to avoid a 1518 // DenseMap lookup. 1519 if (!V->isUsedByMetadata()) 1520 return; 1521 if (auto *L = LocalAsMetadata::getIfExists(V)) 1522 if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) 1523 for (User *U : MDV->users()) 1524 if (DbgInfoIntrinsic *DII = dyn_cast<DbgInfoIntrinsic>(U)) 1525 DbgUsers.push_back(DII); 1526 } 1527 1528 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 1529 Instruction *InsertBefore, DIBuilder &Builder, 1530 bool DerefBefore, int Offset, bool DerefAfter) { 1531 auto DbgAddrs = FindDbgAddrUses(Address); 1532 for (DbgInfoIntrinsic *DII : DbgAddrs) { 1533 DebugLoc Loc = DII->getDebugLoc(); 1534 auto *DIVar = DII->getVariable(); 1535 auto *DIExpr = DII->getExpression(); 1536 assert(DIVar && "Missing variable"); 1537 DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); 1538 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old 1539 // llvm.dbg.declare. 1540 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); 1541 if (DII == InsertBefore) 1542 InsertBefore = InsertBefore->getNextNode(); 1543 DII->eraseFromParent(); 1544 } 1545 return !DbgAddrs.empty(); 1546 } 1547 1548 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1549 DIBuilder &Builder, bool DerefBefore, 1550 int Offset, bool DerefAfter) { 1551 return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, 1552 DerefBefore, Offset, DerefAfter); 1553 } 1554 1555 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, 1556 DIBuilder &Builder, int Offset) { 1557 DebugLoc Loc = DVI->getDebugLoc(); 1558 auto *DIVar = DVI->getVariable(); 1559 auto *DIExpr = DVI->getExpression(); 1560 assert(DIVar && "Missing variable"); 1561 1562 // This is an alloca-based llvm.dbg.value. The first thing it should do with 1563 // the alloca pointer is dereference it. Otherwise we don't know how to handle 1564 // it and give up. 1565 if (!DIExpr || DIExpr->getNumElements() < 1 || 1566 DIExpr->getElement(0) != dwarf::DW_OP_deref) 1567 return; 1568 1569 // Insert the offset immediately after the first deref. 1570 // We could just change the offset argument of dbg.value, but it's unsigned... 1571 if (Offset) { 1572 SmallVector<uint64_t, 4> Ops; 1573 Ops.push_back(dwarf::DW_OP_deref); 1574 DIExpression::appendOffset(Ops, Offset); 1575 Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); 1576 DIExpr = Builder.createExpression(Ops); 1577 } 1578 1579 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); 1580 DVI->eraseFromParent(); 1581 } 1582 1583 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 1584 DIBuilder &Builder, int Offset) { 1585 if (auto *L = LocalAsMetadata::getIfExists(AI)) 1586 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) 1587 for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { 1588 Use &U = *UI++; 1589 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) 1590 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); 1591 } 1592 } 1593 1594 /// Wrap \p V in a ValueAsMetadata instance. 1595 static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { 1596 return MetadataAsValue::get(C, ValueAsMetadata::get(V)); 1597 } 1598 1599 bool llvm::salvageDebugInfo(Instruction &I) { 1600 SmallVector<DbgInfoIntrinsic *, 1> DbgUsers; 1601 findDbgUsers(DbgUsers, &I); 1602 if (DbgUsers.empty()) 1603 return false; 1604 1605 auto &M = *I.getModule(); 1606 auto &DL = M.getDataLayout(); 1607 auto &Ctx = I.getContext(); 1608 auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; 1609 1610 auto doSalvage = [&](DbgInfoIntrinsic *DII, SmallVectorImpl<uint64_t> &Ops) { 1611 auto *DIExpr = DII->getExpression(); 1612 if (!Ops.empty()) { 1613 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 1614 // are implicitly pointing out the value as a DWARF memory location 1615 // description. 1616 bool WithStackValue = isa<DbgValueInst>(DII); 1617 DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); 1618 } 1619 DII->setOperand(0, wrapMD(I.getOperand(0))); 1620 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1621 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1622 }; 1623 1624 auto applyOffset = [&](DbgInfoIntrinsic *DII, uint64_t Offset) { 1625 SmallVector<uint64_t, 8> Ops; 1626 DIExpression::appendOffset(Ops, Offset); 1627 doSalvage(DII, Ops); 1628 }; 1629 1630 auto applyOps = [&](DbgInfoIntrinsic *DII, 1631 std::initializer_list<uint64_t> Opcodes) { 1632 SmallVector<uint64_t, 8> Ops(Opcodes); 1633 doSalvage(DII, Ops); 1634 }; 1635 1636 if (auto *CI = dyn_cast<CastInst>(&I)) { 1637 if (!CI->isNoopCast(DL)) 1638 return false; 1639 1640 // No-op casts are irrelevant for debug info. 1641 MetadataAsValue *CastSrc = wrapMD(I.getOperand(0)); 1642 for (auto *DII : DbgUsers) { 1643 DII->setOperand(0, CastSrc); 1644 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1645 } 1646 return true; 1647 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1648 unsigned BitWidth = 1649 M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); 1650 // Rewrite a constant GEP into a DIExpression. Since we are performing 1651 // arithmetic to compute the variable's *value* in the DIExpression, we 1652 // need to mark the expression with a DW_OP_stack_value. 1653 APInt Offset(BitWidth, 0); 1654 if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) 1655 for (auto *DII : DbgUsers) 1656 applyOffset(DII, Offset.getSExtValue()); 1657 return true; 1658 } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { 1659 // Rewrite binary operations with constant integer operands. 