1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/Hashing.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/Support/ConvertUTF.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Transforms/Utils/SanitizerStats.h" 38 39 using namespace clang; 40 using namespace CodeGen; 41 42 //===--------------------------------------------------------------------===// 43 // Miscellaneous Helper Methods 44 //===--------------------------------------------------------------------===// 45 46 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 47 unsigned addressSpace = 48 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 49 50 llvm::PointerType *destType = Int8PtrTy; 51 if (addressSpace) 52 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 53 54 if (value->getType() == destType) return value; 55 return Builder.CreateBitCast(value, destType); 56 } 57 58 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 59 /// block. 60 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 61 const Twine &Name) { 62 auto Alloca = CreateTempAlloca(Ty, Name); 63 Alloca->setAlignment(Align.getQuantity()); 64 return Address(Alloca, Align); 65 } 66 67 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 68 /// block. 69 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 70 const Twine &Name) { 71 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 72 } 73 74 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 75 /// default alignment of the corresponding LLVM type, which is *not* 76 /// guaranteed to be related in any way to the expected alignment of 77 /// an AST type that might have been lowered to Ty. 78 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 79 const Twine &Name) { 80 CharUnits Align = 81 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 82 return CreateTempAlloca(Ty, Align, Name); 83 } 84 85 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 86 assert(isa<llvm::AllocaInst>(Var.getPointer())); 87 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 88 Store->setAlignment(Var.getAlignment().getQuantity()); 89 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 90 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 91 } 92 93 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 94 CharUnits Align = getContext().getTypeAlignInChars(Ty); 95 return CreateTempAlloca(ConvertType(Ty), Align, Name); 96 } 97 98 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) { 99 // FIXME: Should we prefer the preferred type alignment here? 100 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name); 101 } 102 103 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 104 const Twine &Name) { 105 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name); 106 } 107 108 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 109 /// expression and compare the result against zero, returning an Int1Ty value. 110 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 111 PGO.setCurrentStmt(E); 112 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 113 llvm::Value *MemPtr = EmitScalarExpr(E); 114 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 115 } 116 117 QualType BoolTy = getContext().BoolTy; 118 SourceLocation Loc = E->getExprLoc(); 119 if (!E->getType()->isAnyComplexType()) 120 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 121 122 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 123 Loc); 124 } 125 126 /// EmitIgnoredExpr - Emit code to compute the specified expression, 127 /// ignoring the result. 128 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 129 if (E->isRValue()) 130 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 131 132 // Just emit it as an l-value and drop the result. 133 EmitLValue(E); 134 } 135 136 /// EmitAnyExpr - Emit code to compute the specified expression which 137 /// can have any type. The result is returned as an RValue struct. 138 /// If this is an aggregate expression, AggSlot indicates where the 139 /// result should be returned. 140 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 141 AggValueSlot aggSlot, 142 bool ignoreResult) { 143 switch (getEvaluationKind(E->getType())) { 144 case TEK_Scalar: 145 return RValue::get(EmitScalarExpr(E, ignoreResult)); 146 case TEK_Complex: 147 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 148 case TEK_Aggregate: 149 if (!ignoreResult && aggSlot.isIgnored()) 150 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 151 EmitAggExpr(E, aggSlot); 152 return aggSlot.asRValue(); 153 } 154 llvm_unreachable("bad evaluation kind"); 155 } 156 157 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 158 /// always be accessible even if no aggregate location is provided. 159 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 160 AggValueSlot AggSlot = AggValueSlot::ignored(); 161 162 if (hasAggregateEvaluationKind(E->getType())) 163 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 164 return EmitAnyExpr(E, AggSlot); 165 } 166 167 /// EmitAnyExprToMem - Evaluate an expression into a given memory 168 /// location. 169 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 170 Address Location, 171 Qualifiers Quals, 172 bool IsInit) { 173 // FIXME: This function should take an LValue as an argument. 174 switch (getEvaluationKind(E->getType())) { 175 case TEK_Complex: 176 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 177 /*isInit*/ false); 178 return; 179 180 case TEK_Aggregate: { 181 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 182 AggValueSlot::IsDestructed_t(IsInit), 183 AggValueSlot::DoesNotNeedGCBarriers, 184 AggValueSlot::IsAliased_t(!IsInit))); 185 return; 186 } 187 188 case TEK_Scalar: { 189 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 190 LValue LV = MakeAddrLValue(Location, E->getType()); 191 EmitStoreThroughLValue(RV, LV); 192 return; 193 } 194 } 195 llvm_unreachable("bad evaluation kind"); 196 } 197 198 static void 199 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 200 const Expr *E, Address ReferenceTemporary) { 201 // Objective-C++ ARC: 202 // If we are binding a reference to a temporary that has ownership, we 203 // need to perform retain/release operations on the temporary. 204 // 205 // FIXME: This should be looking at E, not M. 206 if (auto Lifetime = M->getType().getObjCLifetime()) { 207 switch (Lifetime) { 208 case Qualifiers::OCL_None: 209 case Qualifiers::OCL_ExplicitNone: 210 // Carry on to normal cleanup handling. 211 break; 212 213 case Qualifiers::OCL_Autoreleasing: 214 // Nothing to do; cleaned up by an autorelease pool. 215 return; 216 217 case Qualifiers::OCL_Strong: 218 case Qualifiers::OCL_Weak: 219 switch (StorageDuration Duration = M->getStorageDuration()) { 220 case SD_Static: 221 // Note: we intentionally do not register a cleanup to release 222 // the object on program termination. 223 return; 224 225 case SD_Thread: 226 // FIXME: We should probably register a cleanup in this case. 227 return; 228 229 case SD_Automatic: 230 case SD_FullExpression: 231 CodeGenFunction::Destroyer *Destroy; 232 CleanupKind CleanupKind; 233 if (Lifetime == Qualifiers::OCL_Strong) { 234 const ValueDecl *VD = M->getExtendingDecl(); 235 bool Precise = 236 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 237 CleanupKind = CGF.getARCCleanupKind(); 238 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 239 : &CodeGenFunction::destroyARCStrongImprecise; 240 } else { 241 // __weak objects always get EH cleanups; otherwise, exceptions 242 // could cause really nasty crashes instead of mere leaks. 243 CleanupKind = NormalAndEHCleanup; 244 Destroy = &CodeGenFunction::destroyARCWeak; 245 } 246 if (Duration == SD_FullExpression) 247 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 248 M->getType(), *Destroy, 249 CleanupKind & EHCleanup); 250 else 251 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 252 M->getType(), 253 *Destroy, CleanupKind & EHCleanup); 254 return; 255 256 case SD_Dynamic: 257 llvm_unreachable("temporary cannot have dynamic storage duration"); 258 } 259 llvm_unreachable("unknown storage duration"); 260 } 261 } 262 263 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 264 if (const RecordType *RT = 265 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 266 // Get the destructor for the reference temporary. 267 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 268 if (!ClassDecl->hasTrivialDestructor()) 269 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 270 } 271 272 if (!ReferenceTemporaryDtor) 273 return; 274 275 // Call the destructor for the temporary. 276 switch (M->getStorageDuration()) { 277 case SD_Static: 278 case SD_Thread: { 279 llvm::Constant *CleanupFn; 280 llvm::Constant *CleanupArg; 281 if (E->getType()->isArrayType()) { 282 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 283 ReferenceTemporary, E->getType(), 284 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 285 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 286 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 287 } else { 288 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 289 StructorType::Complete); 290 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 291 } 292 CGF.CGM.getCXXABI().registerGlobalDtor( 293 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 294 break; 295 } 296 297 case SD_FullExpression: 298 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 299 CodeGenFunction::destroyCXXObject, 300 CGF.getLangOpts().Exceptions); 301 break; 302 303 case SD_Automatic: 304 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 305 ReferenceTemporary, E->getType(), 306 CodeGenFunction::destroyCXXObject, 307 CGF.getLangOpts().Exceptions); 308 break; 309 310 case SD_Dynamic: 311 llvm_unreachable("temporary cannot have dynamic storage duration"); 312 } 313 } 314 315 static Address 316 createReferenceTemporary(CodeGenFunction &CGF, 317 const MaterializeTemporaryExpr *M, const Expr *Inner) { 318 switch (M->getStorageDuration()) { 319 case SD_FullExpression: 320 case SD_Automatic: { 321 // If we have a constant temporary array or record try to promote it into a 322 // constant global under the same rules a normal constant would've been 323 // promoted. This is easier on the optimizer and generally emits fewer 324 // instructions. 325 QualType Ty = Inner->getType(); 326 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 327 (Ty->isArrayType() || Ty->isRecordType()) && 328 CGF.CGM.isTypeConstant(Ty, true)) 329 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 330 auto *GV = new llvm::GlobalVariable( 331 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 332 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 333 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 334 GV->setAlignment(alignment.getQuantity()); 335 // FIXME: Should we put the new global into a COMDAT? 336 return Address(GV, alignment); 337 } 338 return CGF.CreateMemTemp(Ty, "ref.tmp"); 339 } 340 case SD_Thread: 341 case SD_Static: 342 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 343 344 case SD_Dynamic: 345 llvm_unreachable("temporary can't have dynamic storage duration"); 346 } 347 llvm_unreachable("unknown storage duration"); 348 } 349 350 LValue CodeGenFunction:: 351 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 352 const Expr *E = M->GetTemporaryExpr(); 353 354 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 355 // as that will cause the lifetime adjustment to be lost for ARC 356 auto ownership = M->getType().getObjCLifetime(); 357 if (ownership != Qualifiers::OCL_None && 358 ownership != Qualifiers::OCL_ExplicitNone) { 359 Address Object = createReferenceTemporary(*this, M, E); 360 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 361 Object = Address(llvm::ConstantExpr::getBitCast(Var, 362 ConvertTypeForMem(E->getType()) 363 ->getPointerTo(Object.getAddressSpace())), 364 Object.getAlignment()); 365 366 // createReferenceTemporary will promote the temporary to a global with a 367 // constant initializer if it can. It can only do this to a value of 368 // ARC-manageable type if the value is global and therefore "immune" to 369 // ref-counting operations. Therefore we have no need to emit either a 370 // dynamic initialization or a cleanup and we can just return the address 371 // of the temporary. 372 if (Var->hasInitializer()) 373 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 374 375 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 376 } 377 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 378 AlignmentSource::Decl); 379 380 switch (getEvaluationKind(E->getType())) { 381 default: llvm_unreachable("expected scalar or aggregate expression"); 382 case TEK_Scalar: 383 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 384 break; 385 case TEK_Aggregate: { 386 EmitAggExpr(E, AggValueSlot::forAddr(Object, 387 E->getType().getQualifiers(), 388 AggValueSlot::IsDestructed, 389 AggValueSlot::DoesNotNeedGCBarriers, 390 AggValueSlot::IsNotAliased)); 391 break; 392 } 393 } 394 395 pushTemporaryCleanup(*this, M, E, Object); 396 return RefTempDst; 397 } 398 399 SmallVector<const Expr *, 2> CommaLHSs; 400 SmallVector<SubobjectAdjustment, 2> Adjustments; 401 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 402 403 for (const auto &Ignored : CommaLHSs) 404 EmitIgnoredExpr(Ignored); 405 406 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 407 if (opaque->getType()->isRecordType()) { 408 assert(Adjustments.empty()); 409 return EmitOpaqueValueLValue(opaque); 410 } 411 } 412 413 // Create and initialize the reference temporary. 414 Address Object = createReferenceTemporary(*this, M, E); 415 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 416 Object = Address(llvm::ConstantExpr::getBitCast( 417 Var, ConvertTypeForMem(E->getType())->getPointerTo()), 418 Object.getAlignment()); 419 // If the temporary is a global and has a constant initializer or is a 420 // constant temporary that we promoted to a global, we may have already 421 // initialized it. 422 if (!Var->hasInitializer()) { 423 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 424 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 425 } 426 } else { 427 switch (M->getStorageDuration()) { 428 case SD_Automatic: 429 case SD_FullExpression: 430 if (auto *Size = EmitLifetimeStart( 431 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 432 Object.getPointer())) { 433 if (M->getStorageDuration() == SD_Automatic) 434 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 435 Object, Size); 436 else 437 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 438 Size); 439 } 440 break; 441 default: 442 break; 443 } 444 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 445 } 446 pushTemporaryCleanup(*this, M, E, Object); 447 448 // Perform derived-to-base casts and/or field accesses, to get from the 449 // temporary object we created (and, potentially, for which we extended 450 // the lifetime) to the subobject we're binding the reference to. 451 for (unsigned I = Adjustments.size(); I != 0; --I) { 452 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 453 switch (Adjustment.Kind) { 454 case SubobjectAdjustment::DerivedToBaseAdjustment: 455 Object = 456 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 457 Adjustment.DerivedToBase.BasePath->path_begin(), 458 Adjustment.DerivedToBase.BasePath->path_end(), 459 /*NullCheckValue=*/ false, E->getExprLoc()); 460 break; 461 462 case SubobjectAdjustment::FieldAdjustment: { 463 LValue LV = MakeAddrLValue(Object, E->getType(), 464 AlignmentSource::Decl); 465 LV = EmitLValueForField(LV, Adjustment.Field); 466 assert(LV.isSimple() && 467 "materialized temporary field is not a simple lvalue"); 468 Object = LV.getAddress(); 469 break; 470 } 471 472 case SubobjectAdjustment::MemberPointerAdjustment: { 473 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 474 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 475 Adjustment.Ptr.MPT); 476 break; 477 } 478 } 479 } 480 481 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 482 } 483 484 RValue 485 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 486 // Emit the expression as an lvalue. 487 LValue LV = EmitLValue(E); 488 assert(LV.isSimple()); 489 llvm::Value *Value = LV.getPointer(); 490 491 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 492 // C++11 [dcl.ref]p5 (as amended by core issue 453): 493 // If a glvalue to which a reference is directly bound designates neither 494 // an existing object or function of an appropriate type nor a region of 495 // storage of suitable size and alignment to contain an object of the 496 // reference's type, the behavior is undefined. 497 QualType Ty = E->getType(); 498 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 499 } 500 501 return RValue::get(Value); 502 } 503 504 505 /// getAccessedFieldNo - Given an encoded value and a result number, return the 506 /// input field number being accessed. 507 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 508 const llvm::Constant *Elts) { 509 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 510 ->getZExtValue(); 511 } 512 513 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 514 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 515 llvm::Value *High) { 516 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 517 llvm::Value *K47 = Builder.getInt64(47); 518 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 519 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 520 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 521 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 522 return Builder.CreateMul(B1, KMul); 523 } 524 525 bool CodeGenFunction::sanitizePerformTypeCheck() const { 526 return SanOpts.has(SanitizerKind::Null) | 527 SanOpts.has(SanitizerKind::Alignment) | 528 SanOpts.has(SanitizerKind::ObjectSize) | 529 SanOpts.has(SanitizerKind::Vptr); 530 } 531 532 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 533 llvm::Value *Ptr, QualType Ty, 534 CharUnits Alignment, bool SkipNullCheck) { 535 if (!sanitizePerformTypeCheck()) 536 return; 537 538 // Don't check pointers outside the default address space. The null check 539 // isn't correct, the object-size check isn't supported by LLVM, and we can't 540 // communicate the addresses to the runtime handler for the vptr check. 541 if (Ptr->getType()->getPointerAddressSpace()) 542 return; 543 544 SanitizerScope SanScope(this); 545 546 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 547 llvm::BasicBlock *Done = nullptr; 548 549 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 550 TCK == TCK_UpcastToVirtualBase; 551 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 552 !SkipNullCheck) { 553 // The glvalue must not be an empty glvalue. 554 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 555 556 if (AllowNullPointers) { 557 // When performing pointer casts, it's OK if the value is null. 558 // Skip the remaining checks in that case. 559 Done = createBasicBlock("null"); 560 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 561 Builder.CreateCondBr(IsNonNull, Rest, Done); 562 EmitBlock(Rest); 563 } else { 564 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 565 } 566 } 567 568 if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) { 569 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 570 571 // The glvalue must refer to a large enough storage region. 