Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGCXXABI.h"
     15 #include "CGCall.h"
     16 #include "CGCleanup.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGObjCRuntime.h"
     19 #include "CGOpenMPRuntime.h"
     20 #include "CGRecordLayout.h"
     21 #include "CodeGenFunction.h"
     22 #include "CodeGenModule.h"
     23 #include "TargetInfo.h"
     24 #include "clang/AST/ASTContext.h"
     25 #include "clang/AST/Attr.h"
     26 #include "clang/AST/DeclObjC.h"
     27 #include "clang/Frontend/CodeGenOptions.h"
     28 #include "llvm/ADT/Hashing.h"
     29 #include "llvm/ADT/StringExtras.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/Intrinsics.h"
     32 #include "llvm/IR/LLVMContext.h"
     33 #include "llvm/IR/MDBuilder.h"
     34 #include "llvm/Support/ConvertUTF.h"
     35 #include "llvm/Support/MathExtras.h"
     36 #include "llvm/Support/Path.h"
     37 #include "llvm/Transforms/Utils/SanitizerStats.h"
     38 
     39 using namespace clang;
     40 using namespace CodeGen;
     41 
     42 //===--------------------------------------------------------------------===//
     43 //                        Miscellaneous Helper Methods
     44 //===--------------------------------------------------------------------===//
     45 
     46 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
     47   unsigned addressSpace =
     48     cast<llvm::PointerType>(value->getType())->getAddressSpace();
     49 
     50   llvm::PointerType *destType = Int8PtrTy;
     51   if (addressSpace)
     52     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
     53 
     54   if (value->getType() == destType) return value;
     55   return Builder.CreateBitCast(value, destType);
     56 }
     57 
     58 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
     59 /// block.
     60 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
     61                                           const Twine &Name) {
     62   auto Alloca = CreateTempAlloca(Ty, Name);
     63   Alloca->setAlignment(Align.getQuantity());
     64   return Address(Alloca, Align);
     65 }
     66 
     67 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
     68 /// block.
     69 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
     70                                                     const Twine &Name) {
     71   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
     72 }
     73 
     74 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
     75 /// default alignment of the corresponding LLVM type, which is *not*
     76 /// guaranteed to be related in any way to the expected alignment of
     77 /// an AST type that might have been lowered to Ty.
     78 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
     79                                                       const Twine &Name) {
     80   CharUnits Align =
     81     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
     82   return CreateTempAlloca(Ty, Align, Name);
     83 }
     84 
     85 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
     86   assert(isa<llvm::AllocaInst>(Var.getPointer()));
     87   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
     88   Store->setAlignment(Var.getAlignment().getQuantity());
     89   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
     90   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
     91 }
     92 
     93 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
     94   CharUnits Align = getContext().getTypeAlignInChars(Ty);
     95   return CreateTempAlloca(ConvertType(Ty), Align, Name);
     96 }
     97 
     98 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) {
     99   // FIXME: Should we prefer the preferred type alignment here?
    100   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name);
    101 }
    102 
    103 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
    104                                        const Twine &Name) {
    105   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name);
    106 }
    107 
    108 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
    109 /// expression and compare the result against zero, returning an Int1Ty value.
    110 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
    111   PGO.setCurrentStmt(E);
    112   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
    113     llvm::Value *MemPtr = EmitScalarExpr(E);
    114     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
    115   }
    116 
    117   QualType BoolTy = getContext().BoolTy;
    118   SourceLocation Loc = E->getExprLoc();
    119   if (!E->getType()->isAnyComplexType())
    120     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
    121 
    122   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
    123                                        Loc);
    124 }
    125 
    126 /// EmitIgnoredExpr - Emit code to compute the specified expression,
    127 /// ignoring the result.
    128 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
    129   if (E->isRValue())
    130     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
    131 
    132   // Just emit it as an l-value and drop the result.
    133   EmitLValue(E);
    134 }
    135 
    136 /// EmitAnyExpr - Emit code to compute the specified expression which
    137 /// can have any type.  The result is returned as an RValue struct.
    138 /// If this is an aggregate expression, AggSlot indicates where the
    139 /// result should be returned.
    140 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
    141                                     AggValueSlot aggSlot,
    142                                     bool ignoreResult) {
    143   switch (getEvaluationKind(E->getType())) {
    144   case TEK_Scalar:
    145     return RValue::get(EmitScalarExpr(E, ignoreResult));
    146   case TEK_Complex:
    147     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
    148   case TEK_Aggregate:
    149     if (!ignoreResult && aggSlot.isIgnored())
    150       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
    151     EmitAggExpr(E, aggSlot);
    152     return aggSlot.asRValue();
    153   }
    154   llvm_unreachable("bad evaluation kind");
    155 }
    156 
    157 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
    158 /// always be accessible even if no aggregate location is provided.
    159 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
    160   AggValueSlot AggSlot = AggValueSlot::ignored();
    161 
    162   if (hasAggregateEvaluationKind(E->getType()))
    163     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
    164   return EmitAnyExpr(E, AggSlot);
    165 }
    166 
    167 /// EmitAnyExprToMem - Evaluate an expression into a given memory
    168 /// location.
    169 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
    170                                        Address Location,
    171                                        Qualifiers Quals,
    172                                        bool IsInit) {
    173   // FIXME: This function should take an LValue as an argument.
    174   switch (getEvaluationKind(E->getType())) {
    175   case TEK_Complex:
    176     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
    177                               /*isInit*/ false);
    178     return;
    179 
    180   case TEK_Aggregate: {
    181     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
    182                                          AggValueSlot::IsDestructed_t(IsInit),
    183                                          AggValueSlot::DoesNotNeedGCBarriers,
    184                                          AggValueSlot::IsAliased_t(!IsInit)));
    185     return;
    186   }
    187 
    188   case TEK_Scalar: {
    189     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
    190     LValue LV = MakeAddrLValue(Location, E->getType());
    191     EmitStoreThroughLValue(RV, LV);
    192     return;
    193   }
    194   }
    195   llvm_unreachable("bad evaluation kind");
    196 }
    197 
    198 static void
    199 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
    200                      const Expr *E, Address ReferenceTemporary) {
    201   // Objective-C++ ARC:
    202   //   If we are binding a reference to a temporary that has ownership, we
    203   //   need to perform retain/release operations on the temporary.
    204   //
    205   // FIXME: This should be looking at E, not M.
    206   if (auto Lifetime = M->getType().getObjCLifetime()) {
    207     switch (Lifetime) {
    208     case Qualifiers::OCL_None:
    209     case Qualifiers::OCL_ExplicitNone:
    210       // Carry on to normal cleanup handling.
    211       break;
    212 
    213     case Qualifiers::OCL_Autoreleasing:
    214       // Nothing to do; cleaned up by an autorelease pool.
    215       return;
    216 
    217     case Qualifiers::OCL_Strong:
    218     case Qualifiers::OCL_Weak:
    219       switch (StorageDuration Duration = M->getStorageDuration()) {
    220       case SD_Static:
    221         // Note: we intentionally do not register a cleanup to release
    222         // the object on program termination.
    223         return;
    224 
    225       case SD_Thread:
    226         // FIXME: We should probably register a cleanup in this case.
    227         return;
    228 
    229       case SD_Automatic:
    230       case SD_FullExpression:
    231         CodeGenFunction::Destroyer *Destroy;
    232         CleanupKind CleanupKind;
    233         if (Lifetime == Qualifiers::OCL_Strong) {
    234           const ValueDecl *VD = M->getExtendingDecl();
    235           bool Precise =
    236               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
    237           CleanupKind = CGF.getARCCleanupKind();
    238           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
    239                             : &CodeGenFunction::destroyARCStrongImprecise;
    240         } else {
    241           // __weak objects always get EH cleanups; otherwise, exceptions
    242           // could cause really nasty crashes instead of mere leaks.
    243           CleanupKind = NormalAndEHCleanup;
    244           Destroy = &CodeGenFunction::destroyARCWeak;
    245         }
    246         if (Duration == SD_FullExpression)
    247           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
    248                           M->getType(), *Destroy,
    249                           CleanupKind & EHCleanup);
    250         else
    251           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
    252                                           M->getType(),
    253                                           *Destroy, CleanupKind & EHCleanup);
    254         return;
    255 
    256       case SD_Dynamic:
    257         llvm_unreachable("temporary cannot have dynamic storage duration");
    258       }
    259       llvm_unreachable("unknown storage duration");
    260     }
    261   }
    262 
    263   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
    264   if (const RecordType *RT =
    265           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
    266     // Get the destructor for the reference temporary.
    267     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
    268     if (!ClassDecl->hasTrivialDestructor())
    269       ReferenceTemporaryDtor = ClassDecl->getDestructor();
    270   }
    271 
    272   if (!ReferenceTemporaryDtor)
    273     return;
    274 
    275   // Call the destructor for the temporary.
    276   switch (M->getStorageDuration()) {
    277   case SD_Static:
    278   case SD_Thread: {
    279     llvm::Constant *CleanupFn;
    280     llvm::Constant *CleanupArg;
    281     if (E->getType()->isArrayType()) {
    282       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
    283           ReferenceTemporary, E->getType(),
    284           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
    285           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
    286       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
    287     } else {
    288       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
    289                                                StructorType::Complete);
    290       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
    291     }
    292     CGF.CGM.getCXXABI().registerGlobalDtor(
    293         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
    294     break;
    295   }
    296 
    297   case SD_FullExpression:
    298     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
    299                     CodeGenFunction::destroyCXXObject,
    300                     CGF.getLangOpts().Exceptions);
    301     break;
    302 
    303   case SD_Automatic:
    304     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
    305                                     ReferenceTemporary, E->getType(),
    306                                     CodeGenFunction::destroyCXXObject,
    307                                     CGF.getLangOpts().Exceptions);
    308     break;
    309 
    310   case SD_Dynamic:
    311     llvm_unreachable("temporary cannot have dynamic storage duration");
    312   }
    313 }
    314 
    315 static Address
    316 createReferenceTemporary(CodeGenFunction &CGF,
    317                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
    318   switch (M->getStorageDuration()) {
    319   case SD_FullExpression:
    320   case SD_Automatic: {
    321     // If we have a constant temporary array or record try to promote it into a
    322     // constant global under the same rules a normal constant would've been
    323     // promoted. This is easier on the optimizer and generally emits fewer
    324     // instructions.
    325     QualType Ty = Inner->getType();
    326     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
    327         (Ty->isArrayType() || Ty->isRecordType()) &&
    328         CGF.CGM.isTypeConstant(Ty, true))
    329       if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
    330         auto *GV = new llvm::GlobalVariable(
    331             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
    332             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
    333         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
    334         GV->setAlignment(alignment.getQuantity());
    335         // FIXME: Should we put the new global into a COMDAT?
    336         return Address(GV, alignment);
    337       }
    338     return CGF.CreateMemTemp(Ty, "ref.tmp");
    339   }
    340   case SD_Thread:
    341   case SD_Static:
    342     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
    343 
    344   case SD_Dynamic:
    345     llvm_unreachable("temporary can't have dynamic storage duration");
    346   }
    347   llvm_unreachable("unknown storage duration");
    348 }
    349 
    350 LValue CodeGenFunction::
    351 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
    352   const Expr *E = M->GetTemporaryExpr();
    353 
    354     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
    355     // as that will cause the lifetime adjustment to be lost for ARC
    356   auto ownership = M->getType().getObjCLifetime();
    357   if (ownership != Qualifiers::OCL_None &&
    358       ownership != Qualifiers::OCL_ExplicitNone) {
    359     Address Object = createReferenceTemporary(*this, M, E);
    360     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
    361       Object = Address(llvm::ConstantExpr::getBitCast(Var,
    362                            ConvertTypeForMem(E->getType())
    363                              ->getPointerTo(Object.getAddressSpace())),
    364                        Object.getAlignment());
    365 
    366       // createReferenceTemporary will promote the temporary to a global with a
    367       // constant initializer if it can.  It can only do this to a value of
    368       // ARC-manageable type if the value is global and therefore "immune" to
    369       // ref-counting operations.  Therefore we have no need to emit either a
    370       // dynamic initialization or a cleanup and we can just return the address
    371       // of the temporary.
    372       if (Var->hasInitializer())
    373         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
    374 
    375       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
    376     }
    377     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
    378                                        AlignmentSource::Decl);
    379 
    380     switch (getEvaluationKind(E->getType())) {
    381     default: llvm_unreachable("expected scalar or aggregate expression");
    382     case TEK_Scalar:
    383       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
    384       break;
    385     case TEK_Aggregate: {
    386       EmitAggExpr(E, AggValueSlot::forAddr(Object,
    387                                            E->getType().getQualifiers(),
    388                                            AggValueSlot::IsDestructed,
    389                                            AggValueSlot::DoesNotNeedGCBarriers,
    390                                            AggValueSlot::IsNotAliased));
    391       break;
    392     }
    393     }
    394 
    395     pushTemporaryCleanup(*this, M, E, Object);
    396     return RefTempDst;
    397   }
    398 
    399   SmallVector<const Expr *, 2> CommaLHSs;
    400   SmallVector<SubobjectAdjustment, 2> Adjustments;
    401   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
    402 
    403   for (const auto &Ignored : CommaLHSs)
    404     EmitIgnoredExpr(Ignored);
    405 
    406   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
    407     if (opaque->getType()->isRecordType()) {
    408       assert(Adjustments.empty());
    409       return EmitOpaqueValueLValue(opaque);
    410     }
    411   }
    412 
    413   // Create and initialize the reference temporary.
    414   Address Object = createReferenceTemporary(*this, M, E);
    415   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
    416     Object = Address(llvm::ConstantExpr::getBitCast(
    417         Var, ConvertTypeForMem(E->getType())->getPointerTo()),
    418                      Object.getAlignment());
    419     // If the temporary is a global and has a constant initializer or is a
    420     // constant temporary that we promoted to a global, we may have already
    421     // initialized it.
    422     if (!Var->hasInitializer()) {
    423       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
    424       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
    425     }
    426   } else {
    427     switch (M->getStorageDuration()) {
    428     case SD_Automatic:
    429     case SD_FullExpression:
    430       if (auto *Size = EmitLifetimeStart(
    431               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
    432               Object.getPointer())) {
    433         if (M->getStorageDuration() == SD_Automatic)
    434           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
    435                                                     Object, Size);
    436         else
    437           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
    438                                                Size);
    439       }
    440       break;
    441     default:
    442       break;
    443     }
    444     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
    445   }
    446   pushTemporaryCleanup(*this, M, E, Object);
    447 
    448   // Perform derived-to-base casts and/or field accesses, to get from the
    449   // temporary object we created (and, potentially, for which we extended
    450   // the lifetime) to the subobject we're binding the reference to.
    451   for (unsigned I = Adjustments.size(); I != 0; --I) {
    452     SubobjectAdjustment &Adjustment = Adjustments[I-1];
    453     switch (Adjustment.Kind) {
    454     case SubobjectAdjustment::DerivedToBaseAdjustment:
    455       Object =
    456           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
    457                                 Adjustment.DerivedToBase.BasePath->path_begin(),
    458                                 Adjustment.DerivedToBase.BasePath->path_end(),
    459                                 /*NullCheckValue=*/ false, E->getExprLoc());
    460       break;
    461 
    462     case SubobjectAdjustment::FieldAdjustment: {
    463       LValue LV = MakeAddrLValue(Object, E->getType(),
    464                                  AlignmentSource::Decl);
    465       LV = EmitLValueForField(LV, Adjustment.Field);
    466       assert(LV.isSimple() &&
    467              "materialized temporary field is not a simple lvalue");
    468       Object = LV.getAddress();
    469       break;
    470     }
    471 
    472     case SubobjectAdjustment::MemberPointerAdjustment: {
    473       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
    474       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
    475                                                Adjustment.Ptr.MPT);
    476       break;
    477     }
    478     }
    479   }
    480 
    481   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
    482 }
    483 
    484 RValue
    485 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
    486   // Emit the expression as an lvalue.
    487   LValue LV = EmitLValue(E);
    488   assert(LV.isSimple());
    489   llvm::Value *Value = LV.getPointer();
    490 
    491   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
    492     // C++11 [dcl.ref]p5 (as amended by core issue 453):
    493     //   If a glvalue to which a reference is directly bound designates neither
    494     //   an existing object or function of an appropriate type nor a region of
    495     //   storage of suitable size and alignment to contain an object of the
    496     //   reference's type, the behavior is undefined.
    497     QualType Ty = E->getType();
    498     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
    499   }
    500 
    501   return RValue::get(Value);
    502 }
    503 
    504 
    505 /// getAccessedFieldNo - Given an encoded value and a result number, return the
    506 /// input field number being accessed.
    507 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
    508                                              const llvm::Constant *Elts) {
    509   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
    510       ->getZExtValue();
    511 }
    512 
    513 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
    514 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
    515                                     llvm::Value *High) {
    516   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
    517   llvm::Value *K47 = Builder.getInt64(47);
    518   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
    519   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
    520   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
    521   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
    522   return Builder.CreateMul(B1, KMul);
    523 }
    524 
    525 bool CodeGenFunction::sanitizePerformTypeCheck() const {
    526   return SanOpts.has(SanitizerKind::Null) |
    527          SanOpts.has(SanitizerKind::Alignment) |
    528          SanOpts.has(SanitizerKind::ObjectSize) |
    529          SanOpts.has(SanitizerKind::Vptr);
    530 }
    531 
    532 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
    533                                     llvm::Value *Ptr, QualType Ty,
    534                                     CharUnits Alignment, bool SkipNullCheck) {
    535   if (!sanitizePerformTypeCheck())
    536     return;
    537 
    538   // Don't check pointers outside the default address space. The null check
    539   // isn't correct, the object-size check isn't supported by LLVM, and we can't
    540   // communicate the addresses to the runtime handler for the vptr check.
    541   if (Ptr->getType()->getPointerAddressSpace())
    542     return;
    543 
    544   SanitizerScope SanScope(this);
    545 
    546   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
    547   llvm::BasicBlock *Done = nullptr;
    548 
    549   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
    550                            TCK == TCK_UpcastToVirtualBase;
    551   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
    552       !SkipNullCheck) {
    553     // The glvalue must not be an empty glvalue.
    554     llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr);
    555 
    556     if (AllowNullPointers) {
    557       // When performing pointer casts, it's OK if the value is null.
    558       // Skip the remaining checks in that case.