1660 auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); 1661 if (!ConstInt || ConstInt->getBitWidth() > 64) 1662 return false; 1663 1664 uint64_t Val = ConstInt->getSExtValue(); 1665 for (auto *DII : DbgUsers) { 1666 switch (BI->getOpcode()) { 1667 case Instruction::Add: 1668 applyOffset(DII, Val); 1669 break; 1670 case Instruction::Sub: 1671 applyOffset(DII, -int64_t(Val)); 1672 break; 1673 case Instruction::Mul: 1674 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); 1675 break; 1676 case Instruction::SDiv: 1677 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); 1678 break; 1679 case Instruction::SRem: 1680 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); 1681 break; 1682 case Instruction::Or: 1683 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); 1684 break; 1685 case Instruction::And: 1686 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); 1687 break; 1688 case Instruction::Xor: 1689 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); 1690 break; 1691 case Instruction::Shl: 1692 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); 1693 break; 1694 case Instruction::LShr: 1695 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); 1696 break; 1697 case Instruction::AShr: 1698 applyOps(DII, {dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); 1699 break; 1700 default: 1701 // TODO: Salvage constants from each kind of binop we know about. 1702 return false; 1703 } 1704 } 1705 return true; 1706 } else if (isa<LoadInst>(&I)) { 1707 MetadataAsValue *AddrMD = wrapMD(I.getOperand(0)); 1708 for (auto *DII : DbgUsers) { 1709 // Rewrite the load into DW_OP_deref. 1710 auto *DIExpr = DII->getExpression(); 1711 DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref); 1712 DII->setOperand(0, AddrMD); 1713 DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); 1714 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 1715 } 1716 return true; 1717 } 1718 return false; 1719 } 1720 1721 /// A replacement for a dbg.value expression. 1722 using DbgValReplacement = Optional<DIExpression *>; 1723 1724 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 1725 /// possibly moving/deleting users to prevent use-before-def. Returns true if 1726 /// changes are made. 1727 static bool rewriteDebugUsers( 1728 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 1729 function_ref<DbgValReplacement(DbgInfoIntrinsic &DII)> RewriteExpr) { 1730 // Find debug users of From. 1731 SmallVector<DbgInfoIntrinsic *, 1> Users; 1732 findDbgUsers(Users, &From); 1733 if (Users.empty()) 1734 return false; 1735 1736 // Prevent use-before-def of To. 1737 bool Changed = false; 1738 SmallPtrSet<DbgInfoIntrinsic *, 1> DeleteOrSalvage; 1739 if (isa<Instruction>(&To)) { 1740 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 1741 1742 for (auto *DII : Users) { 1743 // It's common to see a debug user between From and DomPoint. Move it 1744 // after DomPoint to preserve the variable update without any reordering. 1745 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 1746 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 1747 DII->moveAfter(&DomPoint); 1748 Changed = true; 1749 1750 // Users which otherwise aren't dominated by the replacement value must 1751 // be salvaged or deleted. 1752 } else if (!DT.dominates(&DomPoint, DII)) { 1753 DeleteOrSalvage.insert(DII); 1754 } 1755 } 1756 } 1757 1758 // Update debug users without use-before-def risk. 1759 for (auto *DII : Users) { 1760 if (DeleteOrSalvage.count(DII)) 1761 continue; 1762 1763 LLVMContext &Ctx = DII->getContext(); 1764 DbgValReplacement DVR = RewriteExpr(*DII); 1765 if (!DVR) 1766 continue; 1767 1768 DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); 1769 DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); 1770 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 1771 Changed = true; 1772 } 1773 1774 if (!DeleteOrSalvage.empty()) { 1775 // Try to salvage the remaining debug users. 1776 Changed |= salvageDebugInfo(From); 1777 1778 // Delete the debug users which weren't salvaged. 1779 for (auto *DII : DeleteOrSalvage) { 1780 if (DII->getVariableLocation() == &From) { 1781 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n'); 1782 DII->eraseFromParent(); 1783 Changed = true; 1784 } 1785 } 1786 } 1787 1788 return Changed; 1789 } 1790 1791 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 1792 /// losslessly preserve the bits and semantics of the value. This predicate is 1793 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 1794 /// 1795 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 1796 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 1797 /// and also does not allow lossless pointer <-> integer conversions. 1798 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 1799 Type *ToTy) { 1800 // Trivially compatible types. 1801 if (FromTy == ToTy) 1802 return true; 1803 1804 // Handle compatible pointer <-> integer conversions. 1805 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 1806 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 1807 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 1808 !DL.isNonIntegralPointerType(ToTy); 1809 return SameSize && LosslessConversion; 1810 } 1811 1812 // TODO: This is not exhaustive. 1813 return false; 1814 } 1815 1816 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 1817 Instruction &DomPoint, DominatorTree &DT) { 1818 // Exit early if From has no debug users. 1819 if (!From.isUsedByMetadata()) 1820 return false; 1821 1822 assert(&From != &To && "Can't replace something with itself"); 1823 1824 Type *FromTy = From.getType(); 1825 Type *ToTy = To.getType(); 1826 1827 auto Identity = [&](DbgInfoIntrinsic &DII) -> DbgValReplacement { 1828 return DII.getExpression(); 1829 }; 1830 1831 // Handle no-op conversions. 