572 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 573 // to check this. 574 // FIXME: Get object address space 575 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 576 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 577 llvm::Value *Min = Builder.getFalse(); 578 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 579 llvm::Value *LargeEnough = 580 Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}), 581 llvm::ConstantInt::get(IntPtrTy, Size)); 582 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 583 } 584 585 uint64_t AlignVal = 0; 586 587 if (SanOpts.has(SanitizerKind::Alignment)) { 588 AlignVal = Alignment.getQuantity(); 589 if (!Ty->isIncompleteType() && !AlignVal) 590 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 591 592 // The glvalue must be suitably aligned. 593 if (AlignVal) { 594 llvm::Value *Align = 595 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 596 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 597 llvm::Value *Aligned = 598 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 599 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 600 } 601 } 602 603 if (Checks.size() > 0) { 604 llvm::Constant *StaticData[] = { 605 EmitCheckSourceLocation(Loc), 606 EmitCheckTypeDescriptor(Ty), 607 llvm::ConstantInt::get(SizeTy, AlignVal), 608 llvm::ConstantInt::get(Int8Ty, TCK) 609 }; 610 EmitCheck(Checks, "type_mismatch", StaticData, Ptr); 611 } 612 613 // If possible, check that the vptr indicates that there is a subobject of 614 // type Ty at offset zero within this object. 615 // 616 // C++11 [basic.life]p5,6: 617 // [For storage which does not refer to an object within its lifetime] 618 // The program has undefined behavior if: 619 // -- the [pointer or glvalue] is used to access a non-static data member 620 // or call a non-static member function 621 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 622 if (SanOpts.has(SanitizerKind::Vptr) && 623 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 624 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 625 TCK == TCK_UpcastToVirtualBase) && 626 RD && RD->hasDefinition() && RD->isDynamicClass()) { 627 // Compute a hash of the mangled name of the type. 628 // 629 // FIXME: This is not guaranteed to be deterministic! Move to a 630 // fingerprinting mechanism once LLVM provides one. For the time 631 // being the implementation happens to be deterministic. 632 SmallString<64> MangledName; 633 llvm::raw_svector_ostream Out(MangledName); 634 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 635 Out); 636 637 // Blacklist based on the mangled type. 638 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 639 Out.str())) { 640 llvm::hash_code TypeHash = hash_value(Out.str()); 641 642 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 643 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 644 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 645 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 646 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 647 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 648 649 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 650 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 651 652 // Look the hash up in our cache. 653 const int CacheSize = 128; 654 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 655 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 656 "__ubsan_vptr_type_cache"); 657 llvm::Value *Slot = Builder.CreateAnd(Hash, 658 llvm::ConstantInt::get(IntPtrTy, 659 CacheSize-1)); 660 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 661 llvm::Value *CacheVal = 662 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 663 getPointerAlign()); 664 665 // If the hash isn't in the cache, call a runtime handler to perform the 666 // hard work of checking whether the vptr is for an object of the right 667 // type. This will either fill in the cache and return, or produce a 668 // diagnostic. 669 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 670 llvm::Constant *StaticData[] = { 671 EmitCheckSourceLocation(Loc), 672 EmitCheckTypeDescriptor(Ty), 673 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 674 llvm::ConstantInt::get(Int8Ty, TCK) 675 }; 676 llvm::Value *DynamicData[] = { Ptr, Hash }; 677 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 678 "dynamic_type_cache_miss", StaticData, DynamicData); 679 } 680 } 681 682 if (Done) { 683 Builder.CreateBr(Done); 684 EmitBlock(Done); 685 } 686 } 687 688 /// Determine whether this expression refers to a flexible array member in a 689 /// struct. We disable array bounds checks for such members. 690 static bool isFlexibleArrayMemberExpr(const Expr *E) { 691 // For compatibility with existing code, we treat arrays of length 0 or 692 // 1 as flexible array members. 693 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 694 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 695 if (CAT->getSize().ugt(1)) 696 return false; 697 } else if (!isa<IncompleteArrayType>(AT)) 698 return false; 699 700 E = E->IgnoreParens(); 701 702 // A flexible array member must be the last member in the class. 703 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 704 // FIXME: If the base type of the member expr is not FD->getParent(), 705 // this should not be treated as a flexible array member access. 706 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 707 RecordDecl::field_iterator FI( 708 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 709 return ++FI == FD->getParent()->field_end(); 710 } 711 } 712 713 return false; 714 } 715 716 /// If Base is known to point to the start of an array, return the length of 717 /// that array. Return 0 if the length cannot be determined. 718 static llvm::Value *getArrayIndexingBound( 719 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 720 // For the vector indexing extension, the bound is the number of elements. 721 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 722 IndexedType = Base->getType(); 723 return CGF.Builder.getInt32(VT->getNumElements()); 724 } 725 726 Base = Base->IgnoreParens(); 727 728 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 729 if (CE->getCastKind() == CK_ArrayToPointerDecay && 730 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 731 IndexedType = CE->getSubExpr()->getType(); 732 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 733 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 734 return CGF.Builder.getInt(CAT->getSize()); 735 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 736 return CGF.getVLASize(VAT).first; 737 } 738 } 739 740 return nullptr; 741 } 742 743 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 744 llvm::Value *Index, QualType IndexType, 745 bool Accessed) { 746 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 747 "should not be called unless adding bounds checks"); 748 SanitizerScope SanScope(this); 749 750 QualType IndexedType; 751 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 752 if (!Bound) 753 return; 754 755 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 756 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 757 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 758 759 llvm::Constant *StaticData[] = { 760 EmitCheckSourceLocation(E->getExprLoc()), 761 EmitCheckTypeDescriptor(IndexedType), 762 EmitCheckTypeDescriptor(IndexType) 763 }; 764 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 765 : Builder.CreateICmpULE(IndexVal, BoundVal); 766 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds", 767 StaticData, Index); 768 } 769 770 771 CodeGenFunction::ComplexPairTy CodeGenFunction:: 772 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 773 bool isInc, bool isPre) { 774 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 775 776 llvm::Value *NextVal; 777 if (isa<llvm::IntegerType>(InVal.first->getType())) { 778 uint64_t AmountVal = isInc ? 1 : -1; 779 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 780 781 // Add the inc/dec to the real part. 782 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 783 } else { 784 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 785 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 786 if (!isInc) 787 FVal.changeSign(); 788 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 789 790 // Add the inc/dec to the real part. 791 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 792 } 793 794 ComplexPairTy IncVal(NextVal, InVal.second); 795 796 // Store the updated result through the lvalue. 797 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 798 799 // If this is a postinc, return the value read from memory, otherwise use the 800 // updated value. 801 return isPre ? IncVal : InVal; 802 } 803 804 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 805 CodeGenFunction *CGF) { 806 // Bind VLAs in the cast type. 807 if (CGF && E->getType()->isVariablyModifiedType()) 808 CGF->EmitVariablyModifiedType(E->getType()); 809 810 if (CGDebugInfo *DI = getModuleDebugInfo()) 811 DI->EmitExplicitCastType(E->getType()); 812 } 813 814 //===----------------------------------------------------------------------===// 815 // LValue Expression Emission 816 //===----------------------------------------------------------------------===// 817 818 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 819 /// derive a more accurate bound on the alignment of the pointer. 820 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 821 AlignmentSource *Source) { 822 // We allow this with ObjC object pointers because of fragile ABIs. 823 assert(E->getType()->isPointerType() || 824 E->getType()->isObjCObjectPointerType()); 825 E = E->IgnoreParens(); 826 827 // Casts: 828 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 829 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 830 CGM.EmitExplicitCastExprType(ECE, this); 831 832 switch (CE->getCastKind()) { 833 // Non-converting casts (but not C's implicit conversion from void*). 834 case CK_BitCast: 835 case CK_NoOp: 836 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 837 if (PtrTy->getPointeeType()->isVoidType()) 838 break; 839 840 AlignmentSource InnerSource; 841 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource); 842 if (Source) *Source = InnerSource; 843 844 // If this is an explicit bitcast, and the source l-value is 845 // opaque, honor the alignment of the casted-to type. 846 if (isa<ExplicitCastExpr>(CE) && 847 InnerSource != AlignmentSource::Decl) { 848 Addr = Address(Addr.getPointer(), 849 getNaturalPointeeTypeAlignment(E->getType(), Source)); 850 } 851 852 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 853 CE->getCastKind() == CK_BitCast) { 854 if (auto PT = E->getType()->getAs<PointerType>()) 855 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 856 /*MayBeNull=*/true, 857 CodeGenFunction::CFITCK_UnrelatedCast, 858 CE->getLocStart()); 859 } 860 861 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 862 } 863 break; 864 865 // Array-to-pointer decay. 866 case CK_ArrayToPointerDecay: 867 return EmitArrayToPointerDecay(CE->getSubExpr(), Source); 868 869 // Derived-to-base conversions. 870 case CK_UncheckedDerivedToBase: 871 case CK_DerivedToBase: { 872 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source); 873 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 874 return GetAddressOfBaseClass(Addr, Derived, 875 CE->path_begin(), CE->path_end(), 876 ShouldNullCheckClassCastValue(CE), 877 CE->getExprLoc()); 878 } 879 880 // TODO: Is there any reason to treat base-to-derived conversions 881 // specially? 882 default: 883 break; 884 } 885 } 886 887 // Unary &. 888 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 889 if (UO->getOpcode() == UO_AddrOf) { 890 LValue LV = EmitLValue(UO->getSubExpr()); 891 if (Source) *Source = LV.getAlignmentSource(); 892 return LV.getAddress(); 893 } 894 } 895 896 // TODO: conditional operators, comma. 897 898 // Otherwise, use the alignment of the type. 899 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source); 900 return Address(EmitScalarExpr(E), Align); 901 } 902 903 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 904 if (Ty->isVoidType()) 905 return RValue::get(nullptr); 906 907 switch (getEvaluationKind(Ty)) { 908 case TEK_Complex: { 909 llvm::Type *EltTy = 910 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 911 llvm::Value *U = llvm::UndefValue::get(EltTy); 912 return RValue::getComplex(std::make_pair(U, U)); 913 } 914 915 // If this is a use of an undefined aggregate type, the aggregate must have an 916 // identifiable address. Just because the contents of the value are undefined 917 // doesn't mean that the address can't be taken and compared. 918 case TEK_Aggregate: { 919 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 920 return RValue::getAggregate(DestPtr); 921 } 922 923 case TEK_Scalar: 924 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 925 } 926 llvm_unreachable("bad evaluation kind"); 927 } 928 929 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 930 const char *Name) { 931 ErrorUnsupported(E, Name); 932 return GetUndefRValue(E->getType()); 933 } 934 935 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 936 const char *Name) { 937 ErrorUnsupported(E, Name); 938 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 939 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 940 E->getType()); 941 } 942 943 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 944 LValue LV; 945 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 946 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 947 else 948 LV = EmitLValue(E); 949 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 950 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 951 E->getType(), LV.getAlignment()); 952 return LV; 953 } 954 955 /// EmitLValue - Emit code to compute a designator that specifies the location 956 /// of the expression. 957 /// 958 /// This can return one of two things: a simple address or a bitfield reference. 959 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 960 /// an LLVM pointer type. 961 /// 962 /// If this returns a bitfield reference, nothing about the pointee type of the 963 /// LLVM value is known: For example, it may not be a pointer to an integer. 964 /// 965 /// If this returns a normal address, and if the lvalue's C type is fixed size, 966 /// this method guarantees that the returned pointer type will point to an LLVM 967 /// type of the same size of the lvalue's type. If the lvalue has a variable 968 /// length type, this is not possible. 969 /// 970 LValue CodeGenFunction::EmitLValue(const Expr *E) { 971 ApplyDebugLocation DL(*this, E); 972 switch (E->getStmtClass()) { 973 default: return EmitUnsupportedLValue(E, "l-value expression"); 974 975 case Expr::ObjCPropertyRefExprClass: 976 llvm_unreachable("cannot emit a property reference directly"); 977 978 case Expr::ObjCSelectorExprClass: 979 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 980 case Expr::ObjCIsaExprClass: 981 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 982 case Expr::BinaryOperatorClass: 983 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 984 case Expr::CompoundAssignOperatorClass: { 985 QualType Ty = E->getType(); 986 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 987 Ty = AT->getValueType(); 988 if (!Ty->isAnyComplexType()) 989 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 990 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 991 } 992 case Expr::CallExprClass: 993 case Expr::CXXMemberCallExprClass: 994 case Expr::CXXOperatorCallExprClass: 995 case Expr::UserDefinedLiteralClass: 996 return EmitCallExprLValue(cast<CallExpr>(E)); 997 case Expr::VAArgExprClass: 998 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 999 case Expr::DeclRefExprClass: 1000 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1001 case Expr::ParenExprClass: 1002 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1003 case Expr::GenericSelectionExprClass: 1004 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1005 case Expr::PredefinedExprClass: 1006 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1007 case Expr::StringLiteralClass: 1008 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1009 case Expr::ObjCEncodeExprClass: 1010 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1011 case Expr::PseudoObjectExprClass: 1012 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1013 case Expr::InitListExprClass: 1014 return EmitInitListLValue(cast<InitListExpr>(E)); 1015 case Expr::CXXTemporaryObjectExprClass: 1016 case Expr::CXXConstructExprClass: 1017 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1018 case Expr::CXXBindTemporaryExprClass: 1019 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1020 case Expr::CXXUuidofExprClass: 1021 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1022 case Expr::LambdaExprClass: 1023 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1024 1025 case Expr::ExprWithCleanupsClass: { 1026 const auto *cleanups = cast<ExprWithCleanups>(E); 1027 enterFullExpression(cleanups); 1028 RunCleanupsScope Scope(*this); 1029 return EmitLValue(cleanups->getSubExpr()); 1030 } 1031 1032 case Expr::CXXDefaultArgExprClass: 1033 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1034 case Expr::CXXDefaultInitExprClass: { 1035 CXXDefaultInitExprScope Scope(*this); 1036 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1037 } 1038 case Expr::CXXTypeidExprClass: 1039 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1040 1041 case Expr::ObjCMessageExprClass: 1042 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1043 case Expr::ObjCIvarRefExprClass: 1044 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1045 case Expr::StmtExprClass: 1046 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1047 case Expr::UnaryOperatorClass: 1048 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1049 case Expr::ArraySubscriptExprClass: 1050 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1051 case Expr::OMPArraySectionExprClass: 1052 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1053 case Expr::ExtVectorElementExprClass: 1054 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1055 case Expr::MemberExprClass: 1056 return EmitMemberExpr(cast<MemberExpr>(E)); 1057 case Expr::CompoundLiteralExprClass: 1058 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1059 case Expr::ConditionalOperatorClass: 1060 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1061 case Expr::BinaryConditionalOperatorClass: 1062 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1063 case Expr::ChooseExprClass: 1064 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1065 case Expr::OpaqueValueExprClass: 1066 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1067 case Expr::SubstNonTypeTemplateParmExprClass: 1068 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1069 case Expr::ImplicitCastExprClass: 1070 case Expr::CStyleCastExprClass: 1071 case Expr::CXXFunctionalCastExprClass: 1072 case Expr::CXXStaticCastExprClass: 1073 case Expr::CXXDynamicCastExprClass: 1074 case Expr::CXXReinterpretCastExprClass: 1075 case Expr::CXXConstCastExprClass: 1076 case Expr::ObjCBridgedCastExprClass: 1077 return EmitCastLValue(cast<CastExpr>(E)); 1078 1079 case Expr::MaterializeTemporaryExprClass: 1080 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1081 } 1082 } 1083 1084 /// Given an object of the given canonical type, can we safely copy a 1085 /// value out of it based on its initializer? 1086 static bool isConstantEmittableObjectType(QualType type) { 1087 assert(type.isCanonical()); 1088 assert(!type->isReferenceType()); 1089 1090 // Must be const-qualified but non-volatile. 