    559       Done = createBasicBlock("null");
    560       llvm::BasicBlock *Rest = createBasicBlock("not.null");
    561       Builder.CreateCondBr(IsNonNull, Rest, Done);
    562       EmitBlock(Rest);
    563     } else {
    564       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
    565     }
    566   }
    567 
    568   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
    569     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
    570 
    571     // The glvalue must refer to a large enough storage region.
    572     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
    573     //        to check this.
    574     // FIXME: Get object address space
    575     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
    576     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
    577     llvm::Value *Min = Builder.getFalse();
    578     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
    579     llvm::Value *LargeEnough =
    580         Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
    581                               llvm::ConstantInt::get(IntPtrTy, Size));
    582     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
    583   }
    584 
    585   uint64_t AlignVal = 0;
    586 
    587   if (SanOpts.has(SanitizerKind::Alignment)) {
    588     AlignVal = Alignment.getQuantity();
    589     if (!Ty->isIncompleteType() && !AlignVal)
    590       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
    591 
    592     // The glvalue must be suitably aligned.
    593     if (AlignVal) {
    594       llvm::Value *Align =
    595           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
    596                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
    597       llvm::Value *Aligned =
    598         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
    599       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
    600     }
    601   }
    602 
    603   if (Checks.size() > 0) {
    604     llvm::Constant *StaticData[] = {
    605      EmitCheckSourceLocation(Loc),
    606       EmitCheckTypeDescriptor(Ty),
    607       llvm::ConstantInt::get(SizeTy, AlignVal),
    608       llvm::ConstantInt::get(Int8Ty, TCK)
    609     };
    610     EmitCheck(Checks, "type_mismatch", StaticData, Ptr);
    611   }
    612 
    613   // If possible, check that the vptr indicates that there is a subobject of
    614   // type Ty at offset zero within this object.
    615   //
    616   // C++11 [basic.life]p5,6:
    617   //   [For storage which does not refer to an object within its lifetime]
    618   //   The program has undefined behavior if:
    619   //    -- the [pointer or glvalue] is used to access a non-static data member
    620   //       or call a non-static member function
    621   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
    622   if (SanOpts.has(SanitizerKind::Vptr) &&
    623       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
    624        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
    625        TCK == TCK_UpcastToVirtualBase) &&
    626       RD && RD->hasDefinition() && RD->isDynamicClass()) {
    627     // Compute a hash of the mangled name of the type.
    628     //
    629     // FIXME: This is not guaranteed to be deterministic! Move to a
    630     //        fingerprinting mechanism once LLVM provides one. For the time
    631     //        being the implementation happens to be deterministic.
    632     SmallString<64> MangledName;
    633     llvm::raw_svector_ostream Out(MangledName);
    634     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
    635                                                      Out);
    636 
    637     // Blacklist based on the mangled type.
    638     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
    639             Out.str())) {
    640       llvm::hash_code TypeHash = hash_value(Out.str());
    641 
    642       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
    643       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
    644       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
    645       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
    646       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
    647       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
    648 
    649       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
    650       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
    651 
    652       // Look the hash up in our cache.
    653       const int CacheSize = 128;
    654       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
    655       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
    656                                                      "__ubsan_vptr_type_cache");
    657       llvm::Value *Slot = Builder.CreateAnd(Hash,
    658                                             llvm::ConstantInt::get(IntPtrTy,
    659                                                                    CacheSize-1));
    660       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
    661       llvm::Value *CacheVal =
    662         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
    663                                   getPointerAlign());
    664 
    665       // If the hash isn't in the cache, call a runtime handler to perform the
    666       // hard work of checking whether the vptr is for an object of the right
    667       // type. This will either fill in the cache and return, or produce a
    668       // diagnostic.
    669       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
    670       llvm::Constant *StaticData[] = {
    671         EmitCheckSourceLocation(Loc),
    672         EmitCheckTypeDescriptor(Ty),
    673         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
    674         llvm::ConstantInt::get(Int8Ty, TCK)
    675       };
    676       llvm::Value *DynamicData[] = { Ptr, Hash };
    677       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
    678                 "dynamic_type_cache_miss", StaticData, DynamicData);
    679     }
    680   }
    681 
    682   if (Done) {
    683     Builder.CreateBr(Done);
    684     EmitBlock(Done);
    685   }
    686 }
    687 
    688 /// Determine whether this expression refers to a flexible array member in a
    689 /// struct. We disable array bounds checks for such members.
    690 static bool isFlexibleArrayMemberExpr(const Expr *E) {
    691   // For compatibility with existing code, we treat arrays of length 0 or
    692   // 1 as flexible array members.
    693   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
    694   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
    695     if (CAT->getSize().ugt(1))
    696       return false;
    697   } else if (!isa<IncompleteArrayType>(AT))
    698     return false;
    699 
    700   E = E->IgnoreParens();
    701 
    702   // A flexible array member must be the last member in the class.
    703   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
    704     // FIXME: If the base type of the member expr is not FD->getParent(),
    705     // this should not be treated as a flexible array member access.
    706     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
    707       RecordDecl::field_iterator FI(
    708           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
    709       return ++FI == FD->getParent()->field_end();
    710     }
    711   }
    712 
    713   return false;
    714 }
    715 
    716 /// If Base is known to point to the start of an array, return the length of
    717 /// that array. Return 0 if the length cannot be determined.
    718 static llvm::Value *getArrayIndexingBound(
    719     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
    720   // For the vector indexing extension, the bound is the number of elements.
    721   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
    722     IndexedType = Base->getType();
    723     return CGF.Builder.getInt32(VT->getNumElements());
    724   }
    725 
    726   Base = Base->IgnoreParens();
    727 
    728   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
    729     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
    730         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
    731       IndexedType = CE->getSubExpr()->getType();
    732       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
    733       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
    734         return CGF.Builder.getInt(CAT->getSize());
    735       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
    736         return CGF.getVLASize(VAT).first;
    737     }
    738   }
    739 
    740   return nullptr;
    741 }
    742 
    743 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
    744                                       llvm::Value *Index, QualType IndexType,
    745                                       bool Accessed) {
    746   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
    747          "should not be called unless adding bounds checks");
    748   SanitizerScope SanScope(this);
    749 
    750   QualType IndexedType;
    751   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
    752   if (!Bound)
    753     return;
    754 
    755   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
    756   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
    757   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
    758 
    759   llvm::Constant *StaticData[] = {
    760     EmitCheckSourceLocation(E->getExprLoc()),
    761     EmitCheckTypeDescriptor(IndexedType),
    762     EmitCheckTypeDescriptor(IndexType)
    763   };
    764   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
    765                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
    766   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
    767             StaticData, Index);
    768 }
    769 
    770 
    771 CodeGenFunction::ComplexPairTy CodeGenFunction::
    772 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
    773                          bool isInc, bool isPre) {
    774   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
    775 
    776   llvm::Value *NextVal;
    777   if (isa<llvm::IntegerType>(InVal.first->getType())) {
    778     uint64_t AmountVal = isInc ? 1 : -1;
    779     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
    780 
    781     // Add the inc/dec to the real part.
    782     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    783   } else {
    784     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
    785     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
    786     if (!isInc)
    787       FVal.changeSign();
    788     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
    789 
    790     // Add the inc/dec to the real part.
    791     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
    792   }
    793 
    794   ComplexPairTy IncVal(NextVal, InVal.second);
    795 
    796   // Store the updated result through the lvalue.
    797   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
    798 
    799   // If this is a postinc, return the value read from memory, otherwise use the
    800   // updated value.
    801   return isPre ? IncVal : InVal;
    802 }
    803 
    804 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
    805                                              CodeGenFunction *CGF) {
    806   // Bind VLAs in the cast type.
    807   if (CGF && E->getType()->isVariablyModifiedType())
    808     CGF->EmitVariablyModifiedType(E->getType());
    809 
    810   if (CGDebugInfo *DI = getModuleDebugInfo())
    811     DI->EmitExplicitCastType(E->getType());
    812 }
    813 
    814 //===----------------------------------------------------------------------===//
    815 //                         LValue Expression Emission
    816 //===----------------------------------------------------------------------===//
    817 
    818 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
    819 /// derive a more accurate bound on the alignment of the pointer.
    820 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
    821                                                   AlignmentSource  *Source) {
    822   // We allow this with ObjC object pointers because of fragile ABIs.
    823   assert(E->getType()->isPointerType() ||
    824          E->getType()->isObjCObjectPointerType());
    825   E = E->IgnoreParens();
    826 
    827   // Casts:
    828   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
    829     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
    830       CGM.EmitExplicitCastExprType(ECE, this);
    831 
    832     switch (CE->getCastKind()) {
    833     // Non-converting casts (but not C's implicit conversion from void*).
    834     case CK_BitCast:
    835     case CK_NoOp:
    836       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
    837         if (PtrTy->getPointeeType()->isVoidType())
    838           break;
    839 
    840         AlignmentSource InnerSource;
    841         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource);
    842         if (Source) *Source = InnerSource;
    843 
    844         // If this is an explicit bitcast, and the source l-value is
    845         // opaque, honor the alignment of the casted-to type.
    846         if (isa<ExplicitCastExpr>(CE) &&
    847             InnerSource != AlignmentSource::Decl) {
    848           Addr = Address(Addr.getPointer(),
    849                          getNaturalPointeeTypeAlignment(E->getType(), Source));
    850         }
    851 
    852         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
    853             CE->getCastKind() == CK_BitCast) {
    854           if (auto PT = E->getType()->getAs<PointerType>())
    855             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
    856                                       /*MayBeNull=*/true,
    857                                       CodeGenFunction::CFITCK_UnrelatedCast,
    858                                       CE->getLocStart());
    859         }
    860 
    861         return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
    862       }
    863       break;
    864 
    865     // Array-to-pointer decay.
    866     case CK_ArrayToPointerDecay:
    867       return EmitArrayToPointerDecay(CE->getSubExpr(), Source);
    868 
    869     // Derived-to-base conversions.
    870     case CK_UncheckedDerivedToBase:
    871     case CK_DerivedToBase: {
    872       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source);
    873       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
    874       return GetAddressOfBaseClass(Addr, Derived,
    875                                    CE->path_begin(), CE->path_end(),
    876                                    ShouldNullCheckClassCastValue(CE),
    877                                    CE->getExprLoc());
    878     }
    879 
    880     // TODO: Is there any reason to treat base-to-derived conversions
    881     // specially?
    882     default:
    883       break;
    884     }
    885   }
    886 
    887   // Unary &.
    888   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
    889     if (UO->getOpcode() == UO_AddrOf) {
    890       LValue LV = EmitLValue(UO->getSubExpr());
    891       if (Source) *Source = LV.getAlignmentSource();
    892       return LV.getAddress();
    893     }
    894   }
    895 
    896   // TODO: conditional operators, comma.
    897 
    898   // Otherwise, use the alignment of the type.
    899   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source);
    900   return Address(EmitScalarExpr(E), Align);
    901 }
    902 
    903 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
    904   if (Ty->isVoidType())
    905     return RValue::get(nullptr);
    906 
    907   switch (getEvaluationKind(Ty)) {
    908   case TEK_Complex: {
    909     llvm::Type *EltTy =
    910       ConvertType(Ty->castAs<ComplexType>()->getElementType());
    911     llvm::Value *U = llvm::UndefValue::get(EltTy);
    912     return RValue::getComplex(std::make_pair(U, U));
    913   }
    914 
    915   // If this is a use of an undefined aggregate type, the aggregate must have an
    916   // identifiable address.  Just because the contents of the value are undefined
    917   // doesn't mean that the address can't be taken and compared.
    918   case TEK_Aggregate: {
    919     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
    920     return RValue::getAggregate(DestPtr);
    921   }
    922 
    923   case TEK_Scalar:
    924     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
    925   }
    926   llvm_unreachable("bad evaluation kind");
    927 }
    928 
    929 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
    930                                               const char *Name) {
    931   ErrorUnsupported(E, Name);
    932   return GetUndefRValue(E->getType());
    933 }
    934 
    935 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
    936                                               const char *Name) {
    937   ErrorUnsupported(E, Name);
    938   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
    939   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
    940                         E->getType());
    941 }
    942 
    943 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
    944   LValue LV;
    945   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
    946     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
    947   else
    948     LV = EmitLValue(E);
    949   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
    950     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
    951                   E->getType(), LV.getAlignment());
    952   return LV;
    953 }
    954 
    955 /// EmitLValue - Emit code to compute a designator that specifies the location
    956 /// of the expression.
    957 ///
    958 /// This can return one of two things: a simple address or a bitfield reference.
    959 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
    960 /// an LLVM pointer type.
    961 ///
    962 /// If this returns a bitfield reference, nothing about the pointee type of the
    963 /// LLVM value is known: For example, it may not be a pointer to an integer.
    964 ///
    965 /// If this returns a normal address, and if the lvalue's C type is fixed size,
    966 /// this method guarantees that the returned pointer type will point to an LLVM
    967 /// type of the same size of the lvalue's type.  If the lvalue has a variable
    968 /// length type, this is not possible.
    969 ///
    970 LValue CodeGenFunction::EmitLValue(const Expr *E) {
    971   ApplyDebugLocation DL(*this, E);
    972   switch (E->getStmtClass()) {
    973   default: return EmitUnsupportedLValue(E, "l-value expression");
    974 
    975   case Expr::ObjCPropertyRefExprClass:
    976     llvm_unreachable("cannot emit a property reference directly");
    977 
    978   case Expr::ObjCSelectorExprClass:
    979     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
    980   case Expr::ObjCIsaExprClass:
    981     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
    982   case Expr::BinaryOperatorClass:
    983     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
    984   case Expr::CompoundAssignOperatorClass: {
    985     QualType Ty = E->getType();
    986     if (const AtomicType *AT = Ty->getAs<AtomicType>())
    987       Ty = AT->getValueType();
    988     if (!Ty->isAnyComplexType())
    989       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    990     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
    991   }
    992   case Expr::CallExprClass:
    993   case Expr::CXXMemberCallExprClass:
    994   case Expr::CXXOperatorCallExprClass:
    995   case Expr::UserDefinedLiteralClass:
    996     return EmitCallExprLValue(cast<CallExpr>(E));
    997   case Expr::VAArgExprClass:
    998     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
    999   case Expr::DeclRefExprClass:
   1000     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
   1001   case Expr::ParenExprClass:
   1002     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
   1003   case Expr::GenericSelectionExprClass:
   1004     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
   1005   case Expr::PredefinedExprClass:
   1006     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
   1007   case Expr::StringLiteralClass:
   1008     return EmitStringLiteralLValue(cast<StringLiteral>(E));
   1009   case Expr::ObjCEncodeExprClass:
   1010     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
   1011   case Expr::PseudoObjectExprClass:
   1012     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
   1013   case Expr::InitListExprClass:
   1014     return EmitInitListLValue(cast<InitListExpr>(E));
   1015   case Expr::CXXTemporaryObjectExprClass:
   1016   case Expr::CXXConstructExprClass:
   1017     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
   1018   case Expr::CXXBindTemporaryExprClass:
   1019     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
   1020   case Expr::CXXUuidofExprClass:
   1021     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
   1022   case Expr::LambdaExprClass:
   1023     return EmitLambdaLValue(cast<LambdaExpr>(E));
   1024 
   1025   case Expr::ExprWithCleanupsClass: {
   1026     const auto *cleanups = cast<ExprWithCleanups>(E);
   1027     enterFullExpression(cleanups);
   1028     RunCleanupsScope Scope(*this);
   1029     return EmitLValue(cleanups->getSubExpr());
   1030   }
   1031 
   1032   case Expr::CXXDefaultArgExprClass:
   1033     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
   1034   case Expr::CXXDefaultInitExprClass: {
   1035     CXXDefaultInitExprScope Scope(*this);
   1036     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
   1037   }
   1038   case Expr::CXXTypeidExprClass:
   1039     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
   1040 
   1041   case Expr::ObjCMessageExprClass:
   1042     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
   1043   case Expr::ObjCIvarRefExprClass:
   1044     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
   1045   case Expr::StmtExprClass:
   1046     return EmitStmtExprLValue(cast<StmtExpr>(E));
   1047   case Expr::UnaryOperatorClass:
   1048     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
   1049   case Expr::ArraySubscriptExprClass:
   1050     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
   1051   case Expr::OMPArraySectionExprClass:
   1052     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
   1053   case Expr::ExtVectorElementExprClass:
   1054     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
   1055   case Expr::MemberExprClass:
   1056     return EmitMemberExpr(cast<MemberExpr>(E));
   1057   case Expr::CompoundLiteralExprClass:
   1058     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
   1059   case Expr::ConditionalOperatorClass:
   1060     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
   1061   case Expr::BinaryConditionalOperatorClass:
   1062     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
   1063   case Expr::ChooseExprClass:
   1064     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
   1065   case Expr::OpaqueValueExprClass:
   1066     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
   1067   case Expr::SubstNonTypeTemplateParmExprClass:
   1068     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
   1069   case Expr::ImplicitCastExprClass:
   1070   case Expr::CStyleCastExprClass:
   1071   case Expr::CXXFunctionalCastExprClass:
   1072   case Expr::CXXStaticCastExprClass:
   1073   case Expr::CXXDynamicCastExprClass:
   1074   case Expr::CXXReinterpretCastExprClass:
   1075   case Expr::CXXConstCastExprClass:
   1076   case Expr::ObjCBridgedCastExprClass:
   1077     return EmitCastLValue(cast<CastExpr>(E));
   1078 
   1079   case Expr::MaterializeTemporaryExprClass:
   1080     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
   1081   }
   1082 }
   1083 
   1084 /// Given an object of the given canonical type, can we safely copy a
   1085 /// value out of it based on its initializer?
   1086 static bool isConstantEmittableObjectType(QualType type) {
   1087   assert(type.isCanonical());
   1088   assert(!type->isReferenceType());
   1089 
   1090   // Must be const-qualified but non-volatile.
   1091   Qualifiers qs = type.getLocalQualifiers();
   1092   if (!qs.hasConst() || qs.hasVolatile()) return false;
   1093 
   1094   // Otherwise, all object types satisfy this except C++ classes with
   1095   // mutable subobjects or non-trivial copy/destroy behavior.