1832 Module &M = *From.getModule(); 1833 const DataLayout &DL = M.getDataLayout(); 1834 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 1835 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1836 1837 // Handle integer-to-integer widening and narrowing. 1838 // FIXME: Use DW_OP_convert when it's available everywhere. 1839 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 1840 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 1841 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 1842 assert(FromBits != ToBits && "Unexpected no-op conversion"); 1843 1844 // When the width of the result grows, assume that a debugger will only 1845 // access the low `FromBits` bits when inspecting the source variable. 1846 if (FromBits < ToBits) 1847 return rewriteDebugUsers(From, To, DomPoint, DT, Identity); 1848 1849 // The width of the result has shrunk. Use sign/zero extension to describe 1850 // the source variable's high bits. 1851 auto SignOrZeroExt = [&](DbgInfoIntrinsic &DII) -> DbgValReplacement { 1852 DILocalVariable *Var = DII.getVariable(); 1853 1854 // Without knowing signedness, sign/zero extension isn't possible. 1855 auto Signedness = Var->getSignedness(); 1856 if (!Signedness) 1857 return None; 1858 1859 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 1860 1861 if (!Signed) { 1862 // In the unsigned case, assume that a debugger will initialize the 1863 // high bits to 0 and do a no-op conversion. 1864 return Identity(DII); 1865 } else { 1866 // In the signed case, the high bits are given by sign extension, i.e: 1867 // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1) 1868 // Calculate the high bits and OR them together with the low bits. 1869 SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu, 1870 (ToBits - 1), dwarf::DW_OP_shr, 1871 dwarf::DW_OP_lit0, dwarf::DW_OP_not, 1872 dwarf::DW_OP_mul, dwarf::DW_OP_or}); 1873 return DIExpression::appendToStack(DII.getExpression(), Ops); 1874 } 1875 }; 1876 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); 1877 } 1878 1879 // TODO: Floating-point conversions, vectors. 1880 return false; 1881 } 1882 1883 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 1884 unsigned NumDeadInst = 0; 1885 // Delete the instructions backwards, as it has a reduced likelihood of 1886 // having to update as many def-use and use-def chains. 1887 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 1888 while (EndInst != &BB->front()) { 1889 // Delete the next to last instruction. 1890 Instruction *Inst = &*--EndInst->getIterator(); 1891 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 1892 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); 1893 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 1894 EndInst = Inst; 1895 continue; 1896 } 1897 if (!isa<DbgInfoIntrinsic>(Inst)) 1898 ++NumDeadInst; 1899 Inst->eraseFromParent(); 1900 } 1901 return NumDeadInst; 1902 } 1903 1904 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, 1905 bool PreserveLCSSA, DeferredDominance *DDT) { 1906 BasicBlock *BB = I->getParent(); 1907 std::vector <DominatorTree::UpdateType> Updates; 1908 1909 // Loop over all of the successors, removing BB's entry from any PHI 1910 // nodes. 1911 if (DDT) 1912 Updates.reserve(BB->getTerminator()->getNumSuccessors()); 1913 for (BasicBlock *Successor : successors(BB)) { 1914 Successor->removePredecessor(BB, PreserveLCSSA); 1915 if (DDT) 1916 Updates.push_back({DominatorTree::Delete, BB, Successor}); 1917 } 1918 // Insert a call to llvm.trap right before this. This turns the undefined 1919 // behavior into a hard fail instead of falling through into random code. 1920 if (UseLLVMTrap) { 1921 Function *TrapFn = 1922 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); 1923 CallInst *CallTrap = CallInst::Create(TrapFn, "", I); 1924 CallTrap->setDebugLoc(I->getDebugLoc()); 1925 } 1926 new UnreachableInst(I->getContext(), I); 1927 1928 // All instructions after this are dead. 1929 unsigned NumInstrsRemoved = 0; 1930 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 1931 while (BBI != BBE) { 1932 if (!BBI->use_empty()) 1933 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); 1934 BB->getInstList().erase(BBI++); 1935 ++NumInstrsRemoved; 1936 } 1937 if (DDT) 1938 DDT->applyUpdates(Updates); 1939 return NumInstrsRemoved; 1940 } 1941 1942 /// changeToCall - Convert the specified invoke into a normal call. 1943 static void changeToCall(InvokeInst *II, DeferredDominance *DDT = nullptr) { 1944 SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); 1945 SmallVector<OperandBundleDef, 1> OpBundles; 1946 II->getOperandBundlesAsDefs(OpBundles); 1947 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles, 1948 "", II); 1949 NewCall->takeName(II); 1950 NewCall->setCallingConv(II->getCallingConv()); 1951 NewCall->setAttributes(II->getAttributes()); 1952 NewCall->setDebugLoc(II->getDebugLoc()); 1953 II->replaceAllUsesWith(NewCall); 1954 1955 // Follow the call by a branch to the normal destination. 1956 BasicBlock *NormalDestBB = II->getNormalDest(); 1957 BranchInst::Create(NormalDestBB, II); 1958 1959 // Update PHI nodes in the unwind destination 1960 BasicBlock *BB = II->getParent(); 1961 BasicBlock *UnwindDestBB = II->getUnwindDest(); 1962 UnwindDestBB->removePredecessor(BB); 1963 II->eraseFromParent(); 1964 if (DDT) 1965 DDT->deleteEdge(BB, UnwindDestBB); 1966 } 1967 1968 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 1969 BasicBlock *UnwindEdge) { 1970 BasicBlock *BB = CI->getParent(); 1971 1972 // Convert this function call into an invoke instruction. First, split the 1973 // basic block. 1974 BasicBlock *Split = 1975 BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); 1976 1977 // Delete the unconditional branch inserted by splitBasicBlock 1978 BB->getInstList().pop_back(); 1979 1980 // Create the new invoke instruction. 