1091 Qualifiers qs = type.getLocalQualifiers(); 1092 if (!qs.hasConst() || qs.hasVolatile()) return false; 1093 1094 // Otherwise, all object types satisfy this except C++ classes with 1095 // mutable subobjects or non-trivial copy/destroy behavior. 1096 if (const auto *RT = dyn_cast<RecordType>(type)) 1097 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1098 if (RD->hasMutableFields() || !RD->isTrivial()) 1099 return false; 1100 1101 return true; 1102 } 1103 1104 /// Can we constant-emit a load of a reference to a variable of the 1105 /// given type? This is different from predicates like 1106 /// Decl::isUsableInConstantExpressions because we do want it to apply 1107 /// in situations that don't necessarily satisfy the language's rules 1108 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1109 /// to do this with const float variables even if those variables 1110 /// aren't marked 'constexpr'. 1111 enum ConstantEmissionKind { 1112 CEK_None, 1113 CEK_AsReferenceOnly, 1114 CEK_AsValueOrReference, 1115 CEK_AsValueOnly 1116 }; 1117 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1118 type = type.getCanonicalType(); 1119 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1120 if (isConstantEmittableObjectType(ref->getPointeeType())) 1121 return CEK_AsValueOrReference; 1122 return CEK_AsReferenceOnly; 1123 } 1124 if (isConstantEmittableObjectType(type)) 1125 return CEK_AsValueOnly; 1126 return CEK_None; 1127 } 1128 1129 /// Try to emit a reference to the given value without producing it as 1130 /// an l-value. This is actually more than an optimization: we can't 1131 /// produce an l-value for variables that we never actually captured 1132 /// in a block or lambda, which means const int variables or constexpr 1133 /// literals or similar. 1134 CodeGenFunction::ConstantEmission 1135 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1136 ValueDecl *value = refExpr->getDecl(); 1137 1138 // The value needs to be an enum constant or a constant variable. 1139 ConstantEmissionKind CEK; 1140 if (isa<ParmVarDecl>(value)) { 1141 CEK = CEK_None; 1142 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1143 CEK = checkVarTypeForConstantEmission(var->getType()); 1144 } else if (isa<EnumConstantDecl>(value)) { 1145 CEK = CEK_AsValueOnly; 1146 } else { 1147 CEK = CEK_None; 1148 } 1149 if (CEK == CEK_None) return ConstantEmission(); 1150 1151 Expr::EvalResult result; 1152 bool resultIsReference; 1153 QualType resultType; 1154 1155 // It's best to evaluate all the way as an r-value if that's permitted. 1156 if (CEK != CEK_AsReferenceOnly && 1157 refExpr->EvaluateAsRValue(result, getContext())) { 1158 resultIsReference = false; 1159 resultType = refExpr->getType(); 1160 1161 // Otherwise, try to evaluate as an l-value. 1162 } else if (CEK != CEK_AsValueOnly && 1163 refExpr->EvaluateAsLValue(result, getContext())) { 1164 resultIsReference = true; 1165 resultType = value->getType(); 1166 1167 // Failure. 1168 } else { 1169 return ConstantEmission(); 1170 } 1171 1172 // In any case, if the initializer has side-effects, abandon ship. 1173 if (result.HasSideEffects) 1174 return ConstantEmission(); 1175 1176 // Emit as a constant. 1177 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1178 1179 // Make sure we emit a debug reference to the global variable. 1180 // This should probably fire even for 1181 if (isa<VarDecl>(value)) { 1182 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1183 EmitDeclRefExprDbgValue(refExpr, C); 1184 } else { 1185 assert(isa<EnumConstantDecl>(value)); 1186 EmitDeclRefExprDbgValue(refExpr, C); 1187 } 1188 1189 // If we emitted a reference constant, we need to dereference that. 1190 if (resultIsReference) 1191 return ConstantEmission::forReference(C); 1192 1193 return ConstantEmission::forValue(C); 1194 } 1195 1196 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1197 SourceLocation Loc) { 1198 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1199 lvalue.getType(), Loc, lvalue.getAlignmentSource(), 1200 lvalue.getTBAAInfo(), 1201 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1202 lvalue.isNontemporal()); 1203 } 1204 1205 static bool hasBooleanRepresentation(QualType Ty) { 1206 if (Ty->isBooleanType()) 1207 return true; 1208 1209 if (const EnumType *ET = Ty->getAs<EnumType>()) 1210 return ET->getDecl()->getIntegerType()->isBooleanType(); 1211 1212 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1213 return hasBooleanRepresentation(AT->getValueType()); 1214 1215 return false; 1216 } 1217 1218 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1219 llvm::APInt &Min, llvm::APInt &End, 1220 bool StrictEnums) { 1221 const EnumType *ET = Ty->getAs<EnumType>(); 1222 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1223 ET && !ET->getDecl()->isFixed(); 1224 bool IsBool = hasBooleanRepresentation(Ty); 1225 if (!IsBool && !IsRegularCPlusPlusEnum) 1226 return false; 1227 1228 if (IsBool) { 1229 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1230 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1231 } else { 1232 const EnumDecl *ED = ET->getDecl(); 1233 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1234 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1235 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1236 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1237 1238 if (NumNegativeBits) { 1239 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1240 assert(NumBits <= Bitwidth); 1241 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1242 Min = -End; 1243 } else { 1244 assert(NumPositiveBits <= Bitwidth); 1245 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1246 Min = llvm::APInt(Bitwidth, 0); 1247 } 1248 } 1249 return true; 1250 } 1251 1252 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1253 llvm::APInt Min, End; 1254 if (!getRangeForType(*this, Ty, Min, End, 1255 CGM.getCodeGenOpts().StrictEnums)) 1256 return nullptr; 1257 1258 llvm::MDBuilder MDHelper(getLLVMContext()); 1259 return MDHelper.createRange(Min, End); 1260 } 1261 1262 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1263 QualType Ty, 1264 SourceLocation Loc, 1265 AlignmentSource AlignSource, 1266 llvm::MDNode *TBAAInfo, 1267 QualType TBAABaseType, 1268 uint64_t TBAAOffset, 1269 bool isNontemporal) { 1270 // For better performance, handle vector loads differently. 1271 if (Ty->isVectorType()) { 1272 const llvm::Type *EltTy = Addr.getElementType(); 1273 1274 const auto *VTy = cast<llvm::VectorType>(EltTy); 1275 1276 // Handle vectors of size 3 like size 4 for better performance. 1277 if (VTy->getNumElements() == 3) { 1278 1279 // Bitcast to vec4 type. 1280 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1281 4); 1282 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1283 // Now load value. 1284 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1285 1286 // Shuffle vector to get vec3. 1287 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1288 {0, 1, 2}, "extractVec"); 1289 return EmitFromMemory(V, Ty); 1290 } 1291 } 1292 1293 // Atomic operations have to be done on integral types. 1294 LValue AtomicLValue = 1295 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1296 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1297 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1298 } 1299 1300 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1301 if (isNontemporal) { 1302 llvm::MDNode *Node = llvm::MDNode::get( 1303 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1304 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1305 } 1306 if (TBAAInfo) { 1307 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1308 TBAAOffset); 1309 if (TBAAPath) 1310 CGM.DecorateInstructionWithTBAA(Load, TBAAPath, 1311 false /*ConvertTypeToTag*/); 1312 } 1313 1314 bool NeedsBoolCheck = 1315 SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty); 1316 bool NeedsEnumCheck = 1317 SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>(); 1318 if (NeedsBoolCheck || NeedsEnumCheck) { 1319 SanitizerScope SanScope(this); 1320 llvm::APInt Min, End; 1321 if (getRangeForType(*this, Ty, Min, End, true)) { 1322 --End; 1323 llvm::Value *Check; 1324 if (!Min) 1325 Check = Builder.CreateICmpULE( 1326 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1327 else { 1328 llvm::Value *Upper = Builder.CreateICmpSLE( 1329 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1330 llvm::Value *Lower = Builder.CreateICmpSGE( 1331 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1332 Check = Builder.CreateAnd(Upper, Lower); 1333 } 1334 llvm::Constant *StaticArgs[] = { 1335 EmitCheckSourceLocation(Loc), 1336 EmitCheckTypeDescriptor(Ty) 1337 }; 1338 SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1339 EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs, 1340 EmitCheckValue(Load)); 1341 } 1342 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1343 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1344 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1345 1346 return EmitFromMemory(Load, Ty); 1347 } 1348 1349 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1350 // Bool has a different representation in memory than in registers. 1351 if (hasBooleanRepresentation(Ty)) { 1352 // This should really always be an i1, but sometimes it's already 1353 // an i8, and it's awkward to track those cases down. 1354 if (Value->getType()->isIntegerTy(1)) 1355 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1356 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1357 "wrong value rep of bool"); 1358 } 1359 1360 return Value; 1361 } 1362 1363 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1364 // Bool has a different representation in memory than in registers. 1365 if (hasBooleanRepresentation(Ty)) { 1366 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1367 "wrong value rep of bool"); 1368 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1369 } 1370 1371 return Value; 1372 } 1373 1374 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1375 bool Volatile, QualType Ty, 1376 AlignmentSource AlignSource, 1377 llvm::MDNode *TBAAInfo, 1378 bool isInit, QualType TBAABaseType, 1379 uint64_t TBAAOffset, 1380 bool isNontemporal) { 1381 1382 // Handle vectors differently to get better performance. 1383 if (Ty->isVectorType()) { 1384 llvm::Type *SrcTy = Value->getType(); 1385 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1386 // Handle vec3 special. 1387 if (VecTy->getNumElements() == 3) { 1388 // Our source is a vec3, do a shuffle vector to make it a vec4. 1389 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1390 Builder.getInt32(2), 1391 llvm::UndefValue::get(Builder.getInt32Ty())}; 1392 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1393 Value = Builder.CreateShuffleVector(Value, 1394 llvm::UndefValue::get(VecTy), 1395 MaskV, "extractVec"); 1396 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1397 } 1398 if (Addr.getElementType() != SrcTy) { 1399 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1400 } 1401 } 1402 1403 Value = EmitToMemory(Value, Ty); 1404 1405 LValue AtomicLValue = 1406 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1407 if (Ty->isAtomicType() || 1408 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1409 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1410 return; 1411 } 1412 1413 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1414 if (isNontemporal) { 1415 llvm::MDNode *Node = 1416 llvm::MDNode::get(Store->getContext(), 1417 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1418 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1419 } 1420 if (TBAAInfo) { 1421 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1422 TBAAOffset); 1423 if (TBAAPath) 1424 CGM.DecorateInstructionWithTBAA(Store, TBAAPath, 1425 false /*ConvertTypeToTag*/); 1426 } 1427 } 1428 1429 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1430 bool isInit) { 1431 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1432 lvalue.getType(), lvalue.getAlignmentSource(), 1433 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1434 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1435 } 1436 1437 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1438 /// method emits the address of the lvalue, then loads the result as an rvalue, 1439 /// returning the rvalue. 1440 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1441 if (LV.isObjCWeak()) { 1442 // load of a __weak object. 1443 Address AddrWeakObj = LV.getAddress(); 1444 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1445 AddrWeakObj)); 1446 } 1447 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1448 // In MRC mode, we do a load+autorelease. 1449 if (!getLangOpts().ObjCAutoRefCount) { 1450 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1451 } 1452 1453 // In ARC mode, we load retained and then consume the value. 1454 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1455 Object = EmitObjCConsumeObject(LV.getType(), Object); 1456 return RValue::get(Object); 1457 } 1458 1459 if (LV.isSimple()) { 1460 assert(!LV.getType()->isFunctionType()); 1461 1462 // Everything needs a load. 1463 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1464 } 1465 1466 if (LV.isVectorElt()) { 1467 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1468 LV.isVolatileQualified()); 1469 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1470 "vecext")); 1471 } 1472 1473 // If this is a reference to a subset of the elements of a vector, either 1474 // shuffle the input or extract/insert them as appropriate. 1475 if (LV.isExtVectorElt()) 1476 return EmitLoadOfExtVectorElementLValue(LV); 1477 1478 // Global Register variables always invoke intrinsics 1479 if (LV.isGlobalReg()) 1480 return EmitLoadOfGlobalRegLValue(LV); 1481 1482 assert(LV.isBitField() && "Unknown LValue type!"); 1483 return EmitLoadOfBitfieldLValue(LV); 1484 } 1485 1486 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1487 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1488 1489 // Get the output type. 1490 llvm::Type *ResLTy = ConvertType(LV.getType()); 1491 1492 Address Ptr = LV.getBitFieldAddress(); 1493 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1494 1495 if (Info.IsSigned) { 1496 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1497 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1498 if (HighBits) 1499 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1500 if (Info.Offset + HighBits) 1501 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1502 } else { 1503 if (Info.Offset) 1504 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1505 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1506 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1507 Info.Size), 1508 "bf.clear"); 1509 } 1510 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1511 1512 return RValue::get(Val); 1513 } 1514 1515 // If this is a reference to a subset of the elements of a vector, create an 1516 // appropriate shufflevector. 1517 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1518 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1519 LV.isVolatileQualified()); 1520 1521 const llvm::Constant *Elts = LV.getExtVectorElts(); 1522 1523 // If the result of the expression is a non-vector type, we must be extracting 1524 // a single element. Just codegen as an extractelement. 1525 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1526 if (!ExprVT) { 1527 unsigned InIdx = getAccessedFieldNo(0, Elts); 1528 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1529 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1530 } 1531 1532 // Always use shuffle vector to try to retain the original program structure 1533 unsigned NumResultElts = ExprVT->getNumElements(); 1534 1535 SmallVector<llvm::Constant*, 4> Mask; 1536 for (unsigned i = 0; i != NumResultElts; ++i) 1537 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1538 1539 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1540 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1541 MaskV); 1542 return RValue::get(Vec); 1543 } 1544 1545 /// @brief Generates lvalue for partial ext_vector access. 1546 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1547 Address VectorAddress = LV.getExtVectorAddress(); 1548 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1549 QualType EQT = ExprVT->getElementType(); 1550 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1551 1552 Address CastToPointerElement = 1553 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1554 "conv.ptr.element"); 1555 1556 const llvm::Constant *Elts = LV.getExtVectorElts(); 1557 unsigned ix = getAccessedFieldNo(0, Elts); 1558 1559 Address VectorBasePtrPlusIx = 1560 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1561 getContext().getTypeSizeInChars(EQT), 1562 "vector.elt"); 1563 1564 return VectorBasePtrPlusIx; 1565 } 1566 1567 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1568 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1569 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1570 "Bad type for register variable"); 1571 llvm::MDNode *RegName = cast<llvm::MDNode>( 1572 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1573 1574 // We accept integer and pointer types only 1575 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1576 llvm::Type *Ty = OrigTy; 1577 if (OrigTy->isPointerTy()) 1578 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1579 llvm::Type *Types[] = { Ty }; 1580 1581 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1582 llvm::Value *Call = Builder.CreateCall( 1583 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1584 if (OrigTy->isPointerTy()) 1585 Call = Builder.CreateIntToPtr(Call, OrigTy); 1586 return RValue::get(Call); 1587 } 1588 1589 1590 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1591 /// lvalue, where both are guaranteed to the have the same type, and that type 1592 /// is 'Ty'. 1593 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1594 bool isInit) { 1595 if (!Dst.isSimple()) { 1596 if (Dst.isVectorElt()) { 1597 // Read/modify/write the vector, inserting the new element. 1598 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1599 Dst.isVolatileQualified()); 1600 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1601 Dst.getVectorIdx(), "vecins"); 1602 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1603 Dst.isVolatileQualified()); 1604 return; 1605 } 1606 1607 // If this is an update of extended vector elements, insert them as 1608 // appropriate. 1609 if (Dst.isExtVectorElt()) 1610 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1611 1612 if (Dst.isGlobalReg()) 1613 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1614 1615 assert(Dst.isBitField() && "Unknown LValue type"); 1616 return EmitStoreThroughBitfieldLValue(Src, Dst); 1617 } 1618 1619 // There's special magic for assigning into an ARC-qualified l-value. 1620 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1621 switch (Lifetime) { 1622 case Qualifiers::OCL_None: 1623 llvm_unreachable("present but none"); 1624 1625 case Qualifiers::OCL_ExplicitNone: 1626 // nothing special 1627 break; 1628 1629 case Qualifiers::OCL_Strong: 1630 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1631 return; 1632 1633 case Qualifiers::OCL_Weak: 1634 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1635 return; 1636 1637 case Qualifiers::OCL_Autoreleasing: 1638 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1639 Src.getScalarVal())); 1640 // fall into the normal path 1641 break; 1642 } 1643 } 1644 1645 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1646 // load of a __weak object. 