   1096   if (const auto *RT = dyn_cast<RecordType>(type))
   1097     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
   1098       if (RD->hasMutableFields() || !RD->isTrivial())
   1099         return false;
   1100 
   1101   return true;
   1102 }
   1103 
   1104 /// Can we constant-emit a load of a reference to a variable of the
   1105 /// given type?  This is different from predicates like
   1106 /// Decl::isUsableInConstantExpressions because we do want it to apply
   1107 /// in situations that don't necessarily satisfy the language's rules
   1108 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
   1109 /// to do this with const float variables even if those variables
   1110 /// aren't marked 'constexpr'.
   1111 enum ConstantEmissionKind {
   1112   CEK_None,
   1113   CEK_AsReferenceOnly,
   1114   CEK_AsValueOrReference,
   1115   CEK_AsValueOnly
   1116 };
   1117 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
   1118   type = type.getCanonicalType();
   1119   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
   1120     if (isConstantEmittableObjectType(ref->getPointeeType()))
   1121       return CEK_AsValueOrReference;
   1122     return CEK_AsReferenceOnly;
   1123   }
   1124   if (isConstantEmittableObjectType(type))
   1125     return CEK_AsValueOnly;
   1126   return CEK_None;
   1127 }
   1128 
   1129 /// Try to emit a reference to the given value without producing it as
   1130 /// an l-value.  This is actually more than an optimization: we can't
   1131 /// produce an l-value for variables that we never actually captured
   1132 /// in a block or lambda, which means const int variables or constexpr
   1133 /// literals or similar.
   1134 CodeGenFunction::ConstantEmission
   1135 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
   1136   ValueDecl *value = refExpr->getDecl();
   1137 
   1138   // The value needs to be an enum constant or a constant variable.
   1139   ConstantEmissionKind CEK;
   1140   if (isa<ParmVarDecl>(value)) {
   1141     CEK = CEK_None;
   1142   } else if (auto *var = dyn_cast<VarDecl>(value)) {
   1143     CEK = checkVarTypeForConstantEmission(var->getType());
   1144   } else if (isa<EnumConstantDecl>(value)) {
   1145     CEK = CEK_AsValueOnly;
   1146   } else {
   1147     CEK = CEK_None;
   1148   }
   1149   if (CEK == CEK_None) return ConstantEmission();
   1150 
   1151   Expr::EvalResult result;
   1152   bool resultIsReference;
   1153   QualType resultType;
   1154 
   1155   // It's best to evaluate all the way as an r-value if that's permitted.
   1156   if (CEK != CEK_AsReferenceOnly &&
   1157       refExpr->EvaluateAsRValue(result, getContext())) {
   1158     resultIsReference = false;
   1159     resultType = refExpr->getType();
   1160 
   1161   // Otherwise, try to evaluate as an l-value.
   1162   } else if (CEK != CEK_AsValueOnly &&
   1163              refExpr->EvaluateAsLValue(result, getContext())) {
   1164     resultIsReference = true;
   1165     resultType = value->getType();
   1166 
   1167   // Failure.
   1168   } else {
   1169     return ConstantEmission();
   1170   }
   1171 
   1172   // In any case, if the initializer has side-effects, abandon ship.
   1173   if (result.HasSideEffects)
   1174     return ConstantEmission();
   1175 
   1176   // Emit as a constant.
   1177   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
   1178 
   1179   // Make sure we emit a debug reference to the global variable.
   1180   // This should probably fire even for
   1181   if (isa<VarDecl>(value)) {
   1182     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
   1183       EmitDeclRefExprDbgValue(refExpr, C);
   1184   } else {
   1185     assert(isa<EnumConstantDecl>(value));
   1186     EmitDeclRefExprDbgValue(refExpr, C);
   1187   }
   1188 
   1189   // If we emitted a reference constant, we need to dereference that.
   1190   if (resultIsReference)
   1191     return ConstantEmission::forReference(C);
   1192 
   1193   return ConstantEmission::forValue(C);
   1194 }
   1195 
   1196 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
   1197                                                SourceLocation Loc) {
   1198   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
   1199                           lvalue.getType(), Loc, lvalue.getAlignmentSource(),
   1200                           lvalue.getTBAAInfo(),
   1201                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
   1202                           lvalue.isNontemporal());
   1203 }
   1204 
   1205 static bool hasBooleanRepresentation(QualType Ty) {
   1206   if (Ty->isBooleanType())
   1207     return true;
   1208 
   1209   if (const EnumType *ET = Ty->getAs<EnumType>())
   1210     return ET->getDecl()->getIntegerType()->isBooleanType();
   1211 
   1212   if (const AtomicType *AT = Ty->getAs<AtomicType>())
   1213     return hasBooleanRepresentation(AT->getValueType());
   1214 
   1215   return false;
   1216 }
   1217 
   1218 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
   1219                             llvm::APInt &Min, llvm::APInt &End,
   1220                             bool StrictEnums) {
   1221   const EnumType *ET = Ty->getAs<EnumType>();
   1222   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
   1223                                 ET && !ET->getDecl()->isFixed();
   1224   bool IsBool = hasBooleanRepresentation(Ty);
   1225   if (!IsBool && !IsRegularCPlusPlusEnum)
   1226     return false;
   1227 
   1228   if (IsBool) {
   1229     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
   1230     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
   1231   } else {
   1232     const EnumDecl *ED = ET->getDecl();
   1233     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
   1234     unsigned Bitwidth = LTy->getScalarSizeInBits();
   1235     unsigned NumNegativeBits = ED->getNumNegativeBits();
   1236     unsigned NumPositiveBits = ED->getNumPositiveBits();
   1237 
   1238     if (NumNegativeBits) {
   1239       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
   1240       assert(NumBits <= Bitwidth);
   1241       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
   1242       Min = -End;
   1243     } else {
   1244       assert(NumPositiveBits <= Bitwidth);
   1245       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
   1246       Min = llvm::APInt(Bitwidth, 0);
   1247     }
   1248   }
   1249   return true;
   1250 }
   1251 
   1252 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
   1253   llvm::APInt Min, End;
   1254   if (!getRangeForType(*this, Ty, Min, End,
   1255                        CGM.getCodeGenOpts().StrictEnums))
   1256     return nullptr;
   1257 
   1258   llvm::MDBuilder MDHelper(getLLVMContext());
   1259   return MDHelper.createRange(Min, End);
   1260 }
   1261 
   1262 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
   1263                                                QualType Ty,
   1264                                                SourceLocation Loc,
   1265                                                AlignmentSource AlignSource,
   1266                                                llvm::MDNode *TBAAInfo,
   1267                                                QualType TBAABaseType,
   1268                                                uint64_t TBAAOffset,
   1269                                                bool isNontemporal) {
   1270   // For better performance, handle vector loads differently.
   1271   if (Ty->isVectorType()) {
   1272     const llvm::Type *EltTy = Addr.getElementType();
   1273 
   1274     const auto *VTy = cast<llvm::VectorType>(EltTy);
   1275 
   1276     // Handle vectors of size 3 like size 4 for better performance.
   1277     if (VTy->getNumElements() == 3) {
   1278 
   1279       // Bitcast to vec4 type.
   1280       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
   1281                                                          4);
   1282       Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
   1283       // Now load value.
   1284       llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
   1285 
   1286       // Shuffle vector to get vec3.
   1287       V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
   1288                                       {0, 1, 2}, "extractVec");
   1289       return EmitFromMemory(V, Ty);
   1290     }
   1291   }
   1292 
   1293   // Atomic operations have to be done on integral types.
   1294   LValue AtomicLValue =
   1295       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
   1296   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
   1297     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
   1298   }
   1299 
   1300   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
   1301   if (isNontemporal) {
   1302     llvm::MDNode *Node = llvm::MDNode::get(
   1303         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
   1304     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
   1305   }
   1306   if (TBAAInfo) {
   1307     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
   1308                                                       TBAAOffset);
   1309     if (TBAAPath)
   1310       CGM.DecorateInstructionWithTBAA(Load, TBAAPath,
   1311                                       false /*ConvertTypeToTag*/);
   1312   }
   1313 
   1314   bool NeedsBoolCheck =
   1315       SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
   1316   bool NeedsEnumCheck =
   1317       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
   1318   if (NeedsBoolCheck || NeedsEnumCheck) {
   1319     SanitizerScope SanScope(this);
   1320     llvm::APInt Min, End;
   1321     if (getRangeForType(*this, Ty, Min, End, true)) {
   1322       --End;
   1323       llvm::Value *Check;
   1324       if (!Min)
   1325         Check = Builder.CreateICmpULE(
   1326           Load, llvm::ConstantInt::get(getLLVMContext(), End));
   1327       else {
   1328         llvm::Value *Upper = Builder.CreateICmpSLE(
   1329           Load, llvm::ConstantInt::get(getLLVMContext(), End));
   1330         llvm::Value *Lower = Builder.CreateICmpSGE(
   1331           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
   1332         Check = Builder.CreateAnd(Upper, Lower);
   1333       }
   1334       llvm::Constant *StaticArgs[] = {
   1335         EmitCheckSourceLocation(Loc),
   1336         EmitCheckTypeDescriptor(Ty)
   1337       };
   1338       SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
   1339       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
   1340                 EmitCheckValue(Load));
   1341     }
   1342   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
   1343     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
   1344       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
   1345 
   1346   return EmitFromMemory(Load, Ty);
   1347 }
   1348 
   1349 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
   1350   // Bool has a different representation in memory than in registers.
   1351   if (hasBooleanRepresentation(Ty)) {
   1352     // This should really always be an i1, but sometimes it's already
   1353     // an i8, and it's awkward to track those cases down.
   1354     if (Value->getType()->isIntegerTy(1))
   1355       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
   1356     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
   1357            "wrong value rep of bool");
   1358   }
   1359 
   1360   return Value;
   1361 }
   1362 
   1363 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
   1364   // Bool has a different representation in memory than in registers.
   1365   if (hasBooleanRepresentation(Ty)) {
   1366     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
   1367            "wrong value rep of bool");
   1368     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
   1369   }
   1370 
   1371   return Value;
   1372 }
   1373 
   1374 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
   1375                                         bool Volatile, QualType Ty,
   1376                                         AlignmentSource AlignSource,
   1377                                         llvm::MDNode *TBAAInfo,
   1378                                         bool isInit, QualType TBAABaseType,
   1379                                         uint64_t TBAAOffset,
   1380                                         bool isNontemporal) {
   1381 
   1382   // Handle vectors differently to get better performance.
   1383   if (Ty->isVectorType()) {
   1384     llvm::Type *SrcTy = Value->getType();
   1385     auto *VecTy = cast<llvm::VectorType>(SrcTy);
   1386     // Handle vec3 special.
   1387     if (VecTy->getNumElements() == 3) {
   1388       // Our source is a vec3, do a shuffle vector to make it a vec4.
   1389       llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
   1390                                 Builder.getInt32(2),
   1391                                 llvm::UndefValue::get(Builder.getInt32Ty())};
   1392       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1393       Value = Builder.CreateShuffleVector(Value,
   1394                                           llvm::UndefValue::get(VecTy),
   1395                                           MaskV, "extractVec");
   1396       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
   1397     }
   1398     if (Addr.getElementType() != SrcTy) {
   1399       Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
   1400     }
   1401   }
   1402 
   1403   Value = EmitToMemory(Value, Ty);
   1404 
   1405   LValue AtomicLValue =
   1406       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
   1407   if (Ty->isAtomicType() ||
   1408       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
   1409     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
   1410     return;
   1411   }
   1412 
   1413   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
   1414   if (isNontemporal) {
   1415     llvm::MDNode *Node =
   1416         llvm::MDNode::get(Store->getContext(),
   1417                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
   1418     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
   1419   }
   1420   if (TBAAInfo) {
   1421     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
   1422                                                       TBAAOffset);
   1423     if (TBAAPath)
   1424       CGM.DecorateInstructionWithTBAA(Store, TBAAPath,
   1425                                       false /*ConvertTypeToTag*/);
   1426   }
   1427 }
   1428 
   1429 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
   1430                                         bool isInit) {
   1431   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
   1432                     lvalue.getType(), lvalue.getAlignmentSource(),
   1433                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
   1434                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
   1435 }
   1436 
   1437 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
   1438 /// method emits the address of the lvalue, then loads the result as an rvalue,
   1439 /// returning the rvalue.
   1440 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
   1441   if (LV.isObjCWeak()) {
   1442     // load of a __weak object.
   1443     Address AddrWeakObj = LV.getAddress();
   1444     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
   1445                                                              AddrWeakObj));
   1446   }
   1447   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
   1448     // In MRC mode, we do a load+autorelease.
   1449     if (!getLangOpts().ObjCAutoRefCount) {
   1450       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
   1451     }
   1452 
   1453     // In ARC mode, we load retained and then consume the value.
   1454     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
   1455     Object = EmitObjCConsumeObject(LV.getType(), Object);
   1456     return RValue::get(Object);
   1457   }
   1458 
   1459   if (LV.isSimple()) {
   1460     assert(!LV.getType()->isFunctionType());
   1461 
   1462     // Everything needs a load.
   1463     return RValue::get(EmitLoadOfScalar(LV, Loc));
   1464   }
   1465 
   1466   if (LV.isVectorElt()) {
   1467     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
   1468                                               LV.isVolatileQualified());
   1469     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
   1470                                                     "vecext"));
   1471   }
   1472 
   1473   // If this is a reference to a subset of the elements of a vector, either
   1474   // shuffle the input or extract/insert them as appropriate.
   1475   if (LV.isExtVectorElt())
   1476     return EmitLoadOfExtVectorElementLValue(LV);
   1477 
   1478   // Global Register variables always invoke intrinsics
   1479   if (LV.isGlobalReg())
   1480     return EmitLoadOfGlobalRegLValue(LV);
   1481 
   1482   assert(LV.isBitField() && "Unknown LValue type!");
   1483   return EmitLoadOfBitfieldLValue(LV);
   1484 }
   1485 
   1486 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
   1487   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
   1488 
   1489   // Get the output type.
   1490   llvm::Type *ResLTy = ConvertType(LV.getType());
   1491 
   1492   Address Ptr = LV.getBitFieldAddress();
   1493   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
   1494 
   1495   if (Info.IsSigned) {
   1496     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
   1497     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
   1498     if (HighBits)
   1499       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
   1500     if (Info.Offset + HighBits)
   1501       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
   1502   } else {
   1503     if (Info.Offset)
   1504       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
   1505     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
   1506       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
   1507                                                               Info.Size),
   1508                               "bf.clear");
   1509   }
   1510   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
   1511 
   1512   return RValue::get(Val);
   1513 }
   1514 
   1515 // If this is a reference to a subset of the elements of a vector, create an
   1516 // appropriate shufflevector.
   1517 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
   1518   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
   1519                                         LV.isVolatileQualified());
   1520 
   1521   const llvm::Constant *Elts = LV.getExtVectorElts();
   1522 
   1523   // If the result of the expression is a non-vector type, we must be extracting
   1524   // a single element.  Just codegen as an extractelement.
   1525   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
   1526   if (!ExprVT) {
   1527     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1528     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
   1529     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
   1530   }
   1531 
   1532   // Always use shuffle vector to try to retain the original program structure
   1533   unsigned NumResultElts = ExprVT->getNumElements();
   1534 
   1535   SmallVector<llvm::Constant*, 4> Mask;
   1536   for (unsigned i = 0; i != NumResultElts; ++i)
   1537     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
   1538 
   1539   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1540   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
   1541                                     MaskV);
   1542   return RValue::get(Vec);
   1543 }
   1544 
   1545 /// @brief Generates lvalue for partial ext_vector access.
   1546 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
   1547   Address VectorAddress = LV.getExtVectorAddress();
   1548   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
   1549   QualType EQT = ExprVT->getElementType();
   1550   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
   1551 
   1552   Address CastToPointerElement =
   1553     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
   1554                                  "conv.ptr.element");
   1555 
   1556   const llvm::Constant *Elts = LV.getExtVectorElts();
   1557   unsigned ix = getAccessedFieldNo(0, Elts);
   1558 
   1559   Address VectorBasePtrPlusIx =
   1560     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
   1561                                    getContext().getTypeSizeInChars(EQT),
   1562                                    "vector.elt");
   1563 
   1564   return VectorBasePtrPlusIx;
   1565 }
   1566 
   1567 /// @brief Load of global gamed gegisters are always calls to intrinsics.
   1568 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
   1569   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
   1570          "Bad type for register variable");
   1571   llvm::MDNode *RegName = cast<llvm::MDNode>(
   1572       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
   1573 
   1574   // We accept integer and pointer types only
   1575   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
   1576   llvm::Type *Ty = OrigTy;
   1577   if (OrigTy->isPointerTy())
   1578     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
   1579   llvm::Type *Types[] = { Ty };
   1580 
   1581   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
   1582   llvm::Value *Call = Builder.CreateCall(
   1583       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
   1584   if (OrigTy->isPointerTy())
   1585     Call = Builder.CreateIntToPtr(Call, OrigTy);
   1586   return RValue::get(Call);
   1587 }
   1588 
   1589 
   1590 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   1591 /// lvalue, where both are guaranteed to the have the same type, and that type
   1592 /// is 'Ty'.
   1593 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
   1594                                              bool isInit) {
   1595   if (!Dst.isSimple()) {
   1596     if (Dst.isVectorElt()) {
   1597       // Read/modify/write the vector, inserting the new element.
   1598       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
   1599                                             Dst.isVolatileQualified());
   1600       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
   1601                                         Dst.getVectorIdx(), "vecins");
   1602       Builder.CreateStore(Vec, Dst.getVectorAddress(),
   1603                           Dst.isVolatileQualified());
   1604       return;
   1605     }
   1606 
   1607     // If this is an update of extended vector elements, insert them as
   1608     // appropriate.
   1609     if (Dst.isExtVectorElt())
   1610       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
   1611 
   1612     if (Dst.isGlobalReg())
   1613       return EmitStoreThroughGlobalRegLValue(Src, Dst);
   1614 
   1615     assert(Dst.isBitField() && "Unknown LValue type");
   1616     return EmitStoreThroughBitfieldLValue(Src, Dst);
   1617   }
   1618 
   1619   // There's special magic for assigning into an ARC-qualified l-value.