1981 SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); 1982 SmallVector<OperandBundleDef, 1> OpBundles; 1983 1984 CI->getOperandBundlesAsDefs(OpBundles); 1985 1986 // Note: we're round tripping operand bundles through memory here, and that 1987 // can potentially be avoided with a cleverer API design that we do not have 1988 // as of this time. 1989 1990 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge, 1991 InvokeArgs, OpBundles, CI->getName(), BB); 1992 II->setDebugLoc(CI->getDebugLoc()); 1993 II->setCallingConv(CI->getCallingConv()); 1994 II->setAttributes(CI->getAttributes()); 1995 1996 // Make sure that anything using the call now uses the invoke! This also 1997 // updates the CallGraph if present, because it uses a WeakTrackingVH. 1998 CI->replaceAllUsesWith(II); 1999 2000 // Delete the original call 2001 Split->getInstList().pop_front(); 2002 return Split; 2003 } 2004 2005 static bool markAliveBlocks(Function &F, 2006 SmallPtrSetImpl<BasicBlock*> &Reachable, 2007 DeferredDominance *DDT = nullptr) { 2008 SmallVector<BasicBlock*, 128> Worklist; 2009 BasicBlock *BB = &F.front(); 2010 Worklist.push_back(BB); 2011 Reachable.insert(BB); 2012 bool Changed = false; 2013 do { 2014 BB = Worklist.pop_back_val(); 2015 2016 // Do a quick scan of the basic block, turning any obviously unreachable 2017 // instructions into LLVM unreachable insts. The instruction combining pass 2018 // canonicalizes unreachable insts into stores to null or undef. 2019 for (Instruction &I : *BB) { 2020 if (auto *CI = dyn_cast<CallInst>(&I)) { 2021 Value *Callee = CI->getCalledValue(); 2022 // Handle intrinsic calls. 2023 if (Function *F = dyn_cast<Function>(Callee)) { 2024 auto IntrinsicID = F->getIntrinsicID(); 2025 // Assumptions that are known to be false are equivalent to 2026 // unreachable. Also, if the condition is undefined, then we make the 2027 // choice most beneficial to the optimizer, and choose that to also be 2028 // unreachable. 2029 if (IntrinsicID == Intrinsic::assume) { 2030 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 2031 // Don't insert a call to llvm.trap right before the unreachable. 2032 changeToUnreachable(CI, false, false, DDT); 2033 Changed = true; 2034 break; 2035 } 2036 } else if (IntrinsicID == Intrinsic::experimental_guard) { 2037 // A call to the guard intrinsic bails out of the current 2038 // compilation unit if the predicate passed to it is false. If the 2039 // predicate is a constant false, then we know the guard will bail 2040 // out of the current compile unconditionally, so all code following 2041 // it is dead. 2042 // 2043 // Note: unlike in llvm.assume, it is not "obviously profitable" for 2044 // guards to treat `undef` as `false` since a guard on `undef` can 2045 // still be useful for widening. 2046 if (match(CI->getArgOperand(0), m_Zero())) 2047 if (!isa<UnreachableInst>(CI->getNextNode())) { 2048 changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, 2049 false, DDT); 2050 Changed = true; 2051 break; 2052 } 2053 } 2054 } else if ((isa<ConstantPointerNull>(Callee) && 2055 !NullPointerIsDefined(CI->getFunction())) || 2056 isa<UndefValue>(Callee)) { 2057 changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DDT); 2058 Changed = true; 2059 break; 2060 } 2061 if (CI->doesNotReturn()) { 2062 // If we found a call to a no-return function, insert an unreachable 2063 // instruction after it. Make sure there isn't *already* one there 2064 // though. 2065 if (!isa<UnreachableInst>(CI->getNextNode())) { 2066 // Don't insert a call to llvm.trap right before the unreachable. 2067 changeToUnreachable(CI->getNextNode(), false, false, DDT); 2068 Changed = true; 2069 } 2070 break; 2071 } 2072 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 2073 // Store to undef and store to null are undefined and used to signal 2074 // that they should be changed to unreachable by passes that can't 2075 // modify the CFG. 2076 2077 // Don't touch volatile stores. 2078 if (SI->isVolatile()) continue; 2079 2080 Value *Ptr = SI->getOperand(1); 2081 2082 if (isa<UndefValue>(Ptr) || 2083 (isa<ConstantPointerNull>(Ptr) && 2084 !NullPointerIsDefined(SI->getFunction(), 2085 SI->getPointerAddressSpace()))) { 2086 changeToUnreachable(SI, true, false, DDT); 2087 Changed = true; 2088 break; 2089 } 2090 } 2091 } 2092 2093 TerminatorInst *Terminator = BB->getTerminator(); 2094 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 2095 // Turn invokes that call 'nounwind' functions into ordinary calls. 2096 Value *Callee = II->getCalledValue(); 2097 if ((isa<ConstantPointerNull>(Callee) && 2098 !NullPointerIsDefined(BB->getParent())) || 2099 isa<UndefValue>(Callee)) { 2100 changeToUnreachable(II, true, false, DDT); 2101 Changed = true; 2102 } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 2103 if (II->use_empty() && II->onlyReadsMemory()) { 2104 // jump to the normal destination branch. 2105 BasicBlock *NormalDestBB = II->getNormalDest(); 2106 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2107 BranchInst::Create(NormalDestBB, II); 2108 UnwindDestBB->removePredecessor(II->getParent()); 2109 II->eraseFromParent(); 2110 if (DDT) 2111 DDT->deleteEdge(BB, UnwindDestBB); 2112 } else 2113 changeToCall(II, DDT); 2114 Changed = true; 2115 } 2116 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 2117 // Remove catchpads which cannot be reached. 