1647 Address LvalueDst = Dst.getAddress(); 1648 llvm::Value *src = Src.getScalarVal(); 1649 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1650 return; 1651 } 1652 1653 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1654 // load of a __strong object. 1655 Address LvalueDst = Dst.getAddress(); 1656 llvm::Value *src = Src.getScalarVal(); 1657 if (Dst.isObjCIvar()) { 1658 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1659 llvm::Type *ResultType = IntPtrTy; 1660 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1661 llvm::Value *RHS = dst.getPointer(); 1662 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1663 llvm::Value *LHS = 1664 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1665 "sub.ptr.lhs.cast"); 1666 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1667 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1668 BytesBetween); 1669 } else if (Dst.isGlobalObjCRef()) { 1670 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1671 Dst.isThreadLocalRef()); 1672 } 1673 else 1674 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1675 return; 1676 } 1677 1678 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1679 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1680 } 1681 1682 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1683 llvm::Value **Result) { 1684 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1685 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1686 Address Ptr = Dst.getBitFieldAddress(); 1687 1688 // Get the source value, truncated to the width of the bit-field. 1689 llvm::Value *SrcVal = Src.getScalarVal(); 1690 1691 // Cast the source to the storage type and shift it into place. 1692 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1693 /*IsSigned=*/false); 1694 llvm::Value *MaskedVal = SrcVal; 1695 1696 // See if there are other bits in the bitfield's storage we'll need to load 1697 // and mask together with source before storing. 1698 if (Info.StorageSize != Info.Size) { 1699 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1700 llvm::Value *Val = 1701 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1702 1703 // Mask the source value as needed. 1704 if (!hasBooleanRepresentation(Dst.getType())) 1705 SrcVal = Builder.CreateAnd(SrcVal, 1706 llvm::APInt::getLowBitsSet(Info.StorageSize, 1707 Info.Size), 1708 "bf.value"); 1709 MaskedVal = SrcVal; 1710 if (Info.Offset) 1711 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1712 1713 // Mask out the original value. 1714 Val = Builder.CreateAnd(Val, 1715 ~llvm::APInt::getBitsSet(Info.StorageSize, 1716 Info.Offset, 1717 Info.Offset + Info.Size), 1718 "bf.clear"); 1719 1720 // Or together the unchanged values and the source value. 1721 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1722 } else { 1723 assert(Info.Offset == 0); 1724 } 1725 1726 // Write the new value back out. 1727 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1728 1729 // Return the new value of the bit-field, if requested. 1730 if (Result) { 1731 llvm::Value *ResultVal = MaskedVal; 1732 1733 // Sign extend the value if needed. 1734 if (Info.IsSigned) { 1735 assert(Info.Size <= Info.StorageSize); 1736 unsigned HighBits = Info.StorageSize - Info.Size; 1737 if (HighBits) { 1738 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1739 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1740 } 1741 } 1742 1743 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1744 "bf.result.cast"); 1745 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1746 } 1747 } 1748 1749 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1750 LValue Dst) { 1751 // This access turns into a read/modify/write of the vector. Load the input 1752 // value now. 1753 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1754 Dst.isVolatileQualified()); 1755 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1756 1757 llvm::Value *SrcVal = Src.getScalarVal(); 1758 1759 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1760 unsigned NumSrcElts = VTy->getNumElements(); 1761 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1762 if (NumDstElts == NumSrcElts) { 1763 // Use shuffle vector is the src and destination are the same number of 1764 // elements and restore the vector mask since it is on the side it will be 1765 // stored. 1766 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1767 for (unsigned i = 0; i != NumSrcElts; ++i) 1768 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1769 1770 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1771 Vec = Builder.CreateShuffleVector(SrcVal, 1772 llvm::UndefValue::get(Vec->getType()), 1773 MaskV); 1774 } else if (NumDstElts > NumSrcElts) { 1775 // Extended the source vector to the same length and then shuffle it 1776 // into the destination. 1777 // FIXME: since we're shuffling with undef, can we just use the indices 1778 // into that? This could be simpler. 1779 SmallVector<llvm::Constant*, 4> ExtMask; 1780 for (unsigned i = 0; i != NumSrcElts; ++i) 1781 ExtMask.push_back(Builder.getInt32(i)); 1782 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1783 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1784 llvm::Value *ExtSrcVal = 1785 Builder.CreateShuffleVector(SrcVal, 1786 llvm::UndefValue::get(SrcVal->getType()), 1787 ExtMaskV); 1788 // build identity 1789 SmallVector<llvm::Constant*, 4> Mask; 1790 for (unsigned i = 0; i != NumDstElts; ++i) 1791 Mask.push_back(Builder.getInt32(i)); 1792 1793 // When the vector size is odd and .odd or .hi is used, the last element 1794 // of the Elts constant array will be one past the size of the vector. 1795 // Ignore the last element here, if it is greater than the mask size. 1796 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1797 NumSrcElts--; 1798 1799 // modify when what gets shuffled in 1800 for (unsigned i = 0; i != NumSrcElts; ++i) 1801 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1802 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1803 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1804 } else { 1805 // We should never shorten the vector 1806 llvm_unreachable("unexpected shorten vector length"); 1807 } 1808 } else { 1809 // If the Src is a scalar (not a vector) it must be updating one element. 1810 unsigned InIdx = getAccessedFieldNo(0, Elts); 1811 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1812 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1813 } 1814 1815 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1816 Dst.isVolatileQualified()); 1817 } 1818 1819 /// @brief Store of global named registers are always calls to intrinsics. 1820 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1821 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1822 "Bad type for register variable"); 1823 llvm::MDNode *RegName = cast<llvm::MDNode>( 1824 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1825 assert(RegName && "Register LValue is not metadata"); 1826 1827 // We accept integer and pointer types only 1828 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1829 llvm::Type *Ty = OrigTy; 1830 if (OrigTy->isPointerTy()) 1831 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1832 llvm::Type *Types[] = { Ty }; 1833 1834 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1835 llvm::Value *Value = Src.getScalarVal(); 1836 if (OrigTy->isPointerTy()) 1837 Value = Builder.CreatePtrToInt(Value, Ty); 1838 Builder.CreateCall( 1839 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1840 } 1841 1842 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1843 // generating write-barries API. It is currently a global, ivar, 1844 // or neither. 1845 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1846 LValue &LV, 1847 bool IsMemberAccess=false) { 1848 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1849 return; 1850 1851 if (isa<ObjCIvarRefExpr>(E)) { 1852 QualType ExpTy = E->getType(); 1853 if (IsMemberAccess && ExpTy->isPointerType()) { 1854 // If ivar is a structure pointer, assigning to field of 1855 // this struct follows gcc's behavior and makes it a non-ivar 1856 // writer-barrier conservatively. 1857 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1858 if (ExpTy->isRecordType()) { 1859 LV.setObjCIvar(false); 1860 return; 1861 } 1862 } 1863 LV.setObjCIvar(true); 1864 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1865 LV.setBaseIvarExp(Exp->getBase()); 1866 LV.setObjCArray(E->getType()->isArrayType()); 1867 return; 1868 } 1869 1870 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1871 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1872 if (VD->hasGlobalStorage()) { 1873 LV.setGlobalObjCRef(true); 1874 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1875 } 1876 } 1877 LV.setObjCArray(E->getType()->isArrayType()); 1878 return; 1879 } 1880 1881 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1882 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1883 return; 1884 } 1885 1886 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1887 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1888 if (LV.isObjCIvar()) { 1889 // If cast is to a structure pointer, follow gcc's behavior and make it 1890 // a non-ivar write-barrier. 1891 QualType ExpTy = E->getType(); 1892 if (ExpTy->isPointerType()) 1893 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1894 if (ExpTy->isRecordType()) 1895 LV.setObjCIvar(false); 1896 } 1897 return; 1898 } 1899 1900 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1901 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1902 return; 1903 } 1904 1905 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1906 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1907 return; 1908 } 1909 1910 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1911 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1912 return; 1913 } 1914 1915 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1916 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1917 return; 1918 } 1919 1920 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1921 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1922 if (LV.isObjCIvar() && !LV.isObjCArray()) 1923 // Using array syntax to assigning to what an ivar points to is not 1924 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1925 LV.setObjCIvar(false); 1926 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1927 // Using array syntax to assigning to what global points to is not 1928 // same as assigning to the global itself. {id *G;} G[i] = 0; 1929 LV.setGlobalObjCRef(false); 1930 return; 1931 } 1932 1933 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1934 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1935 // We don't know if member is an 'ivar', but this flag is looked at 1936 // only in the context of LV.isObjCIvar(). 1937 LV.setObjCArray(E->getType()->isArrayType()); 1938 return; 1939 } 1940 } 1941 1942 static llvm::Value * 1943 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1944 llvm::Value *V, llvm::Type *IRType, 1945 StringRef Name = StringRef()) { 1946 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1947 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1948 } 1949 1950 static LValue EmitThreadPrivateVarDeclLValue( 1951 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 1952 llvm::Type *RealVarTy, SourceLocation Loc) { 1953 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 1954 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 1955 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 1956 } 1957 1958 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 1959 const ReferenceType *RefTy, 1960 AlignmentSource *Source) { 1961 llvm::Value *Ptr = Builder.CreateLoad(Addr); 1962 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 1963 Source, /*forPointee*/ true)); 1964 1965 } 1966 1967 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 1968 const ReferenceType *RefTy) { 1969 AlignmentSource Source; 1970 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source); 1971 return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source); 1972 } 1973 1974 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 1975 const PointerType *PtrTy, 1976 AlignmentSource *Source) { 1977 llvm::Value *Addr = Builder.CreateLoad(Ptr); 1978 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source, 1979 /*forPointeeType=*/true)); 1980 } 1981 1982 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 1983 const PointerType *PtrTy) { 1984 AlignmentSource Source; 1985 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source); 1986 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source); 1987 } 1988 1989 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1990 const Expr *E, const VarDecl *VD) { 1991 QualType T = E->getType(); 1992 1993 // If it's thread_local, emit a call to its wrapper function instead. 1994 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 1995 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 1996 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1997 1998 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1999 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2000 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2001 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2002 Address Addr(V, Alignment); 2003 LValue LV; 2004 // Emit reference to the private copy of the variable if it is an OpenMP 2005 // threadprivate variable. 2006 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2007 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2008 E->getExprLoc()); 2009 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2010 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2011 } else { 2012 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2013 } 2014 setObjCGCLValueClass(CGF.getContext(), E, LV); 2015 return LV; 2016 } 2017 2018 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2019 const Expr *E, const FunctionDecl *FD) { 2020 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 2021 if (!FD->hasPrototype()) { 2022 if (const FunctionProtoType *Proto = 2023 FD->getType()->getAs<FunctionProtoType>()) { 2024 // Ugly case: for a K&R-style definition, the type of the definition 2025 // isn't the same as the type of a use. Correct for this with a 2026 // bitcast. 2027 QualType NoProtoType = 2028 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2029 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 2030 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 2031 } 2032 } 2033 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2034 return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl); 2035 } 2036 2037 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2038 llvm::Value *ThisValue) { 2039 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2040 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2041 return CGF.EmitLValueForField(LV, FD); 2042 } 2043 2044 /// Named Registers are named metadata pointing to the register name 2045 /// which will be read from/written to as an argument to the intrinsic 2046 /// @llvm.read/write_register. 2047 /// So far, only the name is being passed down, but other options such as 2048 /// register type, allocation type or even optimization options could be 2049 /// passed down via the metadata node. 2050 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2051 SmallString<64> Name("llvm.named.register."); 2052 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2053 assert(Asm->getLabel().size() < 64-Name.size() && 2054 "Register name too big"); 2055 Name.append(Asm->getLabel()); 2056 llvm::NamedMDNode *M = 2057 CGM.getModule().getOrInsertNamedMetadata(Name); 2058 if (M->getNumOperands() == 0) { 2059 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2060 Asm->getLabel()); 2061 llvm::Metadata *Ops[] = {Str}; 2062 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2063 } 2064 2065 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2066 2067 llvm::Value *Ptr = 2068 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2069 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2070 } 2071 2072 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2073 const NamedDecl *ND = E->getDecl(); 2074 QualType T = E->getType(); 2075 2076 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2077 // Global Named registers access via intrinsics only 2078 if (VD->getStorageClass() == SC_Register && 2079 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2080 return EmitGlobalNamedRegister(VD, CGM); 2081 2082 // A DeclRefExpr for a reference initialized by a constant expression can 2083 // appear without being odr-used. Directly emit the constant initializer. 2084 const Expr *Init = VD->getAnyInitializer(VD); 2085 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2086 VD->isUsableInConstantExpressions(getContext()) && 2087 VD->checkInitIsICE() && 2088 // Do not emit if it is private OpenMP variable. 2089 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2090 LocalDeclMap.count(VD))) { 2091 llvm::Constant *Val = 2092 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2093 assert(Val && "failed to emit reference constant expression"); 2094 // FIXME: Eventually we will want to emit vector element references. 2095 2096 // Should we be using the alignment of the constant pointer we emitted? 2097 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2098 /*pointee*/ true); 2099 2100 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2101 } 2102 2103 // Check for captured variables. 2104 if (E->refersToEnclosingVariableOrCapture()) { 2105 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2106 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2107 else if (CapturedStmtInfo) { 2108 auto it = LocalDeclMap.find(VD); 2109 if (it != LocalDeclMap.end()) { 2110 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2111 return EmitLoadOfReferenceLValue(it->second, RefTy); 2112 } 2113 return MakeAddrLValue(it->second, T); 2114 } 2115 LValue CapLVal = 2116 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2117 CapturedStmtInfo->getContextValue()); 2118 return MakeAddrLValue( 2119 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2120 CapLVal.getType(), AlignmentSource::Decl); 2121 } 2122 2123 assert(isa<BlockDecl>(CurCodeDecl)); 2124 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2125 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2126 } 2127 } 2128 2129 // FIXME: We should be able to assert this for FunctionDecls as well! 2130 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2131 // those with a valid source location. 2132 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2133 !E->getLocation().isValid()) && 2134 "Should not use decl without marking it used!"); 2135 2136 if (ND->hasAttr<WeakRefAttr>()) { 2137 const auto *VD = cast<ValueDecl>(ND); 2138 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2139 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2140 } 2141 2142 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2143 // Check if this is a global variable. 2144 if (VD->hasLinkage() || VD->isStaticDataMember()) 2145 return EmitGlobalVarDeclLValue(*this, E, VD); 2146 2147 Address addr = Address::invalid(); 2148 2149 // The variable should generally be present in the local decl map. 2150 auto iter = LocalDeclMap.find(VD); 2151 if (iter != LocalDeclMap.end()) { 2152 addr = iter->second; 2153 2154 // Otherwise, it might be static local we haven't emitted yet for 2155 // some reason; most likely, because it's in an outer function. 