   1620   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
   1621     switch (Lifetime) {
   1622     case Qualifiers::OCL_None:
   1623       llvm_unreachable("present but none");
   1624 
   1625     case Qualifiers::OCL_ExplicitNone:
   1626       // nothing special
   1627       break;
   1628 
   1629     case Qualifiers::OCL_Strong:
   1630       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
   1631       return;
   1632 
   1633     case Qualifiers::OCL_Weak:
   1634       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
   1635       return;
   1636 
   1637     case Qualifiers::OCL_Autoreleasing:
   1638       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
   1639                                                      Src.getScalarVal()));
   1640       // fall into the normal path
   1641       break;
   1642     }
   1643   }
   1644 
   1645   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
   1646     // load of a __weak object.
   1647     Address LvalueDst = Dst.getAddress();
   1648     llvm::Value *src = Src.getScalarVal();
   1649      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
   1650     return;
   1651   }
   1652 
   1653   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
   1654     // load of a __strong object.
   1655     Address LvalueDst = Dst.getAddress();
   1656     llvm::Value *src = Src.getScalarVal();
   1657     if (Dst.isObjCIvar()) {
   1658       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
   1659       llvm::Type *ResultType = IntPtrTy;
   1660       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
   1661       llvm::Value *RHS = dst.getPointer();
   1662       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
   1663       llvm::Value *LHS =
   1664         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
   1665                                "sub.ptr.lhs.cast");
   1666       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
   1667       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
   1668                                               BytesBetween);
   1669     } else if (Dst.isGlobalObjCRef()) {
   1670       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
   1671                                                 Dst.isThreadLocalRef());
   1672     }
   1673     else
   1674       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
   1675     return;
   1676   }
   1677 
   1678   assert(Src.isScalar() && "Can't emit an agg store with this method");
   1679   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
   1680 }
   1681 
   1682 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   1683                                                      llvm::Value **Result) {
   1684   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
   1685   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
   1686   Address Ptr = Dst.getBitFieldAddress();
   1687 
   1688   // Get the source value, truncated to the width of the bit-field.
   1689   llvm::Value *SrcVal = Src.getScalarVal();
   1690 
   1691   // Cast the source to the storage type and shift it into place.
   1692   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
   1693                                  /*IsSigned=*/false);
   1694   llvm::Value *MaskedVal = SrcVal;
   1695 
   1696   // See if there are other bits in the bitfield's storage we'll need to load
   1697   // and mask together with source before storing.
   1698   if (Info.StorageSize != Info.Size) {
   1699     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
   1700     llvm::Value *Val =
   1701       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
   1702 
   1703     // Mask the source value as needed.
   1704     if (!hasBooleanRepresentation(Dst.getType()))
   1705       SrcVal = Builder.CreateAnd(SrcVal,
   1706                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
   1707                                                             Info.Size),
   1708                                  "bf.value");
   1709     MaskedVal = SrcVal;
   1710     if (Info.Offset)
   1711       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
   1712 
   1713     // Mask out the original value.
   1714     Val = Builder.CreateAnd(Val,
   1715                             ~llvm::APInt::getBitsSet(Info.StorageSize,
   1716                                                      Info.Offset,
   1717                                                      Info.Offset + Info.Size),
   1718                             "bf.clear");
   1719 
   1720     // Or together the unchanged values and the source value.
   1721     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
   1722   } else {
   1723     assert(Info.Offset == 0);
   1724   }
   1725 
   1726   // Write the new value back out.
   1727   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
   1728 
   1729   // Return the new value of the bit-field, if requested.
   1730   if (Result) {
   1731     llvm::Value *ResultVal = MaskedVal;
   1732 
   1733     // Sign extend the value if needed.
   1734     if (Info.IsSigned) {
   1735       assert(Info.Size <= Info.StorageSize);
   1736       unsigned HighBits = Info.StorageSize - Info.Size;
   1737       if (HighBits) {
   1738         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
   1739         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
   1740       }
   1741     }
   1742 
   1743     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
   1744                                       "bf.result.cast");
   1745     *Result = EmitFromMemory(ResultVal, Dst.getType());
   1746   }
   1747 }
   1748 
   1749 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
   1750                                                                LValue Dst) {
   1751   // This access turns into a read/modify/write of the vector.  Load the input
   1752   // value now.
   1753   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
   1754                                         Dst.isVolatileQualified());
   1755   const llvm::Constant *Elts = Dst.getExtVectorElts();
   1756 
   1757   llvm::Value *SrcVal = Src.getScalarVal();
   1758 
   1759   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
   1760     unsigned NumSrcElts = VTy->getNumElements();
   1761     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
   1762     if (NumDstElts == NumSrcElts) {
   1763       // Use shuffle vector is the src and destination are the same number of
   1764       // elements and restore the vector mask since it is on the side it will be
   1765       // stored.
   1766       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
   1767       for (unsigned i = 0; i != NumSrcElts; ++i)
   1768         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
   1769 
   1770       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1771       Vec = Builder.CreateShuffleVector(SrcVal,
   1772                                         llvm::UndefValue::get(Vec->getType()),
   1773                                         MaskV);
   1774     } else if (NumDstElts > NumSrcElts) {
   1775       // Extended the source vector to the same length and then shuffle it
   1776       // into the destination.
   1777       // FIXME: since we're shuffling with undef, can we just use the indices
   1778       //        into that?  This could be simpler.
   1779       SmallVector<llvm::Constant*, 4> ExtMask;
   1780       for (unsigned i = 0; i != NumSrcElts; ++i)
   1781         ExtMask.push_back(Builder.getInt32(i));
   1782       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
   1783       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
   1784       llvm::Value *ExtSrcVal =
   1785         Builder.CreateShuffleVector(SrcVal,
   1786                                     llvm::UndefValue::get(SrcVal->getType()),
   1787                                     ExtMaskV);
   1788       // build identity
   1789       SmallVector<llvm::Constant*, 4> Mask;
   1790       for (unsigned i = 0; i != NumDstElts; ++i)
   1791         Mask.push_back(Builder.getInt32(i));
   1792 
   1793       // When the vector size is odd and .odd or .hi is used, the last element
   1794       // of the Elts constant array will be one past the size of the vector.
   1795       // Ignore the last element here, if it is greater than the mask size.
   1796       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
   1797         NumSrcElts--;
   1798 
   1799       // modify when what gets shuffled in
   1800       for (unsigned i = 0; i != NumSrcElts; ++i)
   1801         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
   1802       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
   1803       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
   1804     } else {
   1805       // We should never shorten the vector
   1806       llvm_unreachable("unexpected shorten vector length");
   1807     }
   1808   } else {
   1809     // If the Src is a scalar (not a vector) it must be updating one element.
   1810     unsigned InIdx = getAccessedFieldNo(0, Elts);
   1811     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
   1812     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
   1813   }
   1814 
   1815   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
   1816                       Dst.isVolatileQualified());
   1817 }
   1818 
   1819 /// @brief Store of global named registers are always calls to intrinsics.
   1820 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
   1821   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
   1822          "Bad type for register variable");
   1823   llvm::MDNode *RegName = cast<llvm::MDNode>(
   1824       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
   1825   assert(RegName && "Register LValue is not metadata");
   1826 
   1827   // We accept integer and pointer types only
   1828   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
   1829   llvm::Type *Ty = OrigTy;
   1830   if (OrigTy->isPointerTy())
   1831     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
   1832   llvm::Type *Types[] = { Ty };
   1833 
   1834   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
   1835   llvm::Value *Value = Src.getScalarVal();
   1836   if (OrigTy->isPointerTy())
   1837     Value = Builder.CreatePtrToInt(Value, Ty);
   1838   Builder.CreateCall(
   1839       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
   1840 }
   1841 
   1842 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
   1843 // generating write-barries API. It is currently a global, ivar,
   1844 // or neither.
   1845 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
   1846                                  LValue &LV,
   1847                                  bool IsMemberAccess=false) {
   1848   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
   1849     return;
   1850 
   1851   if (isa<ObjCIvarRefExpr>(E)) {
   1852     QualType ExpTy = E->getType();
   1853     if (IsMemberAccess && ExpTy->isPointerType()) {
   1854       // If ivar is a structure pointer, assigning to field of
   1855       // this struct follows gcc's behavior and makes it a non-ivar
   1856       // writer-barrier conservatively.
   1857       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1858       if (ExpTy->isRecordType()) {
   1859         LV.setObjCIvar(false);
   1860         return;
   1861       }
   1862     }
   1863     LV.setObjCIvar(true);
   1864     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
   1865     LV.setBaseIvarExp(Exp->getBase());
   1866     LV.setObjCArray(E->getType()->isArrayType());
   1867     return;
   1868   }
   1869 
   1870   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
   1871     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
   1872       if (VD->hasGlobalStorage()) {
   1873         LV.setGlobalObjCRef(true);
   1874         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
   1875       }
   1876     }
   1877     LV.setObjCArray(E->getType()->isArrayType());
   1878     return;
   1879   }
   1880 
   1881   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
   1882     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1883     return;
   1884   }
   1885 
   1886   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
   1887     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1888     if (LV.isObjCIvar()) {
   1889       // If cast is to a structure pointer, follow gcc's behavior and make it
   1890       // a non-ivar write-barrier.
   1891       QualType ExpTy = E->getType();
   1892       if (ExpTy->isPointerType())
   1893         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
   1894       if (ExpTy->isRecordType())
   1895         LV.setObjCIvar(false);
   1896     }
   1897     return;
   1898   }
   1899 
   1900   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
   1901     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
   1902     return;
   1903   }
   1904 
   1905   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
   1906     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1907     return;
   1908   }
   1909 
   1910   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
   1911     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1912     return;
   1913   }
   1914 
   1915   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
   1916     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
   1917     return;
   1918   }
   1919 
   1920   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
   1921     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
   1922     if (LV.isObjCIvar() && !LV.isObjCArray())
   1923       // Using array syntax to assigning to what an ivar points to is not
   1924       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
   1925       LV.setObjCIvar(false);
   1926     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
   1927       // Using array syntax to assigning to what global points to is not
   1928       // same as assigning to the global itself. {id *G;} G[i] = 0;
   1929       LV.setGlobalObjCRef(false);
   1930     return;
   1931   }
   1932 
   1933   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
   1934     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
   1935     // We don't know if member is an 'ivar', but this flag is looked at
   1936     // only in the context of LV.isObjCIvar().
   1937     LV.setObjCArray(E->getType()->isArrayType());
   1938     return;
   1939   }
   1940 }
   1941 
   1942 static llvm::Value *
   1943 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
   1944                                 llvm::Value *V, llvm::Type *IRType,
   1945                                 StringRef Name = StringRef()) {
   1946   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
   1947   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
   1948 }
   1949 
   1950 static LValue EmitThreadPrivateVarDeclLValue(
   1951     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
   1952     llvm::Type *RealVarTy, SourceLocation Loc) {
   1953   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
   1954   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
   1955   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
   1956 }
   1957 
   1958 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
   1959                                              const ReferenceType *RefTy,
   1960                                              AlignmentSource *Source) {
   1961   llvm::Value *Ptr = Builder.CreateLoad(Addr);
   1962   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
   1963                                               Source, /*forPointee*/ true));
   1964 
   1965 }
   1966 
   1967 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
   1968                                                   const ReferenceType *RefTy) {
   1969   AlignmentSource Source;
   1970   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source);
   1971   return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source);
   1972 }
   1973 
   1974 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
   1975                                            const PointerType *PtrTy,
   1976                                            AlignmentSource *Source) {
   1977   llvm::Value *Addr = Builder.CreateLoad(Ptr);
   1978   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source,
   1979                                                /*forPointeeType=*/true));
   1980 }
   1981 
   1982 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
   1983                                                 const PointerType *PtrTy) {
   1984   AlignmentSource Source;
   1985   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source);
   1986   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source);
   1987 }
   1988 
   1989 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
   1990                                       const Expr *E, const VarDecl *VD) {
   1991   QualType T = E->getType();
   1992 
   1993   // If it's thread_local, emit a call to its wrapper function instead.
   1994   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
   1995       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
   1996     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
   1997 
   1998   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
   1999   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
   2000   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
   2001   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
   2002   Address Addr(V, Alignment);
   2003   LValue LV;
   2004   // Emit reference to the private copy of the variable if it is an OpenMP
   2005   // threadprivate variable.
   2006   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
   2007     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
   2008                                           E->getExprLoc());
   2009   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
   2010     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
   2011   } else {
   2012     LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
   2013   }
   2014   setObjCGCLValueClass(CGF.getContext(), E, LV);
   2015   return LV;
   2016 }
   2017 
   2018 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
   2019                                      const Expr *E, const FunctionDecl *FD) {
   2020   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
   2021   if (!FD->hasPrototype()) {
   2022     if (const FunctionProtoType *Proto =
   2023             FD->getType()->getAs<FunctionProtoType>()) {
   2024       // Ugly case: for a K&R-style definition, the type of the definition
   2025       // isn't the same as the type of a use.  Correct for this with a
   2026       // bitcast.
   2027       QualType NoProtoType =
   2028           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
   2029       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
   2030       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
   2031     }
   2032   }
   2033   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
   2034   return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl);
   2035 }
   2036 
   2037 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
   2038                                       llvm::Value *ThisValue) {
   2039   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
   2040   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
   2041   return CGF.EmitLValueForField(LV, FD);
   2042 }
   2043 
   2044 /// Named Registers are named metadata pointing to the register name
   2045 /// which will be read from/written to as an argument to the intrinsic
   2046 /// @llvm.read/write_register.
   2047 /// So far, only the name is being passed down, but other options such as
   2048 /// register type, allocation type or even optimization options could be
   2049 /// passed down via the metadata node.
   2050 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
   2051   SmallString<64> Name("llvm.named.register.");
   2052   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
   2053   assert(Asm->getLabel().size() < 64-Name.size() &&
   2054       "Register name too big");
   2055   Name.append(Asm->getLabel());
   2056   llvm::NamedMDNode *M =
   2057     CGM.getModule().getOrInsertNamedMetadata(Name);
   2058   if (M->getNumOperands() == 0) {
   2059     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
   2060                                               Asm->getLabel());
   2061     llvm::Metadata *Ops[] = {Str};
   2062     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
   2063   }
   2064 
   2065   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
   2066 
   2067   llvm::Value *Ptr =
   2068     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
   2069   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
   2070 }
   2071 
   2072 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
   2073   const NamedDecl *ND = E->getDecl();
   2074   QualType T = E->getType();
   2075 
   2076   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
   2077     // Global Named registers access via intrinsics only
   2078     if (VD->getStorageClass() == SC_Register &&
   2079         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
   2080       return EmitGlobalNamedRegister(VD, CGM);
   2081 
   2082     // A DeclRefExpr for a reference initialized by a constant expression can
   2083     // appear without being odr-used. Directly emit the constant initializer.
   2084     const Expr *Init = VD->getAnyInitializer(VD);
   2085     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
   2086         VD->isUsableInConstantExpressions(getContext()) &&
   2087         VD->checkInitIsICE() &&
   2088         // Do not emit if it is private OpenMP variable.
   2089         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
   2090           LocalDeclMap.count(VD))) {
   2091       llvm::Constant *Val =
   2092         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
   2093       assert(Val && "failed to emit reference constant expression");
   2094       // FIXME: Eventually we will want to emit vector element references.
   2095 
   2096       // Should we be using the alignment of the constant pointer we emitted?
   2097       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
   2098                                                     /*pointee*/ true);
   2099 
   2100       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
   2101     }
   2102 
   2103     // Check for captured variables.
   2104     if (E->refersToEnclosingVariableOrCapture()) {
   2105       if (auto *FD = LambdaCaptureFields.lookup(VD))
   2106         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
   2107       else if (CapturedStmtInfo) {
   2108         auto it = LocalDeclMap.find(VD);
   2109         if (it != LocalDeclMap.end()) {
   2110           if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
   2111             return EmitLoadOfReferenceLValue(it->second, RefTy);
   2112           }
   2113           return MakeAddrLValue(it->second, T);
   2114         }
   2115         LValue CapLVal =
   2116             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
   2117                                     CapturedStmtInfo->getContextValue());
   2118         return MakeAddrLValue(
   2119             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
   2120             CapLVal.getType(), AlignmentSource::Decl);
   2121       }
   2122 
   2123       assert(isa<BlockDecl>(CurCodeDecl));
   2124       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
   2125       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
   2126     }
   2127   }
   2128 
   2129   // FIXME: We should be able to assert this for FunctionDecls as well!
   2130   // FIXME: We should be able to assert this for all DeclRefExprs, not just
   2131   // those with a valid source location.
   2132   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
   2133           !E->getLocation().isValid()) &&
   2134          "Should not use decl without marking it used!");
   2135 
   2136   if (ND->hasAttr<WeakRefAttr>()) {
   2137     const auto *VD = cast<ValueDecl>(ND);
   2138     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
   2139     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
   2140   }
   2141 
   2142   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
   2143     // Check if this is a global variable.
   2144     if (VD->hasLinkage() || VD->isStaticDataMember())
   2145       return EmitGlobalVarDeclLValue(*this, E, VD);
   2146 
   2147     Address addr = Address::invalid();
   2148 
   2149     // The variable should generally be present in the local decl map.
   2150     auto iter = LocalDeclMap.find(VD);
   2151     if (iter != LocalDeclMap.end()) {
   2152       addr = iter->second;
   2153 
   2154     // Otherwise, it might be static local we haven't emitted yet for
   2155     // some reason; most likely, because it's in an outer function.
   2156     } else if (VD->isStaticLocal()) {
   2157       addr = Address(CGM.getOrCreateStaticVarDecl(
   2158           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
   2159                      getContext().getDeclAlign(VD));
   2160 
   2161     // No other cases for now.
   2162     } else {
   2163       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
   2164     }
   2165 
   2166 
   2167     // Check for OpenMP threadprivate variables.
   2168     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
   2169       return EmitThreadPrivateVarDeclLValue(
   2170           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
   2171           E->getExprLoc());
   2172     }
   2173 
   2174     // Drill into block byref variables.
   2175     bool isBlockByref = VD->hasAttr<BlocksAttr>();
   2176     if (isBlockByref) {
   2177       addr = emitBlockByrefAddress(addr, VD);
   2178     }
   2179 
   2180     // Drill into reference types.