2118 struct CatchPadDenseMapInfo { 2119 static CatchPadInst *getEmptyKey() { 2120 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 2121 } 2122 2123 static CatchPadInst *getTombstoneKey() { 2124 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 2125 } 2126 2127 static unsigned getHashValue(CatchPadInst *CatchPad) { 2128 return static_cast<unsigned>(hash_combine_range( 2129 CatchPad->value_op_begin(), CatchPad->value_op_end())); 2130 } 2131 2132 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 2133 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 2134 RHS == getEmptyKey() || RHS == getTombstoneKey()) 2135 return LHS == RHS; 2136 return LHS->isIdenticalTo(RHS); 2137 } 2138 }; 2139 2140 // Set of unique CatchPads. 2141 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 2142 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 2143 HandlerSet; 2144 detail::DenseSetEmpty Empty; 2145 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 2146 E = CatchSwitch->handler_end(); 2147 I != E; ++I) { 2148 BasicBlock *HandlerBB = *I; 2149 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 2150 if (!HandlerSet.insert({CatchPad, Empty}).second) { 2151 CatchSwitch->removeHandler(I); 2152 --I; 2153 --E; 2154 Changed = true; 2155 } 2156 } 2157 } 2158 2159 Changed |= ConstantFoldTerminator(BB, true, nullptr, DDT); 2160 for (BasicBlock *Successor : successors(BB)) 2161 if (Reachable.insert(Successor).second) 2162 Worklist.push_back(Successor); 2163 } while (!Worklist.empty()); 2164 return Changed; 2165 } 2166 2167 void llvm::removeUnwindEdge(BasicBlock *BB, DeferredDominance *DDT) { 2168 TerminatorInst *TI = BB->getTerminator(); 2169 2170 if (auto *II = dyn_cast<InvokeInst>(TI)) { 2171 changeToCall(II, DDT); 2172 return; 2173 } 2174 2175 TerminatorInst *NewTI; 2176 BasicBlock *UnwindDest; 2177 2178 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 2179 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); 2180 UnwindDest = CRI->getUnwindDest(); 2181 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 2182 auto *NewCatchSwitch = CatchSwitchInst::Create( 2183 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 2184 CatchSwitch->getName(), CatchSwitch); 2185 for (BasicBlock *PadBB : CatchSwitch->handlers()) 2186 NewCatchSwitch->addHandler(PadBB); 2187 2188 NewTI = NewCatchSwitch; 2189 UnwindDest = CatchSwitch->getUnwindDest(); 2190 } else { 2191 llvm_unreachable("Could not find unwind successor"); 2192 } 2193 2194 NewTI->takeName(TI); 2195 NewTI->setDebugLoc(TI->getDebugLoc()); 2196 UnwindDest->removePredecessor(BB); 2197 TI->replaceAllUsesWith(NewTI); 2198 TI->eraseFromParent(); 2199 if (DDT) 2200 DDT->deleteEdge(BB, UnwindDest); 2201 } 2202 2203 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 2204 /// if they are in a dead cycle. Return true if a change was made, false 2205 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo 2206 /// after modifying the CFG. 2207 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, 2208 DeferredDominance *DDT) { 2209 SmallPtrSet<BasicBlock*, 16> Reachable; 2210 bool Changed = markAliveBlocks(F, Reachable, DDT); 2211 2212 // If there are unreachable blocks in the CFG... 2213 if (Reachable.size() == F.size()) 2214 return Changed; 2215 2216 assert(Reachable.size() < F.size()); 2217 NumRemoved += F.size()-Reachable.size(); 2218 2219 // Loop over all of the basic blocks that are not reachable, dropping all of 2220 // their internal references. Update DDT and LVI if available. 2221 std::vector <DominatorTree::UpdateType> Updates; 2222 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { 2223 auto *BB = &*I; 2224 if (Reachable.count(BB)) 2225 continue; 2226 for (BasicBlock *Successor : successors(BB)) { 2227 if (Reachable.count(Successor)) 2228 Successor->removePredecessor(BB); 2229 if (DDT) 2230 Updates.push_back({DominatorTree::Delete, BB, Successor}); 2231 } 2232 if (LVI) 2233 LVI->eraseBlock(BB); 2234 BB->dropAllReferences(); 2235 } 2236 2237 for (Function::iterator I = ++F.begin(); I != F.end();) { 2238 auto *BB = &*I; 2239 if (Reachable.count(BB)) { 2240 ++I; 2241 continue; 2242 } 2243 if (DDT) { 2244 DDT->deleteBB(BB); // deferred deletion of BB. 2245 ++I; 2246 } else { 2247 I = F.getBasicBlockList().erase(I); 2248 } 2249 } 2250 2251 if (DDT) 2252 DDT->applyUpdates(Updates); 2253 return true; 2254 } 2255 2256 void llvm::combineMetadata(Instruction *K, const Instruction *J, 2257 ArrayRef<unsigned> KnownIDs) { 2258 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 2259 K->dropUnknownNonDebugMetadata(KnownIDs); 2260 K->getAllMetadataOtherThanDebugLoc(Metadata); 2261 for (const auto &MD : Metadata) { 2262 unsigned Kind = MD.first; 2263 MDNode *JMD = J->getMetadata(Kind); 2264 MDNode *KMD = MD.second; 2265 2266 switch (Kind) { 2267 default: 2268 K->setMetadata(Kind, nullptr); // Remove unknown metadata 2269 break; 2270 case LLVMContext::MD_dbg: 2271 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 2272 case LLVMContext::MD_tbaa: 2273 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 2274 break; 2275 case LLVMContext::MD_alias_scope: 2276 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 2277 break; 2278 case LLVMContext::MD_noalias: 2279 case LLVMContext::MD_mem_parallel_loop_access: 2280 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 2281 break; 2282 case LLVMContext::MD_range: 2283 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 2284 break; 2285 case LLVMContext::MD_fpmath: 2286 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 2287 break; 2288 case LLVMContext::MD_invariant_load: 2289 // Only set the !invariant.load if it is present in both instructions. 2290 K->setMetadata(Kind, JMD); 2291 break; 2292 case LLVMContext::MD_nonnull: 2293 // Only set the !nonnull if it is present in both instructions. 