2156 } else if (VD->isStaticLocal()) { 2157 addr = Address(CGM.getOrCreateStaticVarDecl( 2158 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2159 getContext().getDeclAlign(VD)); 2160 2161 // No other cases for now. 2162 } else { 2163 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2164 } 2165 2166 2167 // Check for OpenMP threadprivate variables. 2168 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2169 return EmitThreadPrivateVarDeclLValue( 2170 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2171 E->getExprLoc()); 2172 } 2173 2174 // Drill into block byref variables. 2175 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2176 if (isBlockByref) { 2177 addr = emitBlockByrefAddress(addr, VD); 2178 } 2179 2180 // Drill into reference types. 2181 LValue LV; 2182 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2183 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2184 } else { 2185 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2186 } 2187 2188 bool isLocalStorage = VD->hasLocalStorage(); 2189 2190 bool NonGCable = isLocalStorage && 2191 !VD->getType()->isReferenceType() && 2192 !isBlockByref; 2193 if (NonGCable) { 2194 LV.getQuals().removeObjCGCAttr(); 2195 LV.setNonGC(true); 2196 } 2197 2198 bool isImpreciseLifetime = 2199 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2200 if (isImpreciseLifetime) 2201 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2202 setObjCGCLValueClass(getContext(), E, LV); 2203 return LV; 2204 } 2205 2206 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2207 return EmitFunctionDeclLValue(*this, E, FD); 2208 2209 llvm_unreachable("Unhandled DeclRefExpr"); 2210 } 2211 2212 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2213 // __extension__ doesn't affect lvalue-ness. 2214 if (E->getOpcode() == UO_Extension) 2215 return EmitLValue(E->getSubExpr()); 2216 2217 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2218 switch (E->getOpcode()) { 2219 default: llvm_unreachable("Unknown unary operator lvalue!"); 2220 case UO_Deref: { 2221 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2222 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2223 2224 AlignmentSource AlignSource; 2225 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource); 2226 LValue LV = MakeAddrLValue(Addr, T, AlignSource); 2227 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2228 2229 // We should not generate __weak write barrier on indirect reference 2230 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2231 // But, we continue to generate __strong write barrier on indirect write 2232 // into a pointer to object. 2233 if (getLangOpts().ObjC1 && 2234 getLangOpts().getGC() != LangOptions::NonGC && 2235 LV.isObjCWeak()) 2236 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2237 return LV; 2238 } 2239 case UO_Real: 2240 case UO_Imag: { 2241 LValue LV = EmitLValue(E->getSubExpr()); 2242 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2243 2244 // __real is valid on scalars. This is a faster way of testing that. 2245 // __imag can only produce an rvalue on scalars. 2246 if (E->getOpcode() == UO_Real && 2247 !LV.getAddress().getElementType()->isStructTy()) { 2248 assert(E->getSubExpr()->getType()->isArithmeticType()); 2249 return LV; 2250 } 2251 2252 assert(E->getSubExpr()->getType()->isAnyComplexType()); 2253 2254 Address Component = 2255 (E->getOpcode() == UO_Real 2256 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2257 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2258 return MakeAddrLValue(Component, ExprTy, LV.getAlignmentSource()); 2259 } 2260 case UO_PreInc: 2261 case UO_PreDec: { 2262 LValue LV = EmitLValue(E->getSubExpr()); 2263 bool isInc = E->getOpcode() == UO_PreInc; 2264 2265 if (E->getType()->isAnyComplexType()) 2266 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2267 else 2268 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2269 return LV; 2270 } 2271 } 2272 } 2273 2274 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2275 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2276 E->getType(), AlignmentSource::Decl); 2277 } 2278 2279 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2280 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2281 E->getType(), AlignmentSource::Decl); 2282 } 2283 2284 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2285 auto SL = E->getFunctionName(); 2286 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2287 StringRef FnName = CurFn->getName(); 2288 if (FnName.startswith("\01")) 2289 FnName = FnName.substr(1); 2290 StringRef NameItems[] = { 2291 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2292 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2293 if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) { 2294 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2295 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2296 } 2297 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2298 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2299 } 2300 2301 /// Emit a type description suitable for use by a runtime sanitizer library. The 2302 /// format of a type descriptor is 2303 /// 2304 /// \code 2305 /// { i16 TypeKind, i16 TypeInfo } 2306 /// \endcode 2307 /// 2308 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2309 /// integer, 1 for a floating point value, and -1 for anything else. 2310 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2311 // Only emit each type's descriptor once. 2312 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2313 return C; 2314 2315 uint16_t TypeKind = -1; 2316 uint16_t TypeInfo = 0; 2317 2318 if (T->isIntegerType()) { 2319 TypeKind = 0; 2320 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2321 (T->isSignedIntegerType() ? 1 : 0); 2322 } else if (T->isFloatingType()) { 2323 TypeKind = 1; 2324 TypeInfo = getContext().getTypeSize(T); 2325 } 2326 2327 // Format the type name as if for a diagnostic, including quotes and 2328 // optionally an 'aka'. 2329 SmallString<32> Buffer; 2330 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2331 (intptr_t)T.getAsOpaquePtr(), 2332 StringRef(), StringRef(), None, Buffer, 2333 None); 2334 2335 llvm::Constant *Components[] = { 2336 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2337 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2338 }; 2339 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2340 2341 auto *GV = new llvm::GlobalVariable( 2342 CGM.getModule(), Descriptor->getType(), 2343 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2344 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2345 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2346 2347 // Remember the descriptor for this type. 2348 CGM.setTypeDescriptorInMap(T, GV); 2349 2350 return GV; 2351 } 2352 2353 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2354 llvm::Type *TargetTy = IntPtrTy; 2355 2356 // Floating-point types which fit into intptr_t are bitcast to integers 2357 // and then passed directly (after zero-extension, if necessary). 2358 if (V->getType()->isFloatingPointTy()) { 2359 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2360 if (Bits <= TargetTy->getIntegerBitWidth()) 2361 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2362 Bits)); 2363 } 2364 2365 // Integers which fit in intptr_t are zero-extended and passed directly. 2366 if (V->getType()->isIntegerTy() && 2367 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2368 return Builder.CreateZExt(V, TargetTy); 2369 2370 // Pointers are passed directly, everything else is passed by address. 2371 if (!V->getType()->isPointerTy()) { 2372 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2373 Builder.CreateStore(V, Ptr); 2374 V = Ptr.getPointer(); 2375 } 2376 return Builder.CreatePtrToInt(V, TargetTy); 2377 } 2378 2379 /// \brief Emit a representation of a SourceLocation for passing to a handler 2380 /// in a sanitizer runtime library. The format for this data is: 2381 /// \code 2382 /// struct SourceLocation { 2383 /// const char *Filename; 2384 /// int32_t Line, Column; 2385 /// }; 2386 /// \endcode 2387 /// For an invalid SourceLocation, the Filename pointer is null. 2388 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2389 llvm::Constant *Filename; 2390 int Line, Column; 2391 2392 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2393 if (PLoc.isValid()) { 2394 StringRef FilenameString = PLoc.getFilename(); 2395 2396 int PathComponentsToStrip = 2397 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2398 if (PathComponentsToStrip < 0) { 2399 assert(PathComponentsToStrip != INT_MIN); 2400 int PathComponentsToKeep = -PathComponentsToStrip; 2401 auto I = llvm::sys::path::rbegin(FilenameString); 2402 auto E = llvm::sys::path::rend(FilenameString); 2403 while (I != E && --PathComponentsToKeep) 2404 ++I; 2405 2406 FilenameString = FilenameString.substr(I - E); 2407 } else if (PathComponentsToStrip > 0) { 2408 auto I = llvm::sys::path::begin(FilenameString); 2409 auto E = llvm::sys::path::end(FilenameString); 2410 while (I != E && PathComponentsToStrip--) 2411 ++I; 2412 2413 if (I != E) 2414 FilenameString = 2415 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2416 else 2417 FilenameString = llvm::sys::path::filename(FilenameString); 2418 } 2419 2420 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2421 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2422 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2423 Filename = FilenameGV.getPointer(); 2424 Line = PLoc.getLine(); 2425 Column = PLoc.getColumn(); 2426 } else { 2427 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2428 Line = Column = 0; 2429 } 2430 2431 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2432 Builder.getInt32(Column)}; 2433 2434 return llvm::ConstantStruct::getAnon(Data); 2435 } 2436 2437 namespace { 2438 /// \brief Specify under what conditions this check can be recovered 2439 enum class CheckRecoverableKind { 2440 /// Always terminate program execution if this check fails. 2441 Unrecoverable, 2442 /// Check supports recovering, runtime has both fatal (noreturn) and 2443 /// non-fatal handlers for this check. 2444 Recoverable, 2445 /// Runtime conditionally aborts, always need to support recovery. 2446 AlwaysRecoverable 2447 }; 2448 } 2449 2450 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2451 assert(llvm::countPopulation(Kind) == 1); 2452 switch (Kind) { 2453 case SanitizerKind::Vptr: 2454 return CheckRecoverableKind::AlwaysRecoverable; 2455 case SanitizerKind::Return: 2456 case SanitizerKind::Unreachable: 2457 return CheckRecoverableKind::Unrecoverable; 2458 default: 2459 return CheckRecoverableKind::Recoverable; 2460 } 2461 } 2462 2463 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2464 llvm::FunctionType *FnType, 2465 ArrayRef<llvm::Value *> FnArgs, 2466 StringRef CheckName, 2467 CheckRecoverableKind RecoverKind, bool IsFatal, 2468 llvm::BasicBlock *ContBB) { 2469 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2470 bool NeedsAbortSuffix = 2471 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2472 std::string FnName = ("__ubsan_handle_" + CheckName + 2473 (NeedsAbortSuffix ? "_abort" : "")).str(); 2474 bool MayReturn = 2475 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2476 2477 llvm::AttrBuilder B; 2478 if (!MayReturn) { 2479 B.addAttribute(llvm::Attribute::NoReturn) 2480 .addAttribute(llvm::Attribute::NoUnwind); 2481 } 2482 B.addAttribute(llvm::Attribute::UWTable); 2483 2484 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2485 FnType, FnName, 2486 llvm::AttributeSet::get(CGF.getLLVMContext(), 2487 llvm::AttributeSet::FunctionIndex, B)); 2488 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2489 if (!MayReturn) { 2490 HandlerCall->setDoesNotReturn(); 2491 CGF.Builder.CreateUnreachable(); 2492 } else { 2493 CGF.Builder.CreateBr(ContBB); 2494 } 2495 } 2496 2497 void CodeGenFunction::EmitCheck( 2498 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2499 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 2500 ArrayRef<llvm::Value *> DynamicArgs) { 2501 assert(IsSanitizerScope); 2502 assert(Checked.size() > 0); 2503 2504 llvm::Value *FatalCond = nullptr; 2505 llvm::Value *RecoverableCond = nullptr; 2506 llvm::Value *TrapCond = nullptr; 2507 for (int i = 0, n = Checked.size(); i < n; ++i) { 2508 llvm::Value *Check = Checked[i].first; 2509 // -fsanitize-trap= overrides -fsanitize-recover=. 2510 llvm::Value *&Cond = 2511 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2512 ? TrapCond 2513 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2514 ? RecoverableCond 2515 : FatalCond; 2516 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2517 } 2518 2519 if (TrapCond) 2520 EmitTrapCheck(TrapCond); 2521 if (!FatalCond && !RecoverableCond) 2522 return; 2523 2524 llvm::Value *JointCond; 2525 if (FatalCond && RecoverableCond) 2526 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2527 else 2528 JointCond = FatalCond ? FatalCond : RecoverableCond; 2529 assert(JointCond); 2530 2531 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2532 assert(SanOpts.has(Checked[0].second)); 2533 #ifndef NDEBUG 2534 for (int i = 1, n = Checked.size(); i < n; ++i) { 2535 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2536 "All recoverable kinds in a single check must be same!"); 2537 assert(SanOpts.has(Checked[i].second)); 2538 } 2539 #endif 2540 2541 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2542 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2543 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2544 // Give hint that we very much don't expect to execute the handler 2545 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2546 llvm::MDBuilder MDHelper(getLLVMContext()); 2547 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2548 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2549 EmitBlock(Handlers); 2550 2551 // Handler functions take an i8* pointing to the (handler-specific) static 2552 // information block, followed by a sequence of intptr_t arguments 2553 // representing operand values. 2554 SmallVector<llvm::Value *, 4> Args; 2555 SmallVector<llvm::Type *, 4> ArgTypes; 2556 Args.reserve(DynamicArgs.size() + 1); 2557 ArgTypes.reserve(DynamicArgs.size() + 1); 2558 2559 // Emit handler arguments and create handler function type. 2560 if (!StaticArgs.empty()) { 2561 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2562 auto *InfoPtr = 2563 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2564 llvm::GlobalVariable::PrivateLinkage, Info); 2565 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2566 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2567 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2568 ArgTypes.push_back(Int8PtrTy); 2569 } 2570 2571 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2572 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2573 ArgTypes.push_back(IntPtrTy); 2574 } 2575 2576 llvm::FunctionType *FnType = 2577 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2578 2579 if (!FatalCond || !RecoverableCond) { 2580 // Simple case: we need to generate a single handler call, either 2581 // fatal, or non-fatal. 2582 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, 2583 (FatalCond != nullptr), Cont); 2584 } else { 2585 // Emit two handler calls: first one for set of unrecoverable checks, 2586 // another one for recoverable. 2587 llvm::BasicBlock *NonFatalHandlerBB = 2588 createBasicBlock("non_fatal." + CheckName); 2589 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2590 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2591 EmitBlock(FatalHandlerBB); 2592 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true, 2593 NonFatalHandlerBB); 2594 EmitBlock(NonFatalHandlerBB); 2595 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false, 2596 Cont); 2597 } 2598 2599 EmitBlock(Cont); 2600 } 2601 2602 void CodeGenFunction::EmitCfiSlowPathCheck( 2603 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2604 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2605 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2606 2607 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2608 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2609 2610 llvm::MDBuilder MDHelper(getLLVMContext()); 2611 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2612 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2613 2614 EmitBlock(CheckBB); 2615 2616 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2617 2618 llvm::CallInst *CheckCall; 2619 if (WithDiag) { 2620 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2621 auto *InfoPtr = 2622 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2623 llvm::GlobalVariable::PrivateLinkage, Info); 2624 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2625 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2626 2627 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2628 "__cfi_slowpath_diag", 2629 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2630 false)); 2631 CheckCall = Builder.CreateCall( 2632 SlowPathDiagFn, 2633 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2634 } else { 2635 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2636 "__cfi_slowpath", 2637 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2638 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2639 } 2640 2641 CheckCall->setDoesNotThrow(); 2642 2643 EmitBlock(Cont); 2644 } 2645 2646 // This function is basically a switch over the CFI failure kind, which is 2647 // extracted from CFICheckFailData (1st function argument). Each case is either 2648 // llvm.trap or a call to one of the two runtime handlers, based on 2649 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2650 // failure kind) traps, but this should really never happen. CFICheckFailData 2651 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2652 // check kind; in this case __cfi_check_fail traps as well. 2653 void CodeGenFunction::EmitCfiCheckFail() { 2654 SanitizerScope SanScope(this); 2655 FunctionArgList Args; 2656 ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr, 2657 getContext().VoidPtrTy); 2658 ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr, 2659 getContext().VoidPtrTy); 2660 Args.push_back(&ArgData); 2661 Args.push_back(&ArgAddr); 2662 2663 const CGFunctionInfo &FI = 2664 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2665 2666 llvm::Function *F = llvm::Function::Create( 2667 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2668 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2669 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2670 2671 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2672 SourceLocation()); 2673 2674 llvm::Value *Data = 2675 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2676 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2677 llvm::Value *Addr = 2678 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2679 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2680 2681 // Data == nullptr means the calling module has trap behaviour for this check. 