   2181     LValue LV;
   2182     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
   2183       LV = EmitLoadOfReferenceLValue(addr, RefTy);
   2184     } else {
   2185       LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
   2186     }
   2187 
   2188     bool isLocalStorage = VD->hasLocalStorage();
   2189 
   2190     bool NonGCable = isLocalStorage &&
   2191                      !VD->getType()->isReferenceType() &&
   2192                      !isBlockByref;
   2193     if (NonGCable) {
   2194       LV.getQuals().removeObjCGCAttr();
   2195       LV.setNonGC(true);
   2196     }
   2197 
   2198     bool isImpreciseLifetime =
   2199       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
   2200     if (isImpreciseLifetime)
   2201       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
   2202     setObjCGCLValueClass(getContext(), E, LV);
   2203     return LV;
   2204   }
   2205 
   2206   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
   2207     return EmitFunctionDeclLValue(*this, E, FD);
   2208 
   2209   llvm_unreachable("Unhandled DeclRefExpr");
   2210 }
   2211 
   2212 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
   2213   // __extension__ doesn't affect lvalue-ness.
   2214   if (E->getOpcode() == UO_Extension)
   2215     return EmitLValue(E->getSubExpr());
   2216 
   2217   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
   2218   switch (E->getOpcode()) {
   2219   default: llvm_unreachable("Unknown unary operator lvalue!");
   2220   case UO_Deref: {
   2221     QualType T = E->getSubExpr()->getType()->getPointeeType();
   2222     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
   2223 
   2224     AlignmentSource AlignSource;
   2225     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource);
   2226     LValue LV = MakeAddrLValue(Addr, T, AlignSource);
   2227     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
   2228 
   2229     // We should not generate __weak write barrier on indirect reference
   2230     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
   2231     // But, we continue to generate __strong write barrier on indirect write
   2232     // into a pointer to object.
   2233     if (getLangOpts().ObjC1 &&
   2234         getLangOpts().getGC() != LangOptions::NonGC &&
   2235         LV.isObjCWeak())
   2236       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   2237     return LV;
   2238   }
   2239   case UO_Real:
   2240   case UO_Imag: {
   2241     LValue LV = EmitLValue(E->getSubExpr());
   2242     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
   2243 
   2244     // __real is valid on scalars.  This is a faster way of testing that.
   2245     // __imag can only produce an rvalue on scalars.
   2246     if (E->getOpcode() == UO_Real &&
   2247         !LV.getAddress().getElementType()->isStructTy()) {
   2248       assert(E->getSubExpr()->getType()->isArithmeticType());
   2249       return LV;
   2250     }
   2251 
   2252     assert(E->getSubExpr()->getType()->isAnyComplexType());
   2253 
   2254     Address Component =
   2255       (E->getOpcode() == UO_Real
   2256          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
   2257          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
   2258     return MakeAddrLValue(Component, ExprTy, LV.getAlignmentSource());
   2259   }
   2260   case UO_PreInc:
   2261   case UO_PreDec: {
   2262     LValue LV = EmitLValue(E->getSubExpr());
   2263     bool isInc = E->getOpcode() == UO_PreInc;
   2264 
   2265     if (E->getType()->isAnyComplexType())
   2266       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
   2267     else
   2268       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
   2269     return LV;
   2270   }
   2271   }
   2272 }
   2273 
   2274 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
   2275   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
   2276                         E->getType(), AlignmentSource::Decl);
   2277 }
   2278 
   2279 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
   2280   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
   2281                         E->getType(), AlignmentSource::Decl);
   2282 }
   2283 
   2284 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
   2285   auto SL = E->getFunctionName();
   2286   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
   2287   StringRef FnName = CurFn->getName();
   2288   if (FnName.startswith("\01"))
   2289     FnName = FnName.substr(1);
   2290   StringRef NameItems[] = {
   2291       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
   2292   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
   2293   if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
   2294     auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
   2295     return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
   2296   }
   2297   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
   2298   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
   2299 }
   2300 
   2301 /// Emit a type description suitable for use by a runtime sanitizer library. The
   2302 /// format of a type descriptor is
   2303 ///
   2304 /// \code
   2305 ///   { i16 TypeKind, i16 TypeInfo }
   2306 /// \endcode
   2307 ///
   2308 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
   2309 /// integer, 1 for a floating point value, and -1 for anything else.
   2310 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
   2311   // Only emit each type's descriptor once.
   2312   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
   2313     return C;
   2314 
   2315   uint16_t TypeKind = -1;
   2316   uint16_t TypeInfo = 0;
   2317 
   2318   if (T->isIntegerType()) {
   2319     TypeKind = 0;
   2320     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
   2321                (T->isSignedIntegerType() ? 1 : 0);
   2322   } else if (T->isFloatingType()) {
   2323     TypeKind = 1;
   2324     TypeInfo = getContext().getTypeSize(T);
   2325   }
   2326 
   2327   // Format the type name as if for a diagnostic, including quotes and
   2328   // optionally an 'aka'.
   2329   SmallString<32> Buffer;
   2330   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
   2331                                     (intptr_t)T.getAsOpaquePtr(),
   2332                                     StringRef(), StringRef(), None, Buffer,
   2333                                     None);
   2334 
   2335   llvm::Constant *Components[] = {
   2336     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
   2337     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
   2338   };
   2339   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
   2340 
   2341   auto *GV = new llvm::GlobalVariable(
   2342       CGM.getModule(), Descriptor->getType(),
   2343       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
   2344   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
   2345   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
   2346 
   2347   // Remember the descriptor for this type.
   2348   CGM.setTypeDescriptorInMap(T, GV);
   2349 
   2350   return GV;
   2351 }
   2352 
   2353 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
   2354   llvm::Type *TargetTy = IntPtrTy;
   2355 
   2356   // Floating-point types which fit into intptr_t are bitcast to integers
   2357   // and then passed directly (after zero-extension, if necessary).
   2358   if (V->getType()->isFloatingPointTy()) {
   2359     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
   2360     if (Bits <= TargetTy->getIntegerBitWidth())
   2361       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
   2362                                                          Bits));
   2363   }
   2364 
   2365   // Integers which fit in intptr_t are zero-extended and passed directly.
   2366   if (V->getType()->isIntegerTy() &&
   2367       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
   2368     return Builder.CreateZExt(V, TargetTy);
   2369 
   2370   // Pointers are passed directly, everything else is passed by address.
   2371   if (!V->getType()->isPointerTy()) {
   2372     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
   2373     Builder.CreateStore(V, Ptr);
   2374     V = Ptr.getPointer();
   2375   }
   2376   return Builder.CreatePtrToInt(V, TargetTy);
   2377 }
   2378 
   2379 /// \brief Emit a representation of a SourceLocation for passing to a handler
   2380 /// in a sanitizer runtime library. The format for this data is:
   2381 /// \code
   2382 ///   struct SourceLocation {
   2383 ///     const char *Filename;
   2384 ///     int32_t Line, Column;
   2385 ///   };
   2386 /// \endcode
   2387 /// For an invalid SourceLocation, the Filename pointer is null.
   2388 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
   2389   llvm::Constant *Filename;
   2390   int Line, Column;
   2391 
   2392   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
   2393   if (PLoc.isValid()) {
   2394     StringRef FilenameString = PLoc.getFilename();
   2395 
   2396     int PathComponentsToStrip =
   2397         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
   2398     if (PathComponentsToStrip < 0) {
   2399       assert(PathComponentsToStrip != INT_MIN);
   2400       int PathComponentsToKeep = -PathComponentsToStrip;
   2401       auto I = llvm::sys::path::rbegin(FilenameString);
   2402       auto E = llvm::sys::path::rend(FilenameString);
   2403       while (I != E && --PathComponentsToKeep)
   2404         ++I;
   2405 
   2406       FilenameString = FilenameString.substr(I - E);
   2407     } else if (PathComponentsToStrip > 0) {
   2408       auto I = llvm::sys::path::begin(FilenameString);
   2409       auto E = llvm::sys::path::end(FilenameString);
   2410       while (I != E && PathComponentsToStrip--)
   2411         ++I;
   2412 
   2413       if (I != E)
   2414         FilenameString =
   2415             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
   2416       else
   2417         FilenameString = llvm::sys::path::filename(FilenameString);
   2418     }
   2419 
   2420     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
   2421     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
   2422                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
   2423     Filename = FilenameGV.getPointer();
   2424     Line = PLoc.getLine();
   2425     Column = PLoc.getColumn();
   2426   } else {
   2427     Filename = llvm::Constant::getNullValue(Int8PtrTy);
   2428     Line = Column = 0;
   2429   }
   2430 
   2431   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
   2432                             Builder.getInt32(Column)};
   2433 
   2434   return llvm::ConstantStruct::getAnon(Data);
   2435 }
   2436 
   2437 namespace {
   2438 /// \brief Specify under what conditions this check can be recovered
   2439 enum class CheckRecoverableKind {
   2440   /// Always terminate program execution if this check fails.
   2441   Unrecoverable,
   2442   /// Check supports recovering, runtime has both fatal (noreturn) and
   2443   /// non-fatal handlers for this check.
   2444   Recoverable,
   2445   /// Runtime conditionally aborts, always need to support recovery.
   2446   AlwaysRecoverable
   2447 };
   2448 }
   2449 
   2450 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
   2451   assert(llvm::countPopulation(Kind) == 1);
   2452   switch (Kind) {
   2453   case SanitizerKind::Vptr:
   2454     return CheckRecoverableKind::AlwaysRecoverable;
   2455   case SanitizerKind::Return:
   2456   case SanitizerKind::Unreachable:
   2457     return CheckRecoverableKind::Unrecoverable;
   2458   default:
   2459     return CheckRecoverableKind::Recoverable;
   2460   }
   2461 }
   2462 
   2463 static void emitCheckHandlerCall(CodeGenFunction &CGF,
   2464                                  llvm::FunctionType *FnType,
   2465                                  ArrayRef<llvm::Value *> FnArgs,
   2466                                  StringRef CheckName,
   2467                                  CheckRecoverableKind RecoverKind, bool IsFatal,
   2468                                  llvm::BasicBlock *ContBB) {
   2469   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
   2470   bool NeedsAbortSuffix =
   2471       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
   2472   std::string FnName = ("__ubsan_handle_" + CheckName +
   2473                         (NeedsAbortSuffix ? "_abort" : "")).str();
   2474   bool MayReturn =
   2475       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
   2476 
   2477   llvm::AttrBuilder B;
   2478   if (!MayReturn) {
   2479     B.addAttribute(llvm::Attribute::NoReturn)
   2480         .addAttribute(llvm::Attribute::NoUnwind);
   2481   }
   2482   B.addAttribute(llvm::Attribute::UWTable);
   2483 
   2484   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
   2485       FnType, FnName,
   2486       llvm::AttributeSet::get(CGF.getLLVMContext(),
   2487                               llvm::AttributeSet::FunctionIndex, B));
   2488   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
   2489   if (!MayReturn) {
   2490     HandlerCall->setDoesNotReturn();
   2491     CGF.Builder.CreateUnreachable();
   2492   } else {
   2493     CGF.Builder.CreateBr(ContBB);
   2494   }
   2495 }
   2496 
   2497 void CodeGenFunction::EmitCheck(
   2498     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
   2499     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
   2500     ArrayRef<llvm::Value *> DynamicArgs) {
   2501   assert(IsSanitizerScope);
   2502   assert(Checked.size() > 0);
   2503 
   2504   llvm::Value *FatalCond = nullptr;
   2505   llvm::Value *RecoverableCond = nullptr;
   2506   llvm::Value *TrapCond = nullptr;
   2507   for (int i = 0, n = Checked.size(); i < n; ++i) {
   2508     llvm::Value *Check = Checked[i].first;
   2509     // -fsanitize-trap= overrides -fsanitize-recover=.
   2510     llvm::Value *&Cond =
   2511         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
   2512             ? TrapCond
   2513             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
   2514                   ? RecoverableCond
   2515                   : FatalCond;
   2516     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
   2517   }
   2518 
   2519   if (TrapCond)
   2520     EmitTrapCheck(TrapCond);
   2521   if (!FatalCond && !RecoverableCond)
   2522     return;
   2523 
   2524   llvm::Value *JointCond;
   2525   if (FatalCond && RecoverableCond)
   2526     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
   2527   else
   2528     JointCond = FatalCond ? FatalCond : RecoverableCond;
   2529   assert(JointCond);
   2530 
   2531   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
   2532   assert(SanOpts.has(Checked[0].second));
   2533 #ifndef NDEBUG
   2534   for (int i = 1, n = Checked.size(); i < n; ++i) {
   2535     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
   2536            "All recoverable kinds in a single check must be same!");
   2537     assert(SanOpts.has(Checked[i].second));
   2538   }
   2539 #endif
   2540 
   2541   llvm::BasicBlock *Cont = createBasicBlock("cont");
   2542   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
   2543   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
   2544   // Give hint that we very much don't expect to execute the handler
   2545   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
   2546   llvm::MDBuilder MDHelper(getLLVMContext());
   2547   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
   2548   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
   2549   EmitBlock(Handlers);
   2550 
   2551   // Handler functions take an i8* pointing to the (handler-specific) static
   2552   // information block, followed by a sequence of intptr_t arguments
   2553   // representing operand values.
   2554   SmallVector<llvm::Value *, 4> Args;
   2555   SmallVector<llvm::Type *, 4> ArgTypes;
   2556   Args.reserve(DynamicArgs.size() + 1);
   2557   ArgTypes.reserve(DynamicArgs.size() + 1);
   2558 
   2559   // Emit handler arguments and create handler function type.
   2560   if (!StaticArgs.empty()) {
   2561     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
   2562     auto *InfoPtr =
   2563         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
   2564                                  llvm::GlobalVariable::PrivateLinkage, Info);
   2565     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
   2566     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
   2567     Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
   2568     ArgTypes.push_back(Int8PtrTy);
   2569   }
   2570 
   2571   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
   2572     Args.push_back(EmitCheckValue(DynamicArgs[i]));
   2573     ArgTypes.push_back(IntPtrTy);
   2574   }
   2575 
   2576   llvm::FunctionType *FnType =
   2577     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
   2578 
   2579   if (!FatalCond || !RecoverableCond) {
   2580     // Simple case: we need to generate a single handler call, either
   2581     // fatal, or non-fatal.
   2582     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
   2583                          (FatalCond != nullptr), Cont);
   2584   } else {
   2585     // Emit two handler calls: first one for set of unrecoverable checks,
   2586     // another one for recoverable.
   2587     llvm::BasicBlock *NonFatalHandlerBB =
   2588         createBasicBlock("non_fatal." + CheckName);
   2589     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
   2590     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
   2591     EmitBlock(FatalHandlerBB);
   2592     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
   2593                          NonFatalHandlerBB);
   2594     EmitBlock(NonFatalHandlerBB);
   2595     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
   2596                          Cont);
   2597   }
   2598 
   2599   EmitBlock(Cont);
   2600 }
   2601 
   2602 void CodeGenFunction::EmitCfiSlowPathCheck(
   2603     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
   2604     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
   2605   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
   2606 
   2607   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
   2608   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
   2609 
   2610   llvm::MDBuilder MDHelper(getLLVMContext());
   2611   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
   2612   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
   2613 
   2614   EmitBlock(CheckBB);
   2615 
   2616   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
   2617 
   2618   llvm::CallInst *CheckCall;
   2619   if (WithDiag) {
   2620     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
   2621     auto *InfoPtr =
   2622         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
   2623                                  llvm::GlobalVariable::PrivateLinkage, Info);
   2624     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
   2625     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
   2626 
   2627     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
   2628         "__cfi_slowpath_diag",
   2629         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
   2630                                 false));
   2631     CheckCall = Builder.CreateCall(
   2632         SlowPathDiagFn,
   2633         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
   2634   } else {
   2635     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
   2636         "__cfi_slowpath",
   2637         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
   2638     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
   2639   }
   2640 
   2641   CheckCall->setDoesNotThrow();
   2642 
   2643   EmitBlock(Cont);
   2644 }
   2645 
   2646 // This function is basically a switch over the CFI failure kind, which is
   2647 // extracted from CFICheckFailData (1st function argument). Each case is either
   2648 // llvm.trap or a call to one of the two runtime handlers, based on
   2649 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
   2650 // failure kind) traps, but this should really never happen.  CFICheckFailData
   2651 // can be nullptr if the calling module has -fsanitize-trap behavior for this
   2652 // check kind; in this case __cfi_check_fail traps as well.
   2653 void CodeGenFunction::EmitCfiCheckFail() {
   2654   SanitizerScope SanScope(this);
   2655   FunctionArgList Args;
   2656   ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr,
   2657                             getContext().VoidPtrTy);
   2658   ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr,
   2659                             getContext().VoidPtrTy);
   2660   Args.push_back(&ArgData);
   2661   Args.push_back(&ArgAddr);
   2662 
   2663   const CGFunctionInfo &FI =
   2664     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
   2665 
   2666   llvm::Function *F = llvm::Function::Create(
   2667       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
   2668       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
   2669   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
   2670 
   2671   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
   2672                 SourceLocation());
   2673 
   2674   llvm::Value *Data =
   2675       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
   2676                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
   2677   llvm::Value *Addr =
   2678       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
   2679                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
   2680 
   2681   // Data == nullptr means the calling module has trap behaviour for this check.
   2682   llvm::Value *DataIsNotNullPtr =
   2683       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
   2684   EmitTrapCheck(DataIsNotNullPtr);
   2685 
   2686   llvm::StructType *SourceLocationTy =
   2687       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr);
   2688   llvm::StructType *CfiCheckFailDataTy =
   2689       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr);
   2690 
   2691   llvm::Value *V = Builder.CreateConstGEP2_32(
   2692       CfiCheckFailDataTy,
   2693       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
   2694       0);
   2695   Address CheckKindAddr(V, getIntAlign());
   2696   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
   2697 
   2698   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
   2699       CGM.getLLVMContext(),
   2700       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
   2701   llvm::Value *ValidVtable = Builder.CreateZExt(
   2702       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
   2703                          {Addr, AllVtables}),
   2704       IntPtrTy);
   2705 
   2706   const std::pair<int, SanitizerMask> CheckKinds[] = {
   2707       {CFITCK_VCall, SanitizerKind::CFIVCall},
   2708       {CFITCK_NVCall, SanitizerKind::CFINVCall},
   2709       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
   2710       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
   2711       {CFITCK_ICall, SanitizerKind::CFIICall}};
   2712 
   2713   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
   2714   for (auto CheckKindMaskPair : CheckKinds) {
   2715     int Kind = CheckKindMaskPair.first;
   2716     SanitizerMask Mask = CheckKindMaskPair.second;
   2717     llvm::Value *Cond =
   2718         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
   2719     if (CGM.getLangOpts().Sanitize.has(Mask))
   2720       EmitCheck(std::make_pair(Cond, Mask), "cfi_check_fail", {},
   2721                 {Data, Addr, ValidVtable});
   2722     else
   2723       EmitTrapCheck(Cond);
   2724   }
   2725 
   2726   FinishFunction();
   2727   // The only reference to this function will be created during LTO link.