2294 K->setMetadata(Kind, JMD); 2295 break; 2296 case LLVMContext::MD_invariant_group: 2297 // Preserve !invariant.group in K. 2298 break; 2299 case LLVMContext::MD_align: 2300 K->setMetadata(Kind, 2301 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2302 break; 2303 case LLVMContext::MD_dereferenceable: 2304 case LLVMContext::MD_dereferenceable_or_null: 2305 K->setMetadata(Kind, 2306 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 2307 break; 2308 } 2309 } 2310 // Set !invariant.group from J if J has it. If both instructions have it 2311 // then we will just pick it from J - even when they are different. 2312 // Also make sure that K is load or store - f.e. combining bitcast with load 2313 // could produce bitcast with invariant.group metadata, which is invalid. 2314 // FIXME: we should try to preserve both invariant.group md if they are 2315 // different, but right now instruction can only have one invariant.group. 2316 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 2317 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 2318 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 2319 } 2320 2321 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) { 2322 unsigned KnownIDs[] = { 2323 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 2324 LLVMContext::MD_noalias, LLVMContext::MD_range, 2325 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 2326 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 2327 LLVMContext::MD_dereferenceable, 2328 LLVMContext::MD_dereferenceable_or_null}; 2329 combineMetadata(K, J, KnownIDs); 2330 } 2331 2332 template <typename RootType, typename DominatesFn> 2333 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 2334 const RootType &Root, 2335 const DominatesFn &Dominates) { 2336 assert(From->getType() == To->getType()); 2337 2338 unsigned Count = 0; 2339 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2340 UI != UE;) { 2341 Use &U = *UI++; 2342 if (!Dominates(Root, U)) 2343 continue; 2344 U.set(To); 2345 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() 2346 << "' as " << *To << " in " << *U << "\n"); 2347 ++Count; 2348 } 2349 return Count; 2350 } 2351 2352 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 2353 assert(From->getType() == To->getType()); 2354 auto *BB = From->getParent(); 2355 unsigned Count = 0; 2356 2357 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2358 UI != UE;) { 2359 Use &U = *UI++; 2360 auto *I = cast<Instruction>(U.getUser()); 2361 if (I->getParent() == BB) 2362 continue; 2363 U.set(To); 2364 ++Count; 2365 } 2366 return Count; 2367 } 2368 2369 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2370 DominatorTree &DT, 2371 const BasicBlockEdge &Root) { 2372 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 2373 return DT.dominates(Root, U); 2374 }; 2375 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 2376 } 2377 2378 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 2379 DominatorTree &DT, 2380 const BasicBlock *BB) { 2381 auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { 2382 auto *I = cast<Instruction>(U.getUser())->getParent(); 2383 return DT.properlyDominates(BB, I); 2384 }; 2385 return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); 2386 } 2387 2388 bool llvm::callsGCLeafFunction(ImmutableCallSite CS, 2389 const TargetLibraryInfo &TLI) { 2390 // Check if the function is specifically marked as a gc leaf function. 2391 if (CS.hasFnAttr("gc-leaf-function")) 2392 return true; 2393 if (const Function *F = CS.getCalledFunction()) { 2394 if (F->hasFnAttribute("gc-leaf-function")) 2395 return true; 2396 2397 if (auto IID = F->getIntrinsicID()) 2398 // Most LLVM intrinsics do not take safepoints. 2399 return IID != Intrinsic::experimental_gc_statepoint && 2400 IID != Intrinsic::experimental_deoptimize; 2401 } 2402 2403 // Lib calls can be materialized by some passes, and won't be 2404 // marked as 'gc-leaf-function.' All available Libcalls are 2405 // GC-leaf. 2406 LibFunc LF; 2407 if (TLI.getLibFunc(CS, LF)) { 2408 return TLI.has(LF); 2409 } 2410 2411 return false; 2412 } 2413 2414 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 2415 LoadInst &NewLI) { 2416 auto *NewTy = NewLI.getType(); 2417 2418 // This only directly applies if the new type is also a pointer. 2419 if (NewTy->isPointerTy()) { 2420 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 2421 return; 2422 } 2423 2424 // The only other translation we can do is to integral loads with !range 2425 // metadata. 2426 if (!NewTy->isIntegerTy()) 2427 return; 2428 2429 MDBuilder MDB(NewLI.getContext()); 2430 const Value *Ptr = OldLI.getPointerOperand(); 2431 auto *ITy = cast<IntegerType>(NewTy); 2432 auto *NullInt = ConstantExpr::getPtrToInt( 2433 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 2434 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 2435 NewLI.setMetadata(LLVMContext::MD_range, 2436 MDB.createRange(NonNullInt, NullInt)); 2437 } 2438 2439 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 2440 MDNode *N, LoadInst &NewLI) { 2441 auto *NewTy = NewLI.getType(); 2442 2443 // Give up unless it is converted to a pointer where there is a single very 2444 // valuable mapping we can do reliably. 2445 // FIXME: It would be nice to propagate this in more ways, but the type 2446 // conversions make it hard. 2447 if (!NewTy->isPointerTy()) 2448 return; 2449 2450 unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); 2451 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 2452 MDNode *NN = MDNode::get(OldLI.getContext(), None); 2453 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 2454 } 2455 } 2456 2457 namespace { 2458 2459 /// A potential constituent of a bitreverse or bswap expression. See 2460 /// collectBitParts for a fuller explanation. 