2682 llvm::Value *DataIsNotNullPtr = 2683 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2684 EmitTrapCheck(DataIsNotNullPtr); 2685 2686 llvm::StructType *SourceLocationTy = 2687 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr); 2688 llvm::StructType *CfiCheckFailDataTy = 2689 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr); 2690 2691 llvm::Value *V = Builder.CreateConstGEP2_32( 2692 CfiCheckFailDataTy, 2693 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2694 0); 2695 Address CheckKindAddr(V, getIntAlign()); 2696 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2697 2698 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2699 CGM.getLLVMContext(), 2700 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2701 llvm::Value *ValidVtable = Builder.CreateZExt( 2702 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2703 {Addr, AllVtables}), 2704 IntPtrTy); 2705 2706 const std::pair<int, SanitizerMask> CheckKinds[] = { 2707 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2708 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2709 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2710 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2711 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2712 2713 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2714 for (auto CheckKindMaskPair : CheckKinds) { 2715 int Kind = CheckKindMaskPair.first; 2716 SanitizerMask Mask = CheckKindMaskPair.second; 2717 llvm::Value *Cond = 2718 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2719 if (CGM.getLangOpts().Sanitize.has(Mask)) 2720 EmitCheck(std::make_pair(Cond, Mask), "cfi_check_fail", {}, 2721 {Data, Addr, ValidVtable}); 2722 else 2723 EmitTrapCheck(Cond); 2724 } 2725 2726 FinishFunction(); 2727 // The only reference to this function will be created during LTO link. 2728 // Make sure it survives until then. 2729 CGM.addUsedGlobal(F); 2730 } 2731 2732 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2733 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2734 2735 // If we're optimizing, collapse all calls to trap down to just one per 2736 // function to save on code size. 2737 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2738 TrapBB = createBasicBlock("trap"); 2739 Builder.CreateCondBr(Checked, Cont, TrapBB); 2740 EmitBlock(TrapBB); 2741 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2742 TrapCall->setDoesNotReturn(); 2743 TrapCall->setDoesNotThrow(); 2744 Builder.CreateUnreachable(); 2745 } else { 2746 Builder.CreateCondBr(Checked, Cont, TrapBB); 2747 } 2748 2749 EmitBlock(Cont); 2750 } 2751 2752 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2753 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2754 2755 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) 2756 TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex, 2757 "trap-func-name", 2758 CGM.getCodeGenOpts().TrapFuncName); 2759 2760 return TrapCall; 2761 } 2762 2763 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 2764 AlignmentSource *AlignSource) { 2765 assert(E->getType()->isArrayType() && 2766 "Array to pointer decay must have array source type!"); 2767 2768 // Expressions of array type can't be bitfields or vector elements. 2769 LValue LV = EmitLValue(E); 2770 Address Addr = LV.getAddress(); 2771 if (AlignSource) *AlignSource = LV.getAlignmentSource(); 2772 2773 // If the array type was an incomplete type, we need to make sure 2774 // the decay ends up being the right type. 2775 llvm::Type *NewTy = ConvertType(E->getType()); 2776 Addr = Builder.CreateElementBitCast(Addr, NewTy); 2777 2778 // Note that VLA pointers are always decayed, so we don't need to do 2779 // anything here. 2780 if (!E->getType()->isVariableArrayType()) { 2781 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 2782 "Expected pointer to array"); 2783 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 2784 } 2785 2786 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 2787 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 2788 } 2789 2790 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2791 /// array to pointer, return the array subexpression. 2792 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2793 // If this isn't just an array->pointer decay, bail out. 2794 const auto *CE = dyn_cast<CastExpr>(E); 2795 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2796 return nullptr; 2797 2798 // If this is a decay from variable width array, bail out. 2799 const Expr *SubExpr = CE->getSubExpr(); 2800 if (SubExpr->getType()->isVariableArrayType()) 2801 return nullptr; 2802 2803 return SubExpr; 2804 } 2805 2806 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 2807 llvm::Value *ptr, 2808 ArrayRef<llvm::Value*> indices, 2809 bool inbounds, 2810 const llvm::Twine &name = "arrayidx") { 2811 if (inbounds) { 2812 return CGF.Builder.CreateInBoundsGEP(ptr, indices, name); 2813 } else { 2814 return CGF.Builder.CreateGEP(ptr, indices, name); 2815 } 2816 } 2817 2818 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 2819 llvm::Value *idx, 2820 CharUnits eltSize) { 2821 // If we have a constant index, we can use the exact offset of the 2822 // element we're accessing. 2823 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 2824 CharUnits offset = constantIdx->getZExtValue() * eltSize; 2825 return arrayAlign.alignmentAtOffset(offset); 2826 2827 // Otherwise, use the worst-case alignment for any element. 2828 } else { 2829 return arrayAlign.alignmentOfArrayElement(eltSize); 2830 } 2831 } 2832 2833 static QualType getFixedSizeElementType(const ASTContext &ctx, 2834 const VariableArrayType *vla) { 2835 QualType eltType; 2836 do { 2837 eltType = vla->getElementType(); 2838 } while ((vla = ctx.getAsVariableArrayType(eltType))); 2839 return eltType; 2840 } 2841 2842 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 2843 ArrayRef<llvm::Value*> indices, 2844 QualType eltType, bool inbounds, 2845 const llvm::Twine &name = "arrayidx") { 2846 // All the indices except that last must be zero. 2847 #ifndef NDEBUG 2848 for (auto idx : indices.drop_back()) 2849 assert(isa<llvm::ConstantInt>(idx) && 2850 cast<llvm::ConstantInt>(idx)->isZero()); 2851 #endif 2852 2853 // Determine the element size of the statically-sized base. This is 2854 // the thing that the indices are expressed in terms of. 2855 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 2856 eltType = getFixedSizeElementType(CGF.getContext(), vla); 2857 } 2858 2859 // We can use that to compute the best alignment of the element. 2860 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2861 CharUnits eltAlign = 2862 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 2863 2864 llvm::Value *eltPtr = 2865 emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name); 2866 return Address(eltPtr, eltAlign); 2867 } 2868 2869 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2870 bool Accessed) { 2871 // The index must always be an integer, which is not an aggregate. Emit it. 2872 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2873 QualType IdxTy = E->getIdx()->getType(); 2874 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2875 2876 if (SanOpts.has(SanitizerKind::ArrayBounds)) 2877 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2878 2879 // If the base is a vector type, then we are forming a vector element lvalue 2880 // with this subscript. 2881 if (E->getBase()->getType()->isVectorType() && 2882 !isa<ExtVectorElementExpr>(E->getBase())) { 2883 // Emit the vector as an lvalue to get its address. 2884 LValue LHS = EmitLValue(E->getBase()); 2885 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2886 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2887 E->getBase()->getType(), 2888 LHS.getAlignmentSource()); 2889 } 2890 2891 // All the other cases basically behave like simple offsetting. 2892 2893 // Extend or truncate the index type to 32 or 64-bits. 2894 if (Idx->getType() != IntPtrTy) 2895 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2896 2897 // Handle the extvector case we ignored above. 2898 if (isa<ExtVectorElementExpr>(E->getBase())) { 2899 LValue LV = EmitLValue(E->getBase()); 2900 Address Addr = EmitExtVectorElementLValue(LV); 2901 2902 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 2903 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true); 2904 return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource()); 2905 } 2906 2907 AlignmentSource AlignSource; 2908 Address Addr = Address::invalid(); 2909 if (const VariableArrayType *vla = 2910 getContext().getAsVariableArrayType(E->getType())) { 2911 // The base must be a pointer, which is not an aggregate. Emit 2912 // it. It needs to be emitted first in case it's what captures 2913 // the VLA bounds. 2914 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 2915 2916 // The element count here is the total number of non-VLA elements. 2917 llvm::Value *numElements = getVLASize(vla).first; 2918 2919 // Effectively, the multiply by the VLA size is part of the GEP. 2920 // GEP indexes are signed, and scaling an index isn't permitted to 2921 // signed-overflow, so we use the same semantics for our explicit 2922 // multiply. We suppress this if overflow is not undefined behavior. 2923 if (getLangOpts().isSignedOverflowDefined()) { 2924 Idx = Builder.CreateMul(Idx, numElements); 2925 } else { 2926 Idx = Builder.CreateNSWMul(Idx, numElements); 2927 } 2928 2929 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 2930 !getLangOpts().isSignedOverflowDefined()); 2931 2932 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2933 // Indexing over an interface, as in "NSString *P; P[4];" 2934 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 2935 llvm::Value *InterfaceSizeVal = 2936 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());; 2937 2938 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 2939 2940 // Emit the base pointer. 2941 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 2942 2943 // We don't necessarily build correct LLVM struct types for ObjC 2944 // interfaces, so we can't rely on GEP to do this scaling 2945 // correctly, so we need to cast to i8*. FIXME: is this actually 2946 // true? A lot of other things in the fragile ABI would break... 2947 llvm::Type *OrigBaseTy = Addr.getType(); 2948 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 2949 2950 // Do the GEP. 2951 CharUnits EltAlign = 2952 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 2953 llvm::Value *EltPtr = 2954 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false); 2955 Addr = Address(EltPtr, EltAlign); 2956 2957 // Cast back. 2958 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 2959 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2960 // If this is A[i] where A is an array, the frontend will have decayed the 2961 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2962 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2963 // "gep x, i" here. Emit one "gep A, 0, i". 2964 assert(Array->getType()->isArrayType() && 2965 "Array to pointer decay must have array source type!"); 2966 LValue ArrayLV; 2967 // For simple multidimensional array indexing, set the 'accessed' flag for 2968 // better bounds-checking of the base expression. 2969 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2970 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2971 else 2972 ArrayLV = EmitLValue(Array); 2973 2974 // Propagate the alignment from the array itself to the result. 2975 Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(), 2976 {CGM.getSize(CharUnits::Zero()), Idx}, 2977 E->getType(), 2978 !getLangOpts().isSignedOverflowDefined()); 2979 AlignSource = ArrayLV.getAlignmentSource(); 2980 } else { 2981 // The base must be a pointer; emit it with an estimate of its alignment. 2982 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 2983 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 2984 !getLangOpts().isSignedOverflowDefined()); 2985 } 2986 2987 LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource); 2988 2989 // TODO: Preserve/extend path TBAA metadata? 2990 2991 if (getLangOpts().ObjC1 && 2992 getLangOpts().getGC() != LangOptions::NonGC) { 2993 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2994 setObjCGCLValueClass(getContext(), E, LV); 2995 } 2996 return LV; 2997 } 2998 2999 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3000 AlignmentSource &AlignSource, 3001 QualType BaseTy, QualType ElTy, 3002 bool IsLowerBound) { 3003 LValue BaseLVal; 3004 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3005 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3006 if (BaseTy->isArrayType()) { 3007 Address Addr = BaseLVal.getAddress(); 3008 AlignSource = BaseLVal.getAlignmentSource(); 3009 3010 // If the array type was an incomplete type, we need to make sure 3011 // the decay ends up being the right type. 3012 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3013 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3014 3015 // Note that VLA pointers are always decayed, so we don't need to do 3016 // anything here. 3017 if (!BaseTy->isVariableArrayType()) { 3018 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3019 "Expected pointer to array"); 3020 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3021 "arraydecay"); 3022 } 3023 3024 return CGF.Builder.CreateElementBitCast(Addr, 3025 CGF.ConvertTypeForMem(ElTy)); 3026 } 3027 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource); 3028 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3029 } 3030 return CGF.EmitPointerWithAlignment(Base, &AlignSource); 3031 } 3032 3033 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3034 bool IsLowerBound) { 3035 QualType BaseTy; 3036 if (auto *ASE = 3037 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3038 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3039 else 3040 BaseTy = E->getBase()->getType(); 3041 QualType ResultExprTy; 3042 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3043 ResultExprTy = AT->getElementType(); 3044 else 3045 ResultExprTy = BaseTy->getPointeeType(); 3046 llvm::Value *Idx = nullptr; 3047 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3048 // Requesting lower bound or upper bound, but without provided length and 3049 // without ':' symbol for the default length -> length = 1. 3050 // Idx = LowerBound ?: 0; 3051 if (auto *LowerBound = E->getLowerBound()) { 3052 Idx = Builder.CreateIntCast( 3053 EmitScalarExpr(LowerBound), IntPtrTy, 3054 LowerBound->getType()->hasSignedIntegerRepresentation()); 3055 } else 3056 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3057 } else { 3058 // Try to emit length or lower bound as constant. If this is possible, 1 3059 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3060 // IR (LB + Len) - 1. 3061 auto &C = CGM.getContext(); 3062 auto *Length = E->getLength(); 3063 llvm::APSInt ConstLength; 3064 if (Length) { 3065 // Idx = LowerBound + Length - 1; 3066 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3067 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3068 Length = nullptr; 3069 } 3070 auto *LowerBound = E->getLowerBound(); 3071 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3072 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3073 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3074 LowerBound = nullptr; 3075 } 3076 if (!Length) 3077 --ConstLength; 3078 else if (!LowerBound) 3079 --ConstLowerBound; 3080 3081 if (Length || LowerBound) { 3082 auto *LowerBoundVal = 3083 LowerBound 3084 ? Builder.CreateIntCast( 3085 EmitScalarExpr(LowerBound), IntPtrTy, 3086 LowerBound->getType()->hasSignedIntegerRepresentation()) 3087 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3088 auto *LengthVal = 3089 Length 3090 ? Builder.CreateIntCast( 3091 EmitScalarExpr(Length), IntPtrTy, 3092 Length->getType()->hasSignedIntegerRepresentation()) 3093 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3094 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3095 /*HasNUW=*/false, 3096 !getLangOpts().isSignedOverflowDefined()); 3097 if (Length && LowerBound) { 3098 Idx = Builder.CreateSub( 3099 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3100 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3101 } 3102 } else 3103 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3104 } else { 3105 // Idx = ArraySize - 1; 3106 QualType ArrayTy = BaseTy->isPointerType() 3107 ? E->getBase()->IgnoreParenImpCasts()->getType() 3108 : BaseTy; 3109 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3110 Length = VAT->getSizeExpr(); 3111 if (Length->isIntegerConstantExpr(ConstLength, C)) 3112 Length = nullptr; 3113 } else { 3114 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3115 ConstLength = CAT->getSize(); 3116 } 3117 if (Length) { 3118 auto *LengthVal = Builder.CreateIntCast( 3119 EmitScalarExpr(Length), IntPtrTy, 3120 Length->getType()->hasSignedIntegerRepresentation()); 3121 Idx = Builder.CreateSub( 3122 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3123 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3124 } else { 3125 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3126 --ConstLength; 3127 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3128 } 3129 } 3130 } 3131 assert(Idx); 3132 3133 Address EltPtr = Address::invalid(); 3134 AlignmentSource AlignSource; 3135 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3136 // The base must be a pointer, which is not an aggregate. Emit 3137 // it. It needs to be emitted first in case it's what captures 3138 // the VLA bounds. 3139 Address Base = 3140 emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy, 3141 VLA->getElementType(), IsLowerBound); 3142 // The element count here is the total number of non-VLA elements. 3143 llvm::Value *NumElements = getVLASize(VLA).first; 3144 3145 // Effectively, the multiply by the VLA size is part of the GEP. 3146 // GEP indexes are signed, and scaling an index isn't permitted to 3147 // signed-overflow, so we use the same semantics for our explicit 3148 // multiply. We suppress this if overflow is not undefined behavior. 3149 if (getLangOpts().isSignedOverflowDefined()) 3150 Idx = Builder.CreateMul(Idx, NumElements); 3151 else 3152 Idx = Builder.CreateNSWMul(Idx, NumElements); 3153 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3154 !getLangOpts().isSignedOverflowDefined()); 3155 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3156 // If this is A[i] where A is an array, the frontend will have decayed the 3157 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3158 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3159 // "gep x, i" here. Emit one "gep A, 0, i". 3160 assert(Array->getType()->isArrayType() && 3161 "Array to pointer decay must have array source type!"); 3162 LValue ArrayLV; 3163 // For simple multidimensional array indexing, set the 'accessed' flag for 3164 // better bounds-checking of the base expression. 3165 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3166 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3167 else 3168 ArrayLV = EmitLValue(Array); 3169 3170 // Propagate the alignment from the array itself to the result. 3171 EltPtr = emitArraySubscriptGEP( 3172 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3173 ResultExprTy, !getLangOpts().isSignedOverflowDefined()); 3174 AlignSource = ArrayLV.getAlignmentSource(); 3175 } else { 3176 Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource, 3177 BaseTy, ResultExprTy, IsLowerBound); 3178 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3179 !getLangOpts().isSignedOverflowDefined()); 3180 } 3181 3182 return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource); 3183 } 3184 3185 LValue CodeGenFunction:: 3186 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3187 // Emit the base vector as an l-value. 