   2728   // Make sure it survives until then.
   2729   CGM.addUsedGlobal(F);
   2730 }
   2731 
   2732 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
   2733   llvm::BasicBlock *Cont = createBasicBlock("cont");
   2734 
   2735   // If we're optimizing, collapse all calls to trap down to just one per
   2736   // function to save on code size.
   2737   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
   2738     TrapBB = createBasicBlock("trap");
   2739     Builder.CreateCondBr(Checked, Cont, TrapBB);
   2740     EmitBlock(TrapBB);
   2741     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
   2742     TrapCall->setDoesNotReturn();
   2743     TrapCall->setDoesNotThrow();
   2744     Builder.CreateUnreachable();
   2745   } else {
   2746     Builder.CreateCondBr(Checked, Cont, TrapBB);
   2747   }
   2748 
   2749   EmitBlock(Cont);
   2750 }
   2751 
   2752 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
   2753   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
   2754 
   2755   if (!CGM.getCodeGenOpts().TrapFuncName.empty())
   2756     TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex,
   2757                            "trap-func-name",
   2758                            CGM.getCodeGenOpts().TrapFuncName);
   2759 
   2760   return TrapCall;
   2761 }
   2762 
   2763 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
   2764                                                  AlignmentSource *AlignSource) {
   2765   assert(E->getType()->isArrayType() &&
   2766          "Array to pointer decay must have array source type!");
   2767 
   2768   // Expressions of array type can't be bitfields or vector elements.
   2769   LValue LV = EmitLValue(E);
   2770   Address Addr = LV.getAddress();
   2771   if (AlignSource) *AlignSource = LV.getAlignmentSource();
   2772 
   2773   // If the array type was an incomplete type, we need to make sure
   2774   // the decay ends up being the right type.
   2775   llvm::Type *NewTy = ConvertType(E->getType());
   2776   Addr = Builder.CreateElementBitCast(Addr, NewTy);
   2777 
   2778   // Note that VLA pointers are always decayed, so we don't need to do
   2779   // anything here.
   2780   if (!E->getType()->isVariableArrayType()) {
   2781     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
   2782            "Expected pointer to array");
   2783     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
   2784   }
   2785 
   2786   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
   2787   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
   2788 }
   2789 
   2790 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
   2791 /// array to pointer, return the array subexpression.
   2792 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
   2793   // If this isn't just an array->pointer decay, bail out.
   2794   const auto *CE = dyn_cast<CastExpr>(E);
   2795   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
   2796     return nullptr;
   2797 
   2798   // If this is a decay from variable width array, bail out.
   2799   const Expr *SubExpr = CE->getSubExpr();
   2800   if (SubExpr->getType()->isVariableArrayType())
   2801     return nullptr;
   2802 
   2803   return SubExpr;
   2804 }
   2805 
   2806 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
   2807                                           llvm::Value *ptr,
   2808                                           ArrayRef<llvm::Value*> indices,
   2809                                           bool inbounds,
   2810                                     const llvm::Twine &name = "arrayidx") {
   2811   if (inbounds) {
   2812     return CGF.Builder.CreateInBoundsGEP(ptr, indices, name);
   2813   } else {
   2814     return CGF.Builder.CreateGEP(ptr, indices, name);
   2815   }
   2816 }
   2817 
   2818 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
   2819                                       llvm::Value *idx,
   2820                                       CharUnits eltSize) {
   2821   // If we have a constant index, we can use the exact offset of the
   2822   // element we're accessing.
   2823   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
   2824     CharUnits offset = constantIdx->getZExtValue() * eltSize;
   2825     return arrayAlign.alignmentAtOffset(offset);
   2826 
   2827   // Otherwise, use the worst-case alignment for any element.
   2828   } else {
   2829     return arrayAlign.alignmentOfArrayElement(eltSize);
   2830   }
   2831 }
   2832 
   2833 static QualType getFixedSizeElementType(const ASTContext &ctx,
   2834                                         const VariableArrayType *vla) {
   2835   QualType eltType;
   2836   do {
   2837     eltType = vla->getElementType();
   2838   } while ((vla = ctx.getAsVariableArrayType(eltType)));
   2839   return eltType;
   2840 }
   2841 
   2842 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
   2843                                      ArrayRef<llvm::Value*> indices,
   2844                                      QualType eltType, bool inbounds,
   2845                                      const llvm::Twine &name = "arrayidx") {
   2846   // All the indices except that last must be zero.
   2847 #ifndef NDEBUG
   2848   for (auto idx : indices.drop_back())
   2849     assert(isa<llvm::ConstantInt>(idx) &&
   2850            cast<llvm::ConstantInt>(idx)->isZero());
   2851 #endif
   2852 
   2853   // Determine the element size of the statically-sized base.  This is
   2854   // the thing that the indices are expressed in terms of.
   2855   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
   2856     eltType = getFixedSizeElementType(CGF.getContext(), vla);
   2857   }
   2858 
   2859   // We can use that to compute the best alignment of the element.
   2860   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
   2861   CharUnits eltAlign =
   2862     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
   2863 
   2864   llvm::Value *eltPtr =
   2865     emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name);
   2866   return Address(eltPtr, eltAlign);
   2867 }
   2868 
   2869 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
   2870                                                bool Accessed) {
   2871   // The index must always be an integer, which is not an aggregate.  Emit it.
   2872   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
   2873   QualType IdxTy  = E->getIdx()->getType();
   2874   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
   2875 
   2876   if (SanOpts.has(SanitizerKind::ArrayBounds))
   2877     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
   2878 
   2879   // If the base is a vector type, then we are forming a vector element lvalue
   2880   // with this subscript.
   2881   if (E->getBase()->getType()->isVectorType() &&
   2882       !isa<ExtVectorElementExpr>(E->getBase())) {
   2883     // Emit the vector as an lvalue to get its address.
   2884     LValue LHS = EmitLValue(E->getBase());
   2885     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
   2886     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
   2887                                  E->getBase()->getType(),
   2888                                  LHS.getAlignmentSource());
   2889   }
   2890 
   2891   // All the other cases basically behave like simple offsetting.
   2892 
   2893   // Extend or truncate the index type to 32 or 64-bits.
   2894   if (Idx->getType() != IntPtrTy)
   2895     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
   2896 
   2897   // Handle the extvector case we ignored above.
   2898   if (isa<ExtVectorElementExpr>(E->getBase())) {
   2899     LValue LV = EmitLValue(E->getBase());
   2900     Address Addr = EmitExtVectorElementLValue(LV);
   2901 
   2902     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
   2903     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true);
   2904     return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource());
   2905   }
   2906 
   2907   AlignmentSource AlignSource;
   2908   Address Addr = Address::invalid();
   2909   if (const VariableArrayType *vla =
   2910            getContext().getAsVariableArrayType(E->getType())) {
   2911     // The base must be a pointer, which is not an aggregate.  Emit
   2912     // it.  It needs to be emitted first in case it's what captures
   2913     // the VLA bounds.
   2914     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
   2915 
   2916     // The element count here is the total number of non-VLA elements.
   2917     llvm::Value *numElements = getVLASize(vla).first;
   2918 
   2919     // Effectively, the multiply by the VLA size is part of the GEP.
   2920     // GEP indexes are signed, and scaling an index isn't permitted to
   2921     // signed-overflow, so we use the same semantics for our explicit
   2922     // multiply.  We suppress this if overflow is not undefined behavior.
   2923     if (getLangOpts().isSignedOverflowDefined()) {
   2924       Idx = Builder.CreateMul(Idx, numElements);
   2925     } else {
   2926       Idx = Builder.CreateNSWMul(Idx, numElements);
   2927     }
   2928 
   2929     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
   2930                                  !getLangOpts().isSignedOverflowDefined());
   2931 
   2932   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
   2933     // Indexing over an interface, as in "NSString *P; P[4];"
   2934     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
   2935     llvm::Value *InterfaceSizeVal =
   2936       llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());;
   2937 
   2938     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
   2939 
   2940     // Emit the base pointer.
   2941     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
   2942 
   2943     // We don't necessarily build correct LLVM struct types for ObjC
   2944     // interfaces, so we can't rely on GEP to do this scaling
   2945     // correctly, so we need to cast to i8*.  FIXME: is this actually
   2946     // true?  A lot of other things in the fragile ABI would break...
   2947     llvm::Type *OrigBaseTy = Addr.getType();
   2948     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
   2949 
   2950     // Do the GEP.
   2951     CharUnits EltAlign =
   2952       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
   2953     llvm::Value *EltPtr =
   2954       emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false);
   2955     Addr = Address(EltPtr, EltAlign);
   2956 
   2957     // Cast back.
   2958     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
   2959   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
   2960     // If this is A[i] where A is an array, the frontend will have decayed the
   2961     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
   2962     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
   2963     // "gep x, i" here.  Emit one "gep A, 0, i".
   2964     assert(Array->getType()->isArrayType() &&
   2965            "Array to pointer decay must have array source type!");
   2966     LValue ArrayLV;
   2967     // For simple multidimensional array indexing, set the 'accessed' flag for
   2968     // better bounds-checking of the base expression.
   2969     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
   2970       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
   2971     else
   2972       ArrayLV = EmitLValue(Array);
   2973 
   2974     // Propagate the alignment from the array itself to the result.
   2975     Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(),
   2976                                  {CGM.getSize(CharUnits::Zero()), Idx},
   2977                                  E->getType(),
   2978                                  !getLangOpts().isSignedOverflowDefined());
   2979     AlignSource = ArrayLV.getAlignmentSource();
   2980   } else {
   2981     // The base must be a pointer; emit it with an estimate of its alignment.
   2982     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
   2983     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
   2984                                  !getLangOpts().isSignedOverflowDefined());
   2985   }
   2986 
   2987   LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource);
   2988 
   2989   // TODO: Preserve/extend path TBAA metadata?
   2990 
   2991   if (getLangOpts().ObjC1 &&
   2992       getLangOpts().getGC() != LangOptions::NonGC) {
   2993     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
   2994     setObjCGCLValueClass(getContext(), E, LV);
   2995   }
   2996   return LV;
   2997 }
   2998 
   2999 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
   3000                                        AlignmentSource &AlignSource,
   3001                                        QualType BaseTy, QualType ElTy,
   3002                                        bool IsLowerBound) {
   3003   LValue BaseLVal;
   3004   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
   3005     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
   3006     if (BaseTy->isArrayType()) {
   3007       Address Addr = BaseLVal.getAddress();
   3008       AlignSource = BaseLVal.getAlignmentSource();
   3009 
   3010       // If the array type was an incomplete type, we need to make sure
   3011       // the decay ends up being the right type.
   3012       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
   3013       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
   3014 
   3015       // Note that VLA pointers are always decayed, so we don't need to do
   3016       // anything here.
   3017       if (!BaseTy->isVariableArrayType()) {
   3018         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
   3019                "Expected pointer to array");
   3020         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
   3021                                            "arraydecay");
   3022       }
   3023 
   3024       return CGF.Builder.CreateElementBitCast(Addr,
   3025                                               CGF.ConvertTypeForMem(ElTy));
   3026     }
   3027     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource);
   3028     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
   3029   }
   3030   return CGF.EmitPointerWithAlignment(Base, &AlignSource);
   3031 }
   3032 
   3033 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
   3034                                                 bool IsLowerBound) {
   3035   QualType BaseTy;
   3036   if (auto *ASE =
   3037           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
   3038     BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE);
   3039   else
   3040     BaseTy = E->getBase()->getType();
   3041   QualType ResultExprTy;
   3042   if (auto *AT = getContext().getAsArrayType(BaseTy))
   3043     ResultExprTy = AT->getElementType();
   3044   else
   3045     ResultExprTy = BaseTy->getPointeeType();
   3046   llvm::Value *Idx = nullptr;
   3047   if (IsLowerBound || E->getColonLoc().isInvalid()) {
   3048     // Requesting lower bound or upper bound, but without provided length and
   3049     // without ':' symbol for the default length -> length = 1.
   3050     // Idx = LowerBound ?: 0;
   3051     if (auto *LowerBound = E->getLowerBound()) {
   3052       Idx = Builder.CreateIntCast(
   3053           EmitScalarExpr(LowerBound), IntPtrTy,
   3054           LowerBound->getType()->hasSignedIntegerRepresentation());
   3055     } else
   3056       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
   3057   } else {
   3058     // Try to emit length or lower bound as constant. If this is possible, 1
   3059     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
   3060     // IR (LB + Len) - 1.
   3061     auto &C = CGM.getContext();
   3062     auto *Length = E->getLength();
   3063     llvm::APSInt ConstLength;
   3064     if (Length) {
   3065       // Idx = LowerBound + Length - 1;
   3066       if (Length->isIntegerConstantExpr(ConstLength, C)) {
   3067         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
   3068         Length = nullptr;
   3069       }
   3070       auto *LowerBound = E->getLowerBound();
   3071       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
   3072       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
   3073         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
   3074         LowerBound = nullptr;
   3075       }
   3076       if (!Length)
   3077         --ConstLength;
   3078       else if (!LowerBound)
   3079         --ConstLowerBound;
   3080 
   3081       if (Length || LowerBound) {
   3082         auto *LowerBoundVal =
   3083             LowerBound
   3084                 ? Builder.CreateIntCast(
   3085                       EmitScalarExpr(LowerBound), IntPtrTy,
   3086                       LowerBound->getType()->hasSignedIntegerRepresentation())
   3087                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
   3088         auto *LengthVal =
   3089             Length
   3090                 ? Builder.CreateIntCast(
   3091                       EmitScalarExpr(Length), IntPtrTy,
   3092                       Length->getType()->hasSignedIntegerRepresentation())
   3093                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
   3094         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
   3095                                 /*HasNUW=*/false,
   3096                                 !getLangOpts().isSignedOverflowDefined());
   3097         if (Length && LowerBound) {
   3098           Idx = Builder.CreateSub(
   3099               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
   3100               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
   3101         }
   3102       } else
   3103         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
   3104     } else {
   3105       // Idx = ArraySize - 1;
   3106       QualType ArrayTy = BaseTy->isPointerType()
   3107                              ? E->getBase()->IgnoreParenImpCasts()->getType()
   3108                              : BaseTy;
   3109       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
   3110         Length = VAT->getSizeExpr();
   3111         if (Length->isIntegerConstantExpr(ConstLength, C))
   3112           Length = nullptr;
   3113       } else {
   3114         auto *CAT = C.getAsConstantArrayType(ArrayTy);
   3115         ConstLength = CAT->getSize();
   3116       }
   3117       if (Length) {
   3118         auto *LengthVal = Builder.CreateIntCast(
   3119             EmitScalarExpr(Length), IntPtrTy,
   3120             Length->getType()->hasSignedIntegerRepresentation());
   3121         Idx = Builder.CreateSub(
   3122             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
   3123             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
   3124       } else {
   3125         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
   3126         --ConstLength;
   3127         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
   3128       }
   3129     }
   3130   }
   3131   assert(Idx);
   3132 
   3133   Address EltPtr = Address::invalid();
   3134   AlignmentSource AlignSource;
   3135   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
   3136     // The base must be a pointer, which is not an aggregate.  Emit
   3137     // it.  It needs to be emitted first in case it's what captures
   3138     // the VLA bounds.
   3139     Address Base =
   3140         emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy,
   3141                                 VLA->getElementType(), IsLowerBound);
   3142     // The element count here is the total number of non-VLA elements.
   3143     llvm::Value *NumElements = getVLASize(VLA).first;
   3144 
   3145     // Effectively, the multiply by the VLA size is part of the GEP.
   3146     // GEP indexes are signed, and scaling an index isn't permitted to
   3147     // signed-overflow, so we use the same semantics for our explicit
   3148     // multiply.  We suppress this if overflow is not undefined behavior.
   3149     if (getLangOpts().isSignedOverflowDefined())
   3150       Idx = Builder.CreateMul(Idx, NumElements);
   3151     else
   3152       Idx = Builder.CreateNSWMul(Idx, NumElements);
   3153     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
   3154                                    !getLangOpts().isSignedOverflowDefined());
   3155   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
   3156     // If this is A[i] where A is an array, the frontend will have decayed the
   3157     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
   3158     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
   3159     // "gep x, i" here.  Emit one "gep A, 0, i".
   3160     assert(Array->getType()->isArrayType() &&
   3161            "Array to pointer decay must have array source type!");
   3162     LValue ArrayLV;
   3163     // For simple multidimensional array indexing, set the 'accessed' flag for
   3164     // better bounds-checking of the base expression.
   3165     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
   3166       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
   3167     else
   3168       ArrayLV = EmitLValue(Array);
   3169 
   3170     // Propagate the alignment from the array itself to the result.
   3171     EltPtr = emitArraySubscriptGEP(
   3172         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
   3173         ResultExprTy, !getLangOpts().isSignedOverflowDefined());
   3174     AlignSource = ArrayLV.getAlignmentSource();
   3175   } else {
   3176     Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource,
   3177                                            BaseTy, ResultExprTy, IsLowerBound);
   3178     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
   3179                                    !getLangOpts().isSignedOverflowDefined());
   3180   }
   3181 
   3182   return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource);
   3183 }
   3184 
   3185 LValue CodeGenFunction::
   3186 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
   3187   // Emit the base vector as an l-value.
   3188   LValue Base;
   3189 
   3190   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
   3191   if (E->isArrow()) {
   3192     // If it is a pointer to a vector, emit the address and form an lvalue with
   3193     // it.
   3194     AlignmentSource AlignSource;
   3195     Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
   3196     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
   3197     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource);
   3198     Base.getQuals().removeObjCGCAttr();
   3199   } else if (E->getBase()->isGLValue()) {
   3200     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
   3201     // emit the base as an lvalue.
   3202     assert(E->getBase()->getType()->isVectorType());
   3203     Base = EmitLValue(E->getBase());
   3204   } else {
   3205     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
   3206     assert(E->getBase()->getType()->isVectorType() &&
   3207            "Result must be a vector");
   3208     llvm::Value *Vec = EmitScalarExpr(E->getBase());
   3209 
   3210     // Store the vector to memory (because LValue wants an address).