2461 struct BitPart { 2462 BitPart(Value *P, unsigned BW) : Provider(P) { 2463 Provenance.resize(BW); 2464 } 2465 2466 /// The Value that this is a bitreverse/bswap of. 2467 Value *Provider; 2468 2469 /// The "provenance" of each bit. Provenance[A] = B means that bit A 2470 /// in Provider becomes bit B in the result of this expression. 2471 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 2472 2473 enum { Unset = -1 }; 2474 }; 2475 2476 } // end anonymous namespace 2477 2478 /// Analyze the specified subexpression and see if it is capable of providing 2479 /// pieces of a bswap or bitreverse. The subexpression provides a potential 2480 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in 2481 /// the output of the expression came from a corresponding bit in some other 2482 /// value. This function is recursive, and the end result is a mapping of 2483 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 2484 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 2485 /// 2486 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 2487 /// that the expression deposits the low byte of %X into the high byte of the 2488 /// result and that all other bits are zero. This expression is accepted and a 2489 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 2490 /// [0-7]. 2491 /// 2492 /// To avoid revisiting values, the BitPart results are memoized into the 2493 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 2494 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 2495 /// store BitParts objects, not pointers. As we need the concept of a nullptr 2496 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 2497 /// type instead to provide the same functionality. 2498 /// 2499 /// Because we pass around references into \c BPS, we must use a container that 2500 /// does not invalidate internal references (std::map instead of DenseMap). 2501 static const Optional<BitPart> & 2502 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 2503 std::map<Value *, Optional<BitPart>> &BPS) { 2504 auto I = BPS.find(V); 2505 if (I != BPS.end()) 2506 return I->second; 2507 2508 auto &Result = BPS[V] = None; 2509 auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 2510 2511 if (Instruction *I = dyn_cast<Instruction>(V)) { 2512 // If this is an or instruction, it may be an inner node of the bswap. 2513 if (I->getOpcode() == Instruction::Or) { 2514 auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, 2515 MatchBitReversals, BPS); 2516 auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, 2517 MatchBitReversals, BPS); 2518 if (!A || !B) 2519 return Result; 2520 2521 // Try and merge the two together. 2522 if (!A->Provider || A->Provider != B->Provider) 2523 return Result; 2524 2525 Result = BitPart(A->Provider, BitWidth); 2526 for (unsigned i = 0; i < A->Provenance.size(); ++i) { 2527 if (A->Provenance[i] != BitPart::Unset && 2528 B->Provenance[i] != BitPart::Unset && 2529 A->Provenance[i] != B->Provenance[i]) 2530 return Result = None; 2531 2532 if (A->Provenance[i] == BitPart::Unset) 2533 Result->Provenance[i] = B->Provenance[i]; 2534 else 2535 Result->Provenance[i] = A->Provenance[i]; 2536 } 2537 2538 return Result; 2539 } 2540 2541 // If this is a logical shift by a constant, recurse then shift the result. 2542 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { 2543 unsigned BitShift = 2544 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); 2545 // Ensure the shift amount is defined. 2546 if (BitShift > BitWidth) 2547 return Result; 2548 2549 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2550 MatchBitReversals, BPS); 2551 if (!Res) 2552 return Result; 2553 Result = Res; 2554 2555 // Perform the "shift" on BitProvenance. 2556 auto &P = Result->Provenance; 2557 if (I->getOpcode() == Instruction::Shl) { 2558 P.erase(std::prev(P.end(), BitShift), P.end()); 2559 P.insert(P.begin(), BitShift, BitPart::Unset); 2560 } else { 2561 P.erase(P.begin(), std::next(P.begin(), BitShift)); 2562 P.insert(P.end(), BitShift, BitPart::Unset); 2563 } 2564 2565 return Result; 2566 } 2567 2568 // If this is a logical 'and' with a mask that clears bits, recurse then 2569 // unset the appropriate bits. 2570 if (I->getOpcode() == Instruction::And && 2571 isa<ConstantInt>(I->getOperand(1))) { 2572 APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); 2573 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); 2574 2575 // Check that the mask allows a multiple of 8 bits for a bswap, for an 2576 // early exit. 2577 unsigned NumMaskedBits = AndMask.countPopulation(); 2578 if (!MatchBitReversals && NumMaskedBits % 8 != 0) 2579 return Result; 2580 2581 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2582 MatchBitReversals, BPS); 2583 if (!Res) 2584 return Result; 2585 Result = Res; 2586 2587 for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1) 2588 // If the AndMask is zero for this bit, clear the bit. 2589 if ((AndMask & Bit) == 0) 2590 Result->Provenance[i] = BitPart::Unset; 2591 return Result; 2592 } 2593 2594 // If this is a zext instruction zero extend the result. 2595 if (I->getOpcode() == Instruction::ZExt) { 2596 auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, 2597 MatchBitReversals, BPS); 2598 if (!Res) 2599 return Result; 2600 2601 Result = BitPart(Res->Provider, BitWidth); 2602 auto NarrowBitWidth = 2603 cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth(); 2604 for (unsigned i = 0; i < NarrowBitWidth; ++i) 2605 Result->Provenance[i] = Res->Provenance[i]; 2606 for (unsigned i = NarrowBitWidth; i < BitWidth; ++i) 2607 Result->Provenance[i] = BitPart::Unset; 2608 return Result; 2609 } 2610 } 2611 2612 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be 2613 // the input value to the bswap/bitreverse. 