3188 LValue Base; 3189 3190 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3191 if (E->isArrow()) { 3192 // If it is a pointer to a vector, emit the address and form an lvalue with 3193 // it. 3194 AlignmentSource AlignSource; 3195 Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3196 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3197 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource); 3198 Base.getQuals().removeObjCGCAttr(); 3199 } else if (E->getBase()->isGLValue()) { 3200 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3201 // emit the base as an lvalue. 3202 assert(E->getBase()->getType()->isVectorType()); 3203 Base = EmitLValue(E->getBase()); 3204 } else { 3205 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3206 assert(E->getBase()->getType()->isVectorType() && 3207 "Result must be a vector"); 3208 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3209 3210 // Store the vector to memory (because LValue wants an address). 3211 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3212 Builder.CreateStore(Vec, VecMem); 3213 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3214 AlignmentSource::Decl); 3215 } 3216 3217 QualType type = 3218 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3219 3220 // Encode the element access list into a vector of unsigned indices. 3221 SmallVector<uint32_t, 4> Indices; 3222 E->getEncodedElementAccess(Indices); 3223 3224 if (Base.isSimple()) { 3225 llvm::Constant *CV = 3226 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3227 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3228 Base.getAlignmentSource()); 3229 } 3230 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3231 3232 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3233 SmallVector<llvm::Constant *, 4> CElts; 3234 3235 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3236 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3237 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3238 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3239 Base.getAlignmentSource()); 3240 } 3241 3242 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3243 Expr *BaseExpr = E->getBase(); 3244 3245 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3246 LValue BaseLV; 3247 if (E->isArrow()) { 3248 AlignmentSource AlignSource; 3249 Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource); 3250 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3251 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy); 3252 BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource); 3253 } else 3254 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3255 3256 NamedDecl *ND = E->getMemberDecl(); 3257 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3258 LValue LV = EmitLValueForField(BaseLV, Field); 3259 setObjCGCLValueClass(getContext(), E, LV); 3260 return LV; 3261 } 3262 3263 if (auto *VD = dyn_cast<VarDecl>(ND)) 3264 return EmitGlobalVarDeclLValue(*this, E, VD); 3265 3266 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3267 return EmitFunctionDeclLValue(*this, E, FD); 3268 3269 llvm_unreachable("Unhandled member declaration!"); 3270 } 3271 3272 /// Given that we are currently emitting a lambda, emit an l-value for 3273 /// one of its members. 3274 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3275 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3276 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3277 QualType LambdaTagType = 3278 getContext().getTagDeclType(Field->getParent()); 3279 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3280 return EmitLValueForField(LambdaLV, Field); 3281 } 3282 3283 /// Drill down to the storage of a field without walking into 3284 /// reference types. 3285 /// 3286 /// The resulting address doesn't necessarily have the right type. 3287 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3288 const FieldDecl *field) { 3289 const RecordDecl *rec = field->getParent(); 3290 3291 unsigned idx = 3292 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3293 3294 CharUnits offset; 3295 // Adjust the alignment down to the given offset. 3296 // As a special case, if the LLVM field index is 0, we know that this 3297 // is zero. 3298 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3299 .getFieldOffset(field->getFieldIndex()) == 0) && 3300 "LLVM field at index zero had non-zero offset?"); 3301 if (idx != 0) { 3302 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3303 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3304 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3305 } 3306 3307 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3308 } 3309 3310 LValue CodeGenFunction::EmitLValueForField(LValue base, 3311 const FieldDecl *field) { 3312 AlignmentSource fieldAlignSource = 3313 getFieldAlignmentSource(base.getAlignmentSource()); 3314 3315 if (field->isBitField()) { 3316 const CGRecordLayout &RL = 3317 CGM.getTypes().getCGRecordLayout(field->getParent()); 3318 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3319 Address Addr = base.getAddress(); 3320 unsigned Idx = RL.getLLVMFieldNo(field); 3321 if (Idx != 0) 3322 // For structs, we GEP to the field that the record layout suggests. 3323 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3324 field->getName()); 3325 // Get the access type. 3326 llvm::Type *FieldIntTy = 3327 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3328 if (Addr.getElementType() != FieldIntTy) 3329 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3330 3331 QualType fieldType = 3332 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3333 return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource); 3334 } 3335 3336 const RecordDecl *rec = field->getParent(); 3337 QualType type = field->getType(); 3338 3339 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 3340 3341 Address addr = base.getAddress(); 3342 unsigned cvr = base.getVRQualifiers(); 3343 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3344 if (rec->isUnion()) { 3345 // For unions, there is no pointer adjustment. 3346 assert(!type->isReferenceType() && "union has reference member"); 3347 // TODO: handle path-aware TBAA for union. 3348 TBAAPath = false; 3349 } else { 3350 // For structs, we GEP to the field that the record layout suggests. 3351 addr = emitAddrOfFieldStorage(*this, addr, field); 3352 3353 // If this is a reference field, load the reference right now. 3354 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3355 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3356 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3357 3358 // Loading the reference will disable path-aware TBAA. 3359 TBAAPath = false; 3360 if (CGM.shouldUseTBAA()) { 3361 llvm::MDNode *tbaa; 3362 if (mayAlias) 3363 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3364 else 3365 tbaa = CGM.getTBAAInfo(type); 3366 if (tbaa) 3367 CGM.DecorateInstructionWithTBAA(load, tbaa); 3368 } 3369 3370 mayAlias = false; 3371 type = refType->getPointeeType(); 3372 3373 CharUnits alignment = 3374 getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true); 3375 addr = Address(load, alignment); 3376 3377 // Qualifiers on the struct don't apply to the referencee, and 3378 // we'll pick up CVR from the actual type later, so reset these 3379 // additional qualifiers now. 3380 cvr = 0; 3381 } 3382 } 3383 3384 // Make sure that the address is pointing to the right type. This is critical 3385 // for both unions and structs. A union needs a bitcast, a struct element 3386 // will need a bitcast if the LLVM type laid out doesn't match the desired 3387 // type. 3388 addr = Builder.CreateElementBitCast(addr, 3389 CGM.getTypes().ConvertTypeForMem(type), 3390 field->getName()); 3391 3392 if (field->hasAttr<AnnotateAttr>()) 3393 addr = EmitFieldAnnotations(field, addr); 3394 3395 LValue LV = MakeAddrLValue(addr, type, fieldAlignSource); 3396 LV.getQuals().addCVRQualifiers(cvr); 3397 if (TBAAPath) { 3398 const ASTRecordLayout &Layout = 3399 getContext().getASTRecordLayout(field->getParent()); 3400 // Set the base type to be the base type of the base LValue and 3401 // update offset to be relative to the base type. 3402 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3403 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3404 Layout.getFieldOffset(field->getFieldIndex()) / 3405 getContext().getCharWidth()); 3406 } 3407 3408 // __weak attribute on a field is ignored. 3409 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3410 LV.getQuals().removeObjCGCAttr(); 3411 3412 // Fields of may_alias structs act like 'char' for TBAA purposes. 3413 // FIXME: this should get propagated down through anonymous structs 3414 // and unions. 3415 if (mayAlias && LV.getTBAAInfo()) 3416 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3417 3418 return LV; 3419 } 3420 3421 LValue 3422 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3423 const FieldDecl *Field) { 3424 QualType FieldType = Field->getType(); 3425 3426 if (!FieldType->isReferenceType()) 3427 return EmitLValueForField(Base, Field); 3428 3429 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3430 3431 // Make sure that the address is pointing to the right type. 3432 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3433 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3434 3435 // TODO: access-path TBAA? 3436 auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource()); 3437 return MakeAddrLValue(V, FieldType, FieldAlignSource); 3438 } 3439 3440 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3441 if (E->isFileScope()) { 3442 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3443 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3444 } 3445 if (E->getType()->isVariablyModifiedType()) 3446 // make sure to emit the VLA size. 3447 EmitVariablyModifiedType(E->getType()); 3448 3449 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3450 const Expr *InitExpr = E->getInitializer(); 3451 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3452 3453 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3454 /*Init*/ true); 3455 3456 return Result; 3457 } 3458 3459 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3460 if (!E->isGLValue()) 3461 // Initializing an aggregate temporary in C++11: T{...}. 3462 return EmitAggExprToLValue(E); 3463 3464 // An lvalue initializer list must be initializing a reference. 3465 assert(E->getNumInits() == 1 && "reference init with multiple values"); 3466 return EmitLValue(E->getInit(0)); 3467 } 3468 3469 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3470 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3471 /// LValue is returned and the current block has been terminated. 3472 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3473 const Expr *Operand) { 3474 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3475 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3476 return None; 3477 } 3478 3479 return CGF.EmitLValue(Operand); 3480 } 3481 3482 LValue CodeGenFunction:: 3483 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3484 if (!expr->isGLValue()) { 3485 // ?: here should be an aggregate. 3486 assert(hasAggregateEvaluationKind(expr->getType()) && 3487 "Unexpected conditional operator!"); 3488 return EmitAggExprToLValue(expr); 3489 } 3490 3491 OpaqueValueMapping binding(*this, expr); 3492 3493 const Expr *condExpr = expr->getCond(); 3494 bool CondExprBool; 3495 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3496 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3497 if (!CondExprBool) std::swap(live, dead); 3498 3499 if (!ContainsLabel(dead)) { 3500 // If the true case is live, we need to track its region. 3501 if (CondExprBool) 3502 incrementProfileCounter(expr); 3503 return EmitLValue(live); 3504 } 3505 } 3506 3507 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3508 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3509 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3510 3511 ConditionalEvaluation eval(*this); 3512 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3513 3514 // Any temporaries created here are conditional. 3515 EmitBlock(lhsBlock); 3516 incrementProfileCounter(expr); 3517 eval.begin(*this); 3518 Optional<LValue> lhs = 3519 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3520 eval.end(*this); 3521 3522 if (lhs && !lhs->isSimple()) 3523 return EmitUnsupportedLValue(expr, "conditional operator"); 3524 3525 lhsBlock = Builder.GetInsertBlock(); 3526 if (lhs) 3527 Builder.CreateBr(contBlock); 3528 3529 // Any temporaries created here are conditional. 3530 EmitBlock(rhsBlock); 3531 eval.begin(*this); 3532 Optional<LValue> rhs = 3533 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3534 eval.end(*this); 3535 if (rhs && !rhs->isSimple()) 3536 return EmitUnsupportedLValue(expr, "conditional operator"); 3537 rhsBlock = Builder.GetInsertBlock(); 3538 3539 EmitBlock(contBlock); 3540 3541 if (lhs && rhs) { 3542 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3543 2, "cond-lvalue"); 3544 phi->addIncoming(lhs->getPointer(), lhsBlock); 3545 phi->addIncoming(rhs->getPointer(), rhsBlock); 3546 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3547 AlignmentSource alignSource = 3548 std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource()); 3549 return MakeAddrLValue(result, expr->getType(), alignSource); 3550 } else { 3551 assert((lhs || rhs) && 3552 "both operands of glvalue conditional are throw-expressions?"); 3553 return lhs ? *lhs : *rhs; 3554 } 3555 } 3556 3557 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3558 /// type. If the cast is to a reference, we can have the usual lvalue result, 3559 /// otherwise if a cast is needed by the code generator in an lvalue context, 3560 /// then it must mean that we need the address of an aggregate in order to 3561 /// access one of its members. This can happen for all the reasons that casts 3562 /// are permitted with aggregate result, including noop aggregate casts, and 3563 /// cast from scalar to union. 3564 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3565 switch (E->getCastKind()) { 3566 case CK_ToVoid: 3567 case CK_BitCast: 3568 case CK_ArrayToPointerDecay: 3569 case CK_FunctionToPointerDecay: 3570 case CK_NullToMemberPointer: 3571 case CK_NullToPointer: 3572 case CK_IntegralToPointer: 3573 case CK_PointerToIntegral: 3574 case CK_PointerToBoolean: 3575 case CK_VectorSplat: 3576 case CK_IntegralCast: 3577 case CK_BooleanToSignedIntegral: 3578 case CK_IntegralToBoolean: 3579 case CK_IntegralToFloating: 3580 case CK_FloatingToIntegral: 3581 case CK_FloatingToBoolean: 3582 case CK_FloatingCast: 3583 case CK_FloatingRealToComplex: 3584 case CK_FloatingComplexToReal: 3585 case CK_FloatingComplexToBoolean: 3586 case CK_FloatingComplexCast: 3587 case CK_FloatingComplexToIntegralComplex: 3588 case CK_IntegralRealToComplex: 3589 case CK_IntegralComplexToReal: 3590 case CK_IntegralComplexToBoolean: 3591 case CK_IntegralComplexCast: 3592 case CK_IntegralComplexToFloatingComplex: 3593 case CK_DerivedToBaseMemberPointer: 3594 case CK_BaseToDerivedMemberPointer: 3595 case CK_MemberPointerToBoolean: 3596 case CK_ReinterpretMemberPointer: 3597 case CK_AnyPointerToBlockPointerCast: 3598 case CK_ARCProduceObject: 3599 case CK_ARCConsumeObject: 3600 case CK_ARCReclaimReturnedObject: 3601 case CK_ARCExtendBlockObject: 3602 case CK_CopyAndAutoreleaseBlockObject: 3603 case CK_AddressSpaceConversion: 3604 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3605 3606 case CK_Dependent: 3607 llvm_unreachable("dependent cast kind in IR gen!"); 3608 3609 case CK_BuiltinFnToFnPtr: 3610 llvm_unreachable("builtin functions are handled elsewhere"); 3611 3612 // These are never l-values; just use the aggregate emission code. 3613 case CK_NonAtomicToAtomic: 3614 case CK_AtomicToNonAtomic: 3615 return EmitAggExprToLValue(E); 3616 3617 case CK_Dynamic: { 3618 LValue LV = EmitLValue(E->getSubExpr()); 3619 Address V = LV.getAddress(); 3620 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3621 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3622 } 3623 3624 case CK_ConstructorConversion: 3625 case CK_UserDefinedConversion: 3626 case CK_CPointerToObjCPointerCast: 3627 case CK_BlockPointerToObjCPointerCast: 3628 case CK_NoOp: 3629 case CK_LValueToRValue: 3630 return EmitLValue(E->getSubExpr()); 3631 3632 case CK_UncheckedDerivedToBase: 3633 case CK_DerivedToBase: { 3634 const RecordType *DerivedClassTy = 3635 E->getSubExpr()->getType()->getAs<RecordType>(); 3636 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3637 3638 LValue LV = EmitLValue(E->getSubExpr()); 3639 Address This = LV.getAddress(); 3640 3641 // Perform the derived-to-base conversion 3642 Address Base = GetAddressOfBaseClass( 3643 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3644 /*NullCheckValue=*/false, E->getExprLoc()); 3645 3646 return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource()); 3647 } 3648 case CK_ToUnion: 3649 return EmitAggExprToLValue(E); 3650 case CK_BaseToDerived: { 3651 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3652 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3653 3654 LValue LV = EmitLValue(E->getSubExpr()); 3655 3656 // Perform the base-to-derived conversion 3657 Address Derived = 3658 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3659 E->path_begin(), E->path_end(), 3660 /*NullCheckValue=*/false); 3661 3662 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3663 // performed and the object is not of the derived type. 3664 if (sanitizePerformTypeCheck()) 3665 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3666 Derived.getPointer(), E->getType()); 3667 3668 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3669 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3670 /*MayBeNull=*/false, 3671 CFITCK_DerivedCast, E->getLocStart()); 3672 3673 return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource()); 3674 } 3675 case CK_LValueBitCast: { 3676 // This must be a reinterpret_cast (or c-style equivalent). 3677 const auto *CE = cast<ExplicitCastExpr>(E); 3678 3679 CGM.EmitExplicitCastExprType(CE, this); 3680 LValue LV = EmitLValue(E->getSubExpr()); 3681 Address V = Builder.CreateBitCast(LV.getAddress(), 3682 ConvertType(CE->getTypeAsWritten())); 3683 3684 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3685 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 3686 /*MayBeNull=*/false, 3687 CFITCK_UnrelatedCast, E->getLocStart()); 3688 3689 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3690 } 3691 case CK_ObjCObjectLValueCast: { 3692 LValue LV = EmitLValue(E->getSubExpr()); 3693 Address V = Builder.CreateElementBitCast(LV.getAddress(), 3694 ConvertType(E->getType())); 3695 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3696 } 3697 case CK_ZeroToOCLEvent: 3698 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3699 } 3700 3701 llvm_unreachable("Unhandled lvalue cast kind?"); 3702 } 3703 3704 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3705 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3706 return getOpaqueLValueMapping(e); 3707 } 3708 3709 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3710 const FieldDecl *FD, 3711 SourceLocation Loc) { 3712 QualType FT = FD->getType(); 3713 LValue FieldLV = EmitLValueForField(LV, FD); 3714 switch (getEvaluationKind(FT)) { 3715 case TEK_Complex: 3716 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3717 case TEK_Aggregate: 3718 return FieldLV.asAggregateRValue(); 3719 case TEK_Scalar: 3720 // This routine is used to load fields one-by-one to perform a copy, so 3721 // don't load reference fields. 