   3211     Address VecMem = CreateMemTemp(E->getBase()->getType());
   3212     Builder.CreateStore(Vec, VecMem);
   3213     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
   3214                           AlignmentSource::Decl);
   3215   }
   3216 
   3217   QualType type =
   3218     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
   3219 
   3220   // Encode the element access list into a vector of unsigned indices.
   3221   SmallVector<uint32_t, 4> Indices;
   3222   E->getEncodedElementAccess(Indices);
   3223 
   3224   if (Base.isSimple()) {
   3225     llvm::Constant *CV =
   3226         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
   3227     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
   3228                                     Base.getAlignmentSource());
   3229   }
   3230   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
   3231 
   3232   llvm::Constant *BaseElts = Base.getExtVectorElts();
   3233   SmallVector<llvm::Constant *, 4> CElts;
   3234 
   3235   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
   3236     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
   3237   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
   3238   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
   3239                                   Base.getAlignmentSource());
   3240 }
   3241 
   3242 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
   3243   Expr *BaseExpr = E->getBase();
   3244 
   3245   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
   3246   LValue BaseLV;
   3247   if (E->isArrow()) {
   3248     AlignmentSource AlignSource;
   3249     Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource);
   3250     QualType PtrTy = BaseExpr->getType()->getPointeeType();
   3251     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy);
   3252     BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource);
   3253   } else
   3254     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
   3255 
   3256   NamedDecl *ND = E->getMemberDecl();
   3257   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
   3258     LValue LV = EmitLValueForField(BaseLV, Field);
   3259     setObjCGCLValueClass(getContext(), E, LV);
   3260     return LV;
   3261   }
   3262 
   3263   if (auto *VD = dyn_cast<VarDecl>(ND))
   3264     return EmitGlobalVarDeclLValue(*this, E, VD);
   3265 
   3266   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
   3267     return EmitFunctionDeclLValue(*this, E, FD);
   3268 
   3269   llvm_unreachable("Unhandled member declaration!");
   3270 }
   3271 
   3272 /// Given that we are currently emitting a lambda, emit an l-value for
   3273 /// one of its members.
   3274 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
   3275   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
   3276   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
   3277   QualType LambdaTagType =
   3278     getContext().getTagDeclType(Field->getParent());
   3279   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
   3280   return EmitLValueForField(LambdaLV, Field);
   3281 }
   3282 
   3283 /// Drill down to the storage of a field without walking into
   3284 /// reference types.
   3285 ///
   3286 /// The resulting address doesn't necessarily have the right type.
   3287 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
   3288                                       const FieldDecl *field) {
   3289   const RecordDecl *rec = field->getParent();
   3290 
   3291   unsigned idx =
   3292     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
   3293 
   3294   CharUnits offset;
   3295   // Adjust the alignment down to the given offset.
   3296   // As a special case, if the LLVM field index is 0, we know that this
   3297   // is zero.
   3298   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
   3299                          .getFieldOffset(field->getFieldIndex()) == 0) &&
   3300          "LLVM field at index zero had non-zero offset?");
   3301   if (idx != 0) {
   3302     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
   3303     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
   3304     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
   3305   }
   3306 
   3307   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
   3308 }
   3309 
   3310 LValue CodeGenFunction::EmitLValueForField(LValue base,
   3311                                            const FieldDecl *field) {
   3312   AlignmentSource fieldAlignSource =
   3313     getFieldAlignmentSource(base.getAlignmentSource());
   3314 
   3315   if (field->isBitField()) {
   3316     const CGRecordLayout &RL =
   3317       CGM.getTypes().getCGRecordLayout(field->getParent());
   3318     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
   3319     Address Addr = base.getAddress();
   3320     unsigned Idx = RL.getLLVMFieldNo(field);
   3321     if (Idx != 0)
   3322       // For structs, we GEP to the field that the record layout suggests.
   3323       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
   3324                                      field->getName());
   3325     // Get the access type.
   3326     llvm::Type *FieldIntTy =
   3327       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
   3328     if (Addr.getElementType() != FieldIntTy)
   3329       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
   3330 
   3331     QualType fieldType =
   3332       field->getType().withCVRQualifiers(base.getVRQualifiers());
   3333     return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource);
   3334   }
   3335 
   3336   const RecordDecl *rec = field->getParent();
   3337   QualType type = field->getType();
   3338 
   3339   bool mayAlias = rec->hasAttr<MayAliasAttr>();
   3340 
   3341   Address addr = base.getAddress();
   3342   unsigned cvr = base.getVRQualifiers();
   3343   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
   3344   if (rec->isUnion()) {
   3345     // For unions, there is no pointer adjustment.
   3346     assert(!type->isReferenceType() && "union has reference member");
   3347     // TODO: handle path-aware TBAA for union.
   3348     TBAAPath = false;
   3349   } else {
   3350     // For structs, we GEP to the field that the record layout suggests.
   3351     addr = emitAddrOfFieldStorage(*this, addr, field);
   3352 
   3353     // If this is a reference field, load the reference right now.
   3354     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
   3355       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
   3356       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
   3357 
   3358       // Loading the reference will disable path-aware TBAA.
   3359       TBAAPath = false;
   3360       if (CGM.shouldUseTBAA()) {
   3361         llvm::MDNode *tbaa;
   3362         if (mayAlias)
   3363           tbaa = CGM.getTBAAInfo(getContext().CharTy);
   3364         else
   3365           tbaa = CGM.getTBAAInfo(type);
   3366         if (tbaa)
   3367           CGM.DecorateInstructionWithTBAA(load, tbaa);
   3368       }
   3369 
   3370       mayAlias = false;
   3371       type = refType->getPointeeType();
   3372 
   3373       CharUnits alignment =
   3374         getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true);
   3375       addr = Address(load, alignment);
   3376 
   3377       // Qualifiers on the struct don't apply to the referencee, and
   3378       // we'll pick up CVR from the actual type later, so reset these
   3379       // additional qualifiers now.
   3380       cvr = 0;
   3381     }
   3382   }
   3383 
   3384   // Make sure that the address is pointing to the right type.  This is critical
   3385   // for both unions and structs.  A union needs a bitcast, a struct element
   3386   // will need a bitcast if the LLVM type laid out doesn't match the desired
   3387   // type.
   3388   addr = Builder.CreateElementBitCast(addr,
   3389                                       CGM.getTypes().ConvertTypeForMem(type),
   3390                                       field->getName());
   3391 
   3392   if (field->hasAttr<AnnotateAttr>())
   3393     addr = EmitFieldAnnotations(field, addr);
   3394 
   3395   LValue LV = MakeAddrLValue(addr, type, fieldAlignSource);
   3396   LV.getQuals().addCVRQualifiers(cvr);
   3397   if (TBAAPath) {
   3398     const ASTRecordLayout &Layout =
   3399         getContext().getASTRecordLayout(field->getParent());
   3400     // Set the base type to be the base type of the base LValue and
   3401     // update offset to be relative to the base type.
   3402     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
   3403     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
   3404                      Layout.getFieldOffset(field->getFieldIndex()) /
   3405                                            getContext().getCharWidth());
   3406   }
   3407 
   3408   // __weak attribute on a field is ignored.
   3409   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
   3410     LV.getQuals().removeObjCGCAttr();
   3411 
   3412   // Fields of may_alias structs act like 'char' for TBAA purposes.
   3413   // FIXME: this should get propagated down through anonymous structs
   3414   // and unions.
   3415   if (mayAlias && LV.getTBAAInfo())
   3416     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
   3417 
   3418   return LV;
   3419 }
   3420 
   3421 LValue
   3422 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
   3423                                                   const FieldDecl *Field) {
   3424   QualType FieldType = Field->getType();
   3425 
   3426   if (!FieldType->isReferenceType())
   3427     return EmitLValueForField(Base, Field);
   3428 
   3429   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
   3430 
   3431   // Make sure that the address is pointing to the right type.
   3432   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
   3433   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
   3434 
   3435   // TODO: access-path TBAA?
   3436   auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource());
   3437   return MakeAddrLValue(V, FieldType, FieldAlignSource);
   3438 }
   3439 
   3440 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
   3441   if (E->isFileScope()) {
   3442     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
   3443     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
   3444   }
   3445   if (E->getType()->isVariablyModifiedType())
   3446     // make sure to emit the VLA size.
   3447     EmitVariablyModifiedType(E->getType());
   3448 
   3449   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
   3450   const Expr *InitExpr = E->getInitializer();
   3451   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
   3452 
   3453   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
   3454                    /*Init*/ true);
   3455 
   3456   return Result;
   3457 }
   3458 
   3459 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
   3460   if (!E->isGLValue())
   3461     // Initializing an aggregate temporary in C++11: T{...}.
   3462     return EmitAggExprToLValue(E);
   3463 
   3464   // An lvalue initializer list must be initializing a reference.
   3465   assert(E->getNumInits() == 1 && "reference init with multiple values");
   3466   return EmitLValue(E->getInit(0));
   3467 }
   3468 
   3469 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
   3470 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
   3471 /// LValue is returned and the current block has been terminated.
   3472 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
   3473                                                     const Expr *Operand) {
   3474   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
   3475     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
   3476     return None;
   3477   }
   3478 
   3479   return CGF.EmitLValue(Operand);
   3480 }
   3481 
   3482 LValue CodeGenFunction::
   3483 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
   3484   if (!expr->isGLValue()) {
   3485     // ?: here should be an aggregate.
   3486     assert(hasAggregateEvaluationKind(expr->getType()) &&
   3487            "Unexpected conditional operator!");
   3488     return EmitAggExprToLValue(expr);
   3489   }
   3490 
   3491   OpaqueValueMapping binding(*this, expr);
   3492 
   3493   const Expr *condExpr = expr->getCond();
   3494   bool CondExprBool;
   3495   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   3496     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
   3497     if (!CondExprBool) std::swap(live, dead);
   3498 
   3499     if (!ContainsLabel(dead)) {
   3500       // If the true case is live, we need to track its region.
   3501       if (CondExprBool)
   3502         incrementProfileCounter(expr);
   3503       return EmitLValue(live);
   3504     }
   3505   }
   3506 
   3507   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
   3508   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
   3509   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
   3510 
   3511   ConditionalEvaluation eval(*this);
   3512   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
   3513 
   3514   // Any temporaries created here are conditional.
   3515   EmitBlock(lhsBlock);
   3516   incrementProfileCounter(expr);
   3517   eval.begin(*this);
   3518   Optional<LValue> lhs =
   3519       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
   3520   eval.end(*this);
   3521 
   3522   if (lhs && !lhs->isSimple())
   3523     return EmitUnsupportedLValue(expr, "conditional operator");
   3524 
   3525   lhsBlock = Builder.GetInsertBlock();
   3526   if (lhs)
   3527     Builder.CreateBr(contBlock);
   3528 
   3529   // Any temporaries created here are conditional.
   3530   EmitBlock(rhsBlock);
   3531   eval.begin(*this);
   3532   Optional<LValue> rhs =
   3533       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
   3534   eval.end(*this);
   3535   if (rhs && !rhs->isSimple())
   3536     return EmitUnsupportedLValue(expr, "conditional operator");
   3537   rhsBlock = Builder.GetInsertBlock();
   3538 
   3539   EmitBlock(contBlock);
   3540 
   3541   if (lhs && rhs) {
   3542     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
   3543                                            2, "cond-lvalue");
   3544     phi->addIncoming(lhs->getPointer(), lhsBlock);
   3545     phi->addIncoming(rhs->getPointer(), rhsBlock);
   3546     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
   3547     AlignmentSource alignSource =
   3548       std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource());
   3549     return MakeAddrLValue(result, expr->getType(), alignSource);
   3550   } else {
   3551     assert((lhs || rhs) &&
   3552            "both operands of glvalue conditional are throw-expressions?");
   3553     return lhs ? *lhs : *rhs;
   3554   }
   3555 }
   3556 
   3557 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
   3558 /// type. If the cast is to a reference, we can have the usual lvalue result,
   3559 /// otherwise if a cast is needed by the code generator in an lvalue context,
   3560 /// then it must mean that we need the address of an aggregate in order to
   3561 /// access one of its members.  This can happen for all the reasons that casts
   3562 /// are permitted with aggregate result, including noop aggregate casts, and
   3563 /// cast from scalar to union.
   3564 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
   3565   switch (E->getCastKind()) {
   3566   case CK_ToVoid:
   3567   case CK_BitCast:
   3568   case CK_ArrayToPointerDecay:
   3569   case CK_FunctionToPointerDecay:
   3570   case CK_NullToMemberPointer:
   3571   case CK_NullToPointer:
   3572   case CK_IntegralToPointer:
   3573   case CK_PointerToIntegral:
   3574   case CK_PointerToBoolean:
   3575   case CK_VectorSplat:
   3576   case CK_IntegralCast:
   3577   case CK_BooleanToSignedIntegral:
   3578   case CK_IntegralToBoolean:
   3579   case CK_IntegralToFloating:
   3580   case CK_FloatingToIntegral:
   3581   case CK_FloatingToBoolean:
   3582   case CK_FloatingCast:
   3583   case CK_FloatingRealToComplex:
   3584   case CK_FloatingComplexToReal:
   3585   case CK_FloatingComplexToBoolean:
   3586   case CK_FloatingComplexCast:
   3587   case CK_FloatingComplexToIntegralComplex:
   3588   case CK_IntegralRealToComplex:
   3589   case CK_IntegralComplexToReal:
   3590   case CK_IntegralComplexToBoolean:
   3591   case CK_IntegralComplexCast:
   3592   case CK_IntegralComplexToFloatingComplex:
   3593   case CK_DerivedToBaseMemberPointer:
   3594   case CK_BaseToDerivedMemberPointer:
   3595   case CK_MemberPointerToBoolean:
   3596   case CK_ReinterpretMemberPointer:
   3597   case CK_AnyPointerToBlockPointerCast:
   3598   case CK_ARCProduceObject:
   3599   case CK_ARCConsumeObject:
   3600   case CK_ARCReclaimReturnedObject:
   3601   case CK_ARCExtendBlockObject:
   3602   case CK_CopyAndAutoreleaseBlockObject:
   3603   case CK_AddressSpaceConversion:
   3604     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
   3605 
   3606   case CK_Dependent:
   3607     llvm_unreachable("dependent cast kind in IR gen!");
   3608 
   3609   case CK_BuiltinFnToFnPtr:
   3610     llvm_unreachable("builtin functions are handled elsewhere");
   3611 
   3612   // These are never l-values; just use the aggregate emission code.
   3613   case CK_NonAtomicToAtomic:
   3614   case CK_AtomicToNonAtomic:
   3615     return EmitAggExprToLValue(E);
   3616 
   3617   case CK_Dynamic: {
   3618     LValue LV = EmitLValue(E->getSubExpr());
   3619     Address V = LV.getAddress();
   3620     const auto *DCE = cast<CXXDynamicCastExpr>(E);
   3621     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
   3622   }
   3623 
   3624   case CK_ConstructorConversion:
   3625   case CK_UserDefinedConversion:
   3626   case CK_CPointerToObjCPointerCast:
   3627   case CK_BlockPointerToObjCPointerCast:
   3628   case CK_NoOp:
   3629   case CK_LValueToRValue:
   3630     return EmitLValue(E->getSubExpr());
   3631 
   3632   case CK_UncheckedDerivedToBase:
   3633   case CK_DerivedToBase: {
   3634     const RecordType *DerivedClassTy =
   3635       E->getSubExpr()->getType()->getAs<RecordType>();
   3636     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   3637 
   3638     LValue LV = EmitLValue(E->getSubExpr());
   3639     Address This = LV.getAddress();
   3640 
   3641     // Perform the derived-to-base conversion
   3642     Address Base = GetAddressOfBaseClass(
   3643         This, DerivedClassDecl, E->path_begin(), E->path_end(),
   3644         /*NullCheckValue=*/false, E->getExprLoc());
   3645 
   3646     return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource());
   3647   }
   3648   case CK_ToUnion:
   3649     return EmitAggExprToLValue(E);
   3650   case CK_BaseToDerived: {
   3651     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
   3652     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
   3653 
   3654     LValue LV = EmitLValue(E->getSubExpr());
   3655 
   3656     // Perform the base-to-derived conversion
   3657     Address Derived =
   3658       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
   3659                                E->path_begin(), E->path_end(),
   3660                                /*NullCheckValue=*/false);
   3661 
   3662     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
   3663     // performed and the object is not of the derived type.
   3664     if (sanitizePerformTypeCheck())
   3665       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
   3666                     Derived.getPointer(), E->getType());
   3667 
   3668     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
   3669       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
   3670                                 /*MayBeNull=*/false,
   3671                                 CFITCK_DerivedCast, E->getLocStart());
   3672 
   3673     return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource());
   3674   }
   3675   case CK_LValueBitCast: {
   3676     // This must be a reinterpret_cast (or c-style equivalent).
   3677     const auto *CE = cast<ExplicitCastExpr>(E);
   3678 
   3679     CGM.EmitExplicitCastExprType(CE, this);
   3680     LValue LV = EmitLValue(E->getSubExpr());
   3681     Address V = Builder.CreateBitCast(LV.getAddress(),
   3682                                       ConvertType(CE->getTypeAsWritten()));
   3683 
   3684     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
   3685       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
   3686                                 /*MayBeNull=*/false,
   3687                                 CFITCK_UnrelatedCast, E->getLocStart());
   3688 
   3689     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
   3690   }
   3691   case CK_ObjCObjectLValueCast: {
   3692     LValue LV = EmitLValue(E->getSubExpr());
   3693     Address V = Builder.CreateElementBitCast(LV.getAddress(),
   3694                                              ConvertType(E->getType()));
   3695     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
   3696   }
   3697   case CK_ZeroToOCLEvent:
   3698     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
   3699   }
   3700 
   3701   llvm_unreachable("Unhandled lvalue cast kind?");
   3702 }
   3703 
   3704 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
   3705   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
   3706   return getOpaqueLValueMapping(e);
   3707 }
   3708 
   3709 RValue CodeGenFunction::EmitRValueForField(LValue LV,
   3710                                            const FieldDecl *FD,
   3711                                            SourceLocation Loc) {
   3712   QualType FT = FD->getType();
   3713   LValue FieldLV = EmitLValueForField(LV, FD);
   3714   switch (getEvaluationKind(FT)) {
   3715   case TEK_Complex:
   3716     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
   3717   case TEK_Aggregate:
   3718     return FieldLV.asAggregateRValue();
   3719   case TEK_Scalar:
   3720     // This routine is used to load fields one-by-one to perform a copy, so
   3721     // don't load reference fields.