2614 Result = BitPart(V, BitWidth); 2615 for (unsigned i = 0; i < BitWidth; ++i) 2616 Result->Provenance[i] = i; 2617 return Result; 2618 } 2619 2620 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 2621 unsigned BitWidth) { 2622 if (From % 8 != To % 8) 2623 return false; 2624 // Convert from bit indices to byte indices and check for a byte reversal. 2625 From >>= 3; 2626 To >>= 3; 2627 BitWidth >>= 3; 2628 return From == BitWidth - To - 1; 2629 } 2630 2631 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 2632 unsigned BitWidth) { 2633 return From == BitWidth - To - 1; 2634 } 2635 2636 bool llvm::recognizeBSwapOrBitReverseIdiom( 2637 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 2638 SmallVectorImpl<Instruction *> &InsertedInsts) { 2639 if (Operator::getOpcode(I) != Instruction::Or) 2640 return false; 2641 if (!MatchBSwaps && !MatchBitReversals) 2642 return false; 2643 IntegerType *ITy = dyn_cast<IntegerType>(I->getType()); 2644 if (!ITy || ITy->getBitWidth() > 128) 2645 return false; // Can't do vectors or integers > 128 bits. 2646 unsigned BW = ITy->getBitWidth(); 2647 2648 unsigned DemandedBW = BW; 2649 IntegerType *DemandedTy = ITy; 2650 if (I->hasOneUse()) { 2651 if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) { 2652 DemandedTy = cast<IntegerType>(Trunc->getType()); 2653 DemandedBW = DemandedTy->getBitWidth(); 2654 } 2655 } 2656 2657 // Try to find all the pieces corresponding to the bswap. 2658 std::map<Value *, Optional<BitPart>> BPS; 2659 auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS); 2660 if (!Res) 2661 return false; 2662 auto &BitProvenance = Res->Provenance; 2663 2664 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 2665 // only byteswap values with an even number of bytes. 2666 bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true; 2667 for (unsigned i = 0; i < DemandedBW; ++i) { 2668 OKForBSwap &= 2669 bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW); 2670 OKForBitReverse &= 2671 bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW); 2672 } 2673 2674 Intrinsic::ID Intrin; 2675 if (OKForBSwap && MatchBSwaps) 2676 Intrin = Intrinsic::bswap; 2677 else if (OKForBitReverse && MatchBitReversals) 2678 Intrin = Intrinsic::bitreverse; 2679 else 2680 return false; 2681 2682 if (ITy != DemandedTy) { 2683 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 2684 Value *Provider = Res->Provider; 2685 IntegerType *ProviderTy = cast<IntegerType>(Provider->getType()); 2686 // We may need to truncate the provider. 2687 if (DemandedTy != ProviderTy) { 2688 auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy, 2689 "trunc", I); 2690 InsertedInsts.push_back(Trunc); 2691 Provider = Trunc; 2692 } 2693 auto *CI = CallInst::Create(F, Provider, "rev", I); 2694 InsertedInsts.push_back(CI); 2695 auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I); 2696 InsertedInsts.push_back(ExtInst); 2697 return true; 2698 } 2699 2700 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy); 2701 InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I)); 2702 return true; 2703 } 2704 2705 // CodeGen has special handling for some string functions that may replace 2706 // them with target-specific intrinsics. Since that'd skip our interceptors 2707 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 2708 // we mark affected calls as NoBuiltin, which will disable optimization 2709 // in CodeGen. 2710 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 2711 CallInst *CI, const TargetLibraryInfo *TLI) { 2712 Function *F = CI->getCalledFunction(); 2713 LibFunc Func; 2714 if (F && !F->hasLocalLinkage() && F->hasName() && 2715 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 2716 !F->doesNotAccessMemory()) 2717 CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin); 2718 } 2719 2720 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 2721 // We can't have a PHI with a metadata type. 2722 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 2723 return false; 2724 2725 // Early exit. 2726 if (!isa<Constant>(I->getOperand(OpIdx))) 2727 return true; 2728 2729 switch (I->getOpcode()) { 2730 default: 2731 return true; 2732 case Instruction::Call: 2733 case Instruction::Invoke: 2734 // Can't handle inline asm. Skip it. 2735 if (isa<InlineAsm>(ImmutableCallSite(I).getCalledValue())) 2736 return false; 2737 // Many arithmetic intrinsics have no issue taking a 2738 // variable, however it's hard to distingish these from 2739 // specials such as @llvm.frameaddress that require a constant. 2740 if (isa<IntrinsicInst>(I)) 2741 return false; 2742 2743 // Constant bundle operands may need to retain their constant-ness for 2744 // correctness. 2745 if (ImmutableCallSite(I).isBundleOperand(OpIdx)) 2746 return false; 2747 return true; 2748 case Instruction::ShuffleVector: 2749 // Shufflevector masks are constant. 2750 return OpIdx != 2; 2751 case Instruction::Switch: 2752 case Instruction::ExtractValue: 2753 // All operands apart from the first are constant. 2754 return OpIdx == 0; 2755 case Instruction::InsertValue: 2756 // All operands apart from the first and the second are constant. 2757 return OpIdx < 2; 2758 case Instruction::Alloca: 2759 // Static allocas (constant size in the entry block) are handled by 2760 // prologue/epilogue insertion so they're free anyway. We definitely don't 2761 // want to make them non-constant. 2762 return !cast<AllocaInst>(I)->isStaticAlloca(); 2763 case Instruction::GetElementPtr: 2764 if (OpIdx == 0) 2765 return true; 2766 gep_type_iterator It = gep_type_begin(I); 2767 for (auto E = std::next(It, OpIdx); It != E; ++It) 2768 if (It.isStruct()) 2769 return false; 2770 return true; 2771 } 2772 } 2773