3722 if (FD->getType()->isReferenceType()) 3723 return RValue::get(FieldLV.getPointer()); 3724 return EmitLoadOfLValue(FieldLV, Loc); 3725 } 3726 llvm_unreachable("bad evaluation kind"); 3727 } 3728 3729 //===--------------------------------------------------------------------===// 3730 // Expression Emission 3731 //===--------------------------------------------------------------------===// 3732 3733 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3734 ReturnValueSlot ReturnValue) { 3735 // Builtins never have block type. 3736 if (E->getCallee()->getType()->isBlockPointerType()) 3737 return EmitBlockCallExpr(E, ReturnValue); 3738 3739 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3740 return EmitCXXMemberCallExpr(CE, ReturnValue); 3741 3742 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3743 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3744 3745 const Decl *TargetDecl = E->getCalleeDecl(); 3746 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 3747 if (unsigned builtinID = FD->getBuiltinID()) 3748 return EmitBuiltinExpr(FD, builtinID, E, ReturnValue); 3749 } 3750 3751 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3752 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 3753 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3754 3755 if (const auto *PseudoDtor = 3756 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 3757 QualType DestroyedType = PseudoDtor->getDestroyedType(); 3758 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 3759 // Automatic Reference Counting: 3760 // If the pseudo-expression names a retainable object with weak or 3761 // strong lifetime, the object shall be released. 3762 Expr *BaseExpr = PseudoDtor->getBase(); 3763 Address BaseValue = Address::invalid(); 3764 Qualifiers BaseQuals; 3765 3766 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3767 if (PseudoDtor->isArrow()) { 3768 BaseValue = EmitPointerWithAlignment(BaseExpr); 3769 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 3770 BaseQuals = PTy->getPointeeType().getQualifiers(); 3771 } else { 3772 LValue BaseLV = EmitLValue(BaseExpr); 3773 BaseValue = BaseLV.getAddress(); 3774 QualType BaseTy = BaseExpr->getType(); 3775 BaseQuals = BaseTy.getQualifiers(); 3776 } 3777 3778 switch (DestroyedType.getObjCLifetime()) { 3779 case Qualifiers::OCL_None: 3780 case Qualifiers::OCL_ExplicitNone: 3781 case Qualifiers::OCL_Autoreleasing: 3782 break; 3783 3784 case Qualifiers::OCL_Strong: 3785 EmitARCRelease(Builder.CreateLoad(BaseValue, 3786 PseudoDtor->getDestroyedType().isVolatileQualified()), 3787 ARCPreciseLifetime); 3788 break; 3789 3790 case Qualifiers::OCL_Weak: 3791 EmitARCDestroyWeak(BaseValue); 3792 break; 3793 } 3794 } else { 3795 // C++ [expr.pseudo]p1: 3796 // The result shall only be used as the operand for the function call 3797 // operator (), and the result of such a call has type void. The only 3798 // effect is the evaluation of the postfix-expression before the dot or 3799 // arrow. 3800 EmitScalarExpr(E->getCallee()); 3801 } 3802 3803 return RValue::get(nullptr); 3804 } 3805 3806 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 3807 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue, 3808 TargetDecl); 3809 } 3810 3811 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3812 // Comma expressions just emit their LHS then their RHS as an l-value. 3813 if (E->getOpcode() == BO_Comma) { 3814 EmitIgnoredExpr(E->getLHS()); 3815 EnsureInsertPoint(); 3816 return EmitLValue(E->getRHS()); 3817 } 3818 3819 if (E->getOpcode() == BO_PtrMemD || 3820 E->getOpcode() == BO_PtrMemI) 3821 return EmitPointerToDataMemberBinaryExpr(E); 3822 3823 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3824 3825 // Note that in all of these cases, __block variables need the RHS 3826 // evaluated first just in case the variable gets moved by the RHS. 3827 3828 switch (getEvaluationKind(E->getType())) { 3829 case TEK_Scalar: { 3830 switch (E->getLHS()->getType().getObjCLifetime()) { 3831 case Qualifiers::OCL_Strong: 3832 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3833 3834 case Qualifiers::OCL_Autoreleasing: 3835 return EmitARCStoreAutoreleasing(E).first; 3836 3837 // No reason to do any of these differently. 3838 case Qualifiers::OCL_None: 3839 case Qualifiers::OCL_ExplicitNone: 3840 case Qualifiers::OCL_Weak: 3841 break; 3842 } 3843 3844 RValue RV = EmitAnyExpr(E->getRHS()); 3845 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3846 EmitStoreThroughLValue(RV, LV); 3847 return LV; 3848 } 3849 3850 case TEK_Complex: 3851 return EmitComplexAssignmentLValue(E); 3852 3853 case TEK_Aggregate: 3854 return EmitAggExprToLValue(E); 3855 } 3856 llvm_unreachable("bad evaluation kind"); 3857 } 3858 3859 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3860 RValue RV = EmitCallExpr(E); 3861 3862 if (!RV.isScalar()) 3863 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 3864 AlignmentSource::Decl); 3865 3866 assert(E->getCallReturnType(getContext())->isReferenceType() && 3867 "Can't have a scalar return unless the return type is a " 3868 "reference type!"); 3869 3870 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 3871 } 3872 3873 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3874 // FIXME: This shouldn't require another copy. 3875 return EmitAggExprToLValue(E); 3876 } 3877 3878 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3879 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3880 && "binding l-value to type which needs a temporary"); 3881 AggValueSlot Slot = CreateAggTemp(E->getType()); 3882 EmitCXXConstructExpr(E, Slot); 3883 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3884 AlignmentSource::Decl); 3885 } 3886 3887 LValue 3888 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3889 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3890 } 3891 3892 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3893 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 3894 ConvertType(E->getType())); 3895 } 3896 3897 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3898 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 3899 AlignmentSource::Decl); 3900 } 3901 3902 LValue 3903 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3904 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3905 Slot.setExternallyDestructed(); 3906 EmitAggExpr(E->getSubExpr(), Slot); 3907 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 3908 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3909 AlignmentSource::Decl); 3910 } 3911 3912 LValue 3913 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3914 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3915 EmitLambdaExpr(E, Slot); 3916 return MakeAddrLValue(Slot.getAddress(), E->getType(), 3917 AlignmentSource::Decl); 3918 } 3919 3920 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3921 RValue RV = EmitObjCMessageExpr(E); 3922 3923 if (!RV.isScalar()) 3924 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 3925 AlignmentSource::Decl); 3926 3927 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3928 "Can't have a scalar return unless the return type is a " 3929 "reference type!"); 3930 3931 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 3932 } 3933 3934 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3935 Address V = 3936 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 3937 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 3938 } 3939 3940 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3941 const ObjCIvarDecl *Ivar) { 3942 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3943 } 3944 3945 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3946 llvm::Value *BaseValue, 3947 const ObjCIvarDecl *Ivar, 3948 unsigned CVRQualifiers) { 3949 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3950 Ivar, CVRQualifiers); 3951 } 3952 3953 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3954 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3955 llvm::Value *BaseValue = nullptr; 3956 const Expr *BaseExpr = E->getBase(); 3957 Qualifiers BaseQuals; 3958 QualType ObjectTy; 3959 if (E->isArrow()) { 3960 BaseValue = EmitScalarExpr(BaseExpr); 3961 ObjectTy = BaseExpr->getType()->getPointeeType(); 3962 BaseQuals = ObjectTy.getQualifiers(); 3963 } else { 3964 LValue BaseLV = EmitLValue(BaseExpr); 3965 BaseValue = BaseLV.getPointer(); 3966 ObjectTy = BaseExpr->getType(); 3967 BaseQuals = ObjectTy.getQualifiers(); 3968 } 3969 3970 LValue LV = 3971 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3972 BaseQuals.getCVRQualifiers()); 3973 setObjCGCLValueClass(getContext(), E, LV); 3974 return LV; 3975 } 3976 3977 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3978 // Can only get l-value for message expression returning aggregate type 3979 RValue RV = EmitAnyExprToTemp(E); 3980 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 3981 AlignmentSource::Decl); 3982 } 3983 3984 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3985 const CallExpr *E, ReturnValueSlot ReturnValue, 3986 CGCalleeInfo CalleeInfo, llvm::Value *Chain) { 3987 // Get the actual function type. The callee type will always be a pointer to 3988 // function type or a block pointer type. 3989 assert(CalleeType->isFunctionPointerType() && 3990 "Call must have function pointer type!"); 3991 3992 // Preserve the non-canonical function type because things like exception 3993 // specifications disappear in the canonical type. That information is useful 3994 // to drive the generation of more accurate code for this call later on. 3995 const FunctionProtoType *NonCanonicalFTP = CalleeType->getAs<PointerType>() 3996 ->getPointeeType() 3997 ->getAs<FunctionProtoType>(); 3998 3999 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 4000 4001 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4002 // We can only guarantee that a function is called from the correct 4003 // context/function based on the appropriate target attributes, 4004 // so only check in the case where we have both always_inline and target 4005 // since otherwise we could be making a conditional call after a check for 4006 // the proper cpu features (and it won't cause code generation issues due to 4007 // function based code generation). 4008 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4009 TargetDecl->hasAttr<TargetAttr>()) 4010 checkTargetFeatures(E, FD); 4011 4012 CalleeType = getContext().getCanonicalType(CalleeType); 4013 4014 const auto *FnType = 4015 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4016 4017 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4018 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4019 if (llvm::Constant *PrefixSig = 4020 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4021 SanitizerScope SanScope(this); 4022 llvm::Constant *FTRTTIConst = 4023 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4024 llvm::Type *PrefixStructTyElems[] = { 4025 PrefixSig->getType(), 4026 FTRTTIConst->getType() 4027 }; 4028 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4029 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4030 4031 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4032 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 4033 llvm::Value *CalleeSigPtr = 4034 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4035 llvm::Value *CalleeSig = 4036 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4037 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4038 4039 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4040 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4041 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4042 4043 EmitBlock(TypeCheck); 4044 llvm::Value *CalleeRTTIPtr = 4045 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4046 llvm::Value *CalleeRTTI = 4047 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4048 llvm::Value *CalleeRTTIMatch = 4049 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4050 llvm::Constant *StaticData[] = { 4051 EmitCheckSourceLocation(E->getLocStart()), 4052 EmitCheckTypeDescriptor(CalleeType) 4053 }; 4054 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4055 "function_type_mismatch", StaticData, Callee); 4056 4057 Builder.CreateBr(Cont); 4058 EmitBlock(Cont); 4059 } 4060 } 4061 4062 // If we are checking indirect calls and this call is indirect, check that the 4063 // function pointer is a member of the bit set for the function type. 4064 if (SanOpts.has(SanitizerKind::CFIICall) && 4065 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4066 SanitizerScope SanScope(this); 4067 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4068 4069 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4070 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4071 4072 llvm::Value *CastedCallee = Builder.CreateBitCast(Callee, Int8PtrTy); 4073 llvm::Value *TypeTest = Builder.CreateCall( 4074 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4075 4076 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4077 llvm::Constant *StaticData[] = { 4078 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4079 EmitCheckSourceLocation(E->getLocStart()), 4080 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4081 }; 4082 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4083 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4084 CastedCallee, StaticData); 4085 } else { 4086 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4087 "cfi_check_fail", StaticData, 4088 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4089 } 4090 } 4091 4092 CallArgList Args; 4093 if (Chain) 4094 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4095 CGM.getContext().VoidPtrTy); 4096 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4097 E->getDirectCallee(), /*ParamsToSkip*/ 0); 4098 4099 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4100 Args, FnType, /*isChainCall=*/Chain); 4101 4102 // C99 6.5.2.2p6: 4103 // If the expression that denotes the called function has a type 4104 // that does not include a prototype, [the default argument 4105 // promotions are performed]. If the number of arguments does not 4106 // equal the number of parameters, the behavior is undefined. If 4107 // the function is defined with a type that includes a prototype, 4108 // and either the prototype ends with an ellipsis (, ...) or the 4109 // types of the arguments after promotion are not compatible with 4110 // the types of the parameters, the behavior is undefined. If the 4111 // function is defined with a type that does not include a 4112 // prototype, and the types of the arguments after promotion are 4113 // not compatible with those of the parameters after promotion, 4114 // the behavior is undefined [except in some trivial cases]. 4115 // That is, in the general case, we should assume that a call 4116 // through an unprototyped function type works like a *non-variadic* 4117 // call. The way we make this work is to cast to the exact type 4118 // of the promoted arguments. 4119 // 4120 // Chain calls use this same code path to add the invisible chain parameter 4121 // to the function type. 4122 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4123 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4124 CalleeTy = CalleeTy->getPointerTo(); 4125 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 4126 } 4127 4128 return EmitCall(FnInfo, Callee, ReturnValue, Args, 4129 CGCalleeInfo(NonCanonicalFTP, TargetDecl)); 4130 } 4131 4132 LValue CodeGenFunction:: 4133 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4134 Address BaseAddr = Address::invalid(); 4135 if (E->getOpcode() == BO_PtrMemI) { 4136 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4137 } else { 4138 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4139 } 4140 4141 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4142 4143 const MemberPointerType *MPT 4144 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4145 4146 AlignmentSource AlignSource; 4147 Address MemberAddr = 4148 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, 4149 &AlignSource); 4150 4151 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource); 4152 } 4153 4154 /// Given the address of a temporary variable, produce an r-value of 4155 /// its type. 4156 RValue CodeGenFunction::convertTempToRValue(Address addr, 4157 QualType type, 4158 SourceLocation loc) { 4159 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4160 switch (getEvaluationKind(type)) { 4161 case TEK_Complex: 4162 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4163 case TEK_Aggregate: 4164 return lvalue.asAggregateRValue(); 4165 case TEK_Scalar: 4166 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4167 } 4168 llvm_unreachable("bad evaluation kind"); 4169 } 4170 4171 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4172 assert(Val->getType()->isFPOrFPVectorTy()); 4173 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4174 return; 4175 4176 llvm::MDBuilder MDHelper(getLLVMContext()); 4177 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4178 4179 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4180 } 4181 4182 namespace { 4183 struct LValueOrRValue { 4184 LValue LV; 4185 RValue RV; 4186 }; 4187 } 4188 4189 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4190 const PseudoObjectExpr *E, 4191 bool forLValue, 4192 AggValueSlot slot) { 4193 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4194 4195 // Find the result expression, if any. 4196 const Expr *resultExpr = E->getResultExpr(); 4197 LValueOrRValue result; 4198 4199 for (PseudoObjectExpr::const_semantics_iterator 4200 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4201 const Expr *semantic = *i; 4202 4203 // If this semantic expression is an opaque value, bind it 4204 // to the result of its source expression. 4205 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4206 4207 // If this is the result expression, we may need to evaluate 4208 // directly into the slot. 4209 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4210 OVMA opaqueData; 4211 if (ov == resultExpr && ov->isRValue() && !forLValue && 4212 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4213 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4214 4215 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4216 AlignmentSource::Decl); 4217 opaqueData = OVMA::bind(CGF, ov, LV); 4218 result.RV = slot.asRValue(); 4219 4220 // Otherwise, emit as normal. 4221 } else { 4222 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4223 4224 // If this is the result, also evaluate the result now. 4225 if (ov == resultExpr) { 4226 if (forLValue) 4227 result.LV = CGF.EmitLValue(ov); 4228 else 4229 result.RV = CGF.EmitAnyExpr(ov, slot); 4230 } 4231 } 4232 4233 opaques.push_back(opaqueData); 4234 4235 // Otherwise, if the expression is the result, evaluate it 4236 // and remember the result. 4237 } else if (semantic == resultExpr) { 4238 if (forLValue) 4239 result.LV = CGF.EmitLValue(semantic); 4240 else 4241 result.RV = CGF.EmitAnyExpr(semantic, slot); 4242 4243 // Otherwise, evaluate the expression in an ignored context. 4244 } else { 4245 CGF.EmitIgnoredExpr(semantic); 4246 } 4247 } 4248 4249 // Unbind all the opaques now. 4250 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4251 opaques[i].unbind(CGF); 4252 4253 return result; 4254 } 4255 4256 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4257 AggValueSlot slot) { 4258 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4259 } 4260 4261 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4262 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4263 } 4264