   3722     if (FD->getType()->isReferenceType())
   3723       return RValue::get(FieldLV.getPointer());
   3724     return EmitLoadOfLValue(FieldLV, Loc);
   3725   }
   3726   llvm_unreachable("bad evaluation kind");
   3727 }
   3728 
   3729 //===--------------------------------------------------------------------===//
   3730 //                             Expression Emission
   3731 //===--------------------------------------------------------------------===//
   3732 
   3733 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
   3734                                      ReturnValueSlot ReturnValue) {
   3735   // Builtins never have block type.
   3736   if (E->getCallee()->getType()->isBlockPointerType())
   3737     return EmitBlockCallExpr(E, ReturnValue);
   3738 
   3739   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
   3740     return EmitCXXMemberCallExpr(CE, ReturnValue);
   3741 
   3742   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
   3743     return EmitCUDAKernelCallExpr(CE, ReturnValue);
   3744 
   3745   const Decl *TargetDecl = E->getCalleeDecl();
   3746   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
   3747     if (unsigned builtinID = FD->getBuiltinID())
   3748       return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
   3749   }
   3750 
   3751   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
   3752     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
   3753       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
   3754 
   3755   if (const auto *PseudoDtor =
   3756           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
   3757     QualType DestroyedType = PseudoDtor->getDestroyedType();
   3758     if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
   3759       // Automatic Reference Counting:
   3760       //   If the pseudo-expression names a retainable object with weak or
   3761       //   strong lifetime, the object shall be released.
   3762       Expr *BaseExpr = PseudoDtor->getBase();
   3763       Address BaseValue = Address::invalid();
   3764       Qualifiers BaseQuals;
   3765 
   3766       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
   3767       if (PseudoDtor->isArrow()) {
   3768         BaseValue = EmitPointerWithAlignment(BaseExpr);
   3769         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
   3770         BaseQuals = PTy->getPointeeType().getQualifiers();
   3771       } else {
   3772         LValue BaseLV = EmitLValue(BaseExpr);
   3773         BaseValue = BaseLV.getAddress();
   3774         QualType BaseTy = BaseExpr->getType();
   3775         BaseQuals = BaseTy.getQualifiers();
   3776       }
   3777 
   3778       switch (DestroyedType.getObjCLifetime()) {
   3779       case Qualifiers::OCL_None:
   3780       case Qualifiers::OCL_ExplicitNone:
   3781       case Qualifiers::OCL_Autoreleasing:
   3782         break;
   3783 
   3784       case Qualifiers::OCL_Strong:
   3785         EmitARCRelease(Builder.CreateLoad(BaseValue,
   3786                           PseudoDtor->getDestroyedType().isVolatileQualified()),
   3787                        ARCPreciseLifetime);
   3788         break;
   3789 
   3790       case Qualifiers::OCL_Weak:
   3791         EmitARCDestroyWeak(BaseValue);
   3792         break;
   3793       }
   3794     } else {
   3795       // C++ [expr.pseudo]p1:
   3796       //   The result shall only be used as the operand for the function call
   3797       //   operator (), and the result of such a call has type void. The only
   3798       //   effect is the evaluation of the postfix-expression before the dot or
   3799       //   arrow.
   3800       EmitScalarExpr(E->getCallee());
   3801     }
   3802 
   3803     return RValue::get(nullptr);
   3804   }
   3805 
   3806   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
   3807   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
   3808                   TargetDecl);
   3809 }
   3810 
   3811 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
   3812   // Comma expressions just emit their LHS then their RHS as an l-value.
   3813   if (E->getOpcode() == BO_Comma) {
   3814     EmitIgnoredExpr(E->getLHS());
   3815     EnsureInsertPoint();
   3816     return EmitLValue(E->getRHS());
   3817   }
   3818 
   3819   if (E->getOpcode() == BO_PtrMemD ||
   3820       E->getOpcode() == BO_PtrMemI)
   3821     return EmitPointerToDataMemberBinaryExpr(E);
   3822 
   3823   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
   3824 
   3825   // Note that in all of these cases, __block variables need the RHS
   3826   // evaluated first just in case the variable gets moved by the RHS.
   3827 
   3828   switch (getEvaluationKind(E->getType())) {
   3829   case TEK_Scalar: {
   3830     switch (E->getLHS()->getType().getObjCLifetime()) {
   3831     case Qualifiers::OCL_Strong:
   3832       return EmitARCStoreStrong(E, /*ignored*/ false).first;
   3833 
   3834     case Qualifiers::OCL_Autoreleasing:
   3835       return EmitARCStoreAutoreleasing(E).first;
   3836 
   3837     // No reason to do any of these differently.
   3838     case Qualifiers::OCL_None:
   3839     case Qualifiers::OCL_ExplicitNone:
   3840     case Qualifiers::OCL_Weak:
   3841       break;
   3842     }
   3843 
   3844     RValue RV = EmitAnyExpr(E->getRHS());
   3845     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
   3846     EmitStoreThroughLValue(RV, LV);
   3847     return LV;
   3848   }
   3849 
   3850   case TEK_Complex:
   3851     return EmitComplexAssignmentLValue(E);
   3852 
   3853   case TEK_Aggregate:
   3854     return EmitAggExprToLValue(E);
   3855   }
   3856   llvm_unreachable("bad evaluation kind");
   3857 }
   3858 
   3859 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
   3860   RValue RV = EmitCallExpr(E);
   3861 
   3862   if (!RV.isScalar())
   3863     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
   3864                           AlignmentSource::Decl);
   3865 
   3866   assert(E->getCallReturnType(getContext())->isReferenceType() &&
   3867          "Can't have a scalar return unless the return type is a "
   3868          "reference type!");
   3869 
   3870   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
   3871 }
   3872 
   3873 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
   3874   // FIXME: This shouldn't require another copy.
   3875   return EmitAggExprToLValue(E);
   3876 }
   3877 
   3878 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
   3879   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
   3880          && "binding l-value to type which needs a temporary");
   3881   AggValueSlot Slot = CreateAggTemp(E->getType());
   3882   EmitCXXConstructExpr(E, Slot);
   3883   return MakeAddrLValue(Slot.getAddress(), E->getType(),
   3884                         AlignmentSource::Decl);
   3885 }
   3886 
   3887 LValue
   3888 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
   3889   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
   3890 }
   3891 
   3892 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
   3893   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
   3894                                       ConvertType(E->getType()));
   3895 }
   3896 
   3897 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
   3898   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
   3899                         AlignmentSource::Decl);
   3900 }
   3901 
   3902 LValue
   3903 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
   3904   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   3905   Slot.setExternallyDestructed();
   3906   EmitAggExpr(E->getSubExpr(), Slot);
   3907   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
   3908   return MakeAddrLValue(Slot.getAddress(), E->getType(),
   3909                         AlignmentSource::Decl);
   3910 }
   3911 
   3912 LValue
   3913 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
   3914   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
   3915   EmitLambdaExpr(E, Slot);
   3916   return MakeAddrLValue(Slot.getAddress(), E->getType(),
   3917                         AlignmentSource::Decl);
   3918 }
   3919 
   3920 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
   3921   RValue RV = EmitObjCMessageExpr(E);
   3922 
   3923   if (!RV.isScalar())
   3924     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
   3925                           AlignmentSource::Decl);
   3926 
   3927   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
   3928          "Can't have a scalar return unless the return type is a "
   3929          "reference type!");
   3930 
   3931   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
   3932 }
   3933 
   3934 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
   3935   Address V =
   3936     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
   3937   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
   3938 }
   3939 
   3940 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   3941                                              const ObjCIvarDecl *Ivar) {
   3942   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
   3943 }
   3944 
   3945 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
   3946                                           llvm::Value *BaseValue,
   3947                                           const ObjCIvarDecl *Ivar,
   3948                                           unsigned CVRQualifiers) {
   3949   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
   3950                                                    Ivar, CVRQualifiers);
   3951 }
   3952 
   3953 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
   3954   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
   3955   llvm::Value *BaseValue = nullptr;
   3956   const Expr *BaseExpr = E->getBase();
   3957   Qualifiers BaseQuals;
   3958   QualType ObjectTy;
   3959   if (E->isArrow()) {
   3960     BaseValue = EmitScalarExpr(BaseExpr);
   3961     ObjectTy = BaseExpr->getType()->getPointeeType();
   3962     BaseQuals = ObjectTy.getQualifiers();
   3963   } else {
   3964     LValue BaseLV = EmitLValue(BaseExpr);
   3965     BaseValue = BaseLV.getPointer();
   3966     ObjectTy = BaseExpr->getType();
   3967     BaseQuals = ObjectTy.getQualifiers();
   3968   }
   3969 
   3970   LValue LV =
   3971     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
   3972                       BaseQuals.getCVRQualifiers());
   3973   setObjCGCLValueClass(getContext(), E, LV);
   3974   return LV;
   3975 }
   3976 
   3977 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
   3978   // Can only get l-value for message expression returning aggregate type
   3979   RValue RV = EmitAnyExprToTemp(E);
   3980   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
   3981                         AlignmentSource::Decl);
   3982 }
   3983 
   3984 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
   3985                                  const CallExpr *E, ReturnValueSlot ReturnValue,
   3986                                  CGCalleeInfo CalleeInfo, llvm::Value *Chain) {
   3987   // Get the actual function type. The callee type will always be a pointer to
   3988   // function type or a block pointer type.
   3989   assert(CalleeType->isFunctionPointerType() &&
   3990          "Call must have function pointer type!");
   3991 
   3992   // Preserve the non-canonical function type because things like exception
   3993   // specifications disappear in the canonical type. That information is useful
   3994   // to drive the generation of more accurate code for this call later on.
   3995   const FunctionProtoType *NonCanonicalFTP = CalleeType->getAs<PointerType>()
   3996                                                  ->getPointeeType()
   3997                                                  ->getAs<FunctionProtoType>();
   3998 
   3999   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
   4000 
   4001   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
   4002     // We can only guarantee that a function is called from the correct
   4003     // context/function based on the appropriate target attributes,
   4004     // so only check in the case where we have both always_inline and target
   4005     // since otherwise we could be making a conditional call after a check for
   4006     // the proper cpu features (and it won't cause code generation issues due to
   4007     // function based code generation).
   4008     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
   4009         TargetDecl->hasAttr<TargetAttr>())
   4010       checkTargetFeatures(E, FD);
   4011 
   4012   CalleeType = getContext().getCanonicalType(CalleeType);
   4013 
   4014   const auto *FnType =
   4015       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
   4016 
   4017   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
   4018       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
   4019     if (llvm::Constant *PrefixSig =
   4020             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
   4021       SanitizerScope SanScope(this);
   4022       llvm::Constant *FTRTTIConst =
   4023           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
   4024       llvm::Type *PrefixStructTyElems[] = {
   4025         PrefixSig->getType(),
   4026         FTRTTIConst->getType()
   4027       };
   4028       llvm::StructType *PrefixStructTy = llvm::StructType::get(
   4029           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
   4030 
   4031       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
   4032           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
   4033       llvm::Value *CalleeSigPtr =
   4034           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
   4035       llvm::Value *CalleeSig =
   4036           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
   4037       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
   4038 
   4039       llvm::BasicBlock *Cont = createBasicBlock("cont");
   4040       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
   4041       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
   4042 
   4043       EmitBlock(TypeCheck);
   4044       llvm::Value *CalleeRTTIPtr =
   4045           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
   4046       llvm::Value *CalleeRTTI =
   4047           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
   4048       llvm::Value *CalleeRTTIMatch =
   4049           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
   4050       llvm::Constant *StaticData[] = {
   4051         EmitCheckSourceLocation(E->getLocStart()),
   4052         EmitCheckTypeDescriptor(CalleeType)
   4053       };
   4054       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
   4055                 "function_type_mismatch", StaticData, Callee);
   4056 
   4057       Builder.CreateBr(Cont);
   4058       EmitBlock(Cont);
   4059     }
   4060   }
   4061 
   4062   // If we are checking indirect calls and this call is indirect, check that the
   4063   // function pointer is a member of the bit set for the function type.
   4064   if (SanOpts.has(SanitizerKind::CFIICall) &&
   4065       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
   4066     SanitizerScope SanScope(this);
   4067     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
   4068 
   4069     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
   4070     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
   4071 
   4072     llvm::Value *CastedCallee = Builder.CreateBitCast(Callee, Int8PtrTy);
   4073     llvm::Value *TypeTest = Builder.CreateCall(
   4074         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
   4075 
   4076     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
   4077     llvm::Constant *StaticData[] = {
   4078         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
   4079         EmitCheckSourceLocation(E->getLocStart()),
   4080         EmitCheckTypeDescriptor(QualType(FnType, 0)),
   4081     };
   4082     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
   4083       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
   4084                            CastedCallee, StaticData);
   4085     } else {
   4086       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
   4087                 "cfi_check_fail", StaticData,
   4088                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
   4089     }
   4090   }
   4091 
   4092   CallArgList Args;
   4093   if (Chain)
   4094     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
   4095              CGM.getContext().VoidPtrTy);
   4096   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
   4097                E->getDirectCallee(), /*ParamsToSkip*/ 0);
   4098 
   4099   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
   4100       Args, FnType, /*isChainCall=*/Chain);
   4101 
   4102   // C99 6.5.2.2p6:
   4103   //   If the expression that denotes the called function has a type
   4104   //   that does not include a prototype, [the default argument
   4105   //   promotions are performed]. If the number of arguments does not
   4106   //   equal the number of parameters, the behavior is undefined. If
   4107   //   the function is defined with a type that includes a prototype,
   4108   //   and either the prototype ends with an ellipsis (, ...) or the
   4109   //   types of the arguments after promotion are not compatible with
   4110   //   the types of the parameters, the behavior is undefined. If the
   4111   //   function is defined with a type that does not include a
   4112   //   prototype, and the types of the arguments after promotion are
   4113   //   not compatible with those of the parameters after promotion,
   4114   //   the behavior is undefined [except in some trivial cases].
   4115   // That is, in the general case, we should assume that a call
   4116   // through an unprototyped function type works like a *non-variadic*
   4117   // call.  The way we make this work is to cast to the exact type
   4118   // of the promoted arguments.
   4119   //
   4120   // Chain calls use this same code path to add the invisible chain parameter
   4121   // to the function type.
   4122   if (isa<FunctionNoProtoType>(FnType) || Chain) {
   4123     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
   4124     CalleeTy = CalleeTy->getPointerTo();
   4125     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
   4126   }
   4127 
   4128   return EmitCall(FnInfo, Callee, ReturnValue, Args,
   4129                   CGCalleeInfo(NonCanonicalFTP, TargetDecl));
   4130 }
   4131 
   4132 LValue CodeGenFunction::
   4133 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
   4134   Address BaseAddr = Address::invalid();
   4135   if (E->getOpcode() == BO_PtrMemI) {
   4136     BaseAddr = EmitPointerWithAlignment(E->getLHS());
   4137   } else {
   4138     BaseAddr = EmitLValue(E->getLHS()).getAddress();
   4139   }
   4140 
   4141   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
   4142 
   4143   const MemberPointerType *MPT
   4144     = E->getRHS()->getType()->getAs<MemberPointerType>();
   4145 
   4146   AlignmentSource AlignSource;
   4147   Address MemberAddr =
   4148     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT,
   4149                                     &AlignSource);
   4150 
   4151   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource);
   4152 }
   4153 
   4154 /// Given the address of a temporary variable, produce an r-value of
   4155 /// its type.
   4156 RValue CodeGenFunction::convertTempToRValue(Address addr,
   4157                                             QualType type,
   4158                                             SourceLocation loc) {
   4159   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
   4160   switch (getEvaluationKind(type)) {
   4161   case TEK_Complex:
   4162     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
   4163   case TEK_Aggregate:
   4164     return lvalue.asAggregateRValue();
   4165   case TEK_Scalar:
   4166     return RValue::get(EmitLoadOfScalar(lvalue, loc));
   4167   }
   4168   llvm_unreachable("bad evaluation kind");
   4169 }
   4170 
   4171 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
   4172   assert(Val->getType()->isFPOrFPVectorTy());
   4173   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
   4174     return;
   4175 
   4176   llvm::MDBuilder MDHelper(getLLVMContext());
   4177   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
   4178 
   4179   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
   4180 }
   4181 
   4182 namespace {
   4183   struct LValueOrRValue {
   4184     LValue LV;
   4185     RValue RV;
   4186   };
   4187 }
   4188 
   4189 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
   4190                                            const PseudoObjectExpr *E,
   4191                                            bool forLValue,
   4192                                            AggValueSlot slot) {
   4193   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
   4194 
   4195   // Find the result expression, if any.
   4196   const Expr *resultExpr = E->getResultExpr();
   4197   LValueOrRValue result;
   4198 
   4199   for (PseudoObjectExpr::const_semantics_iterator
   4200          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
   4201     const Expr *semantic = *i;
   4202 
   4203     // If this semantic expression is an opaque value, bind it
   4204     // to the result of its source expression.
   4205     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
   4206 
   4207       // If this is the result expression, we may need to evaluate
   4208       // directly into the slot.
   4209       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
   4210       OVMA opaqueData;
   4211       if (ov == resultExpr && ov->isRValue() && !forLValue &&
   4212           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
   4213         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
   4214 
   4215         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
   4216                                        AlignmentSource::Decl);
   4217         opaqueData = OVMA::bind(CGF, ov, LV);
   4218         result.RV = slot.asRValue();
   4219 
   4220       // Otherwise, emit as normal.
   4221       } else {
   4222         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
   4223 
   4224         // If this is the result, also evaluate the result now.
   4225         if (ov == resultExpr) {
   4226           if (forLValue)
   4227             result.LV = CGF.EmitLValue(ov);
   4228           else
   4229             result.RV = CGF.EmitAnyExpr(ov, slot);
   4230         }
   4231       }
   4232 
   4233       opaques.push_back(opaqueData);
   4234 
   4235     // Otherwise, if the expression is the result, evaluate it
   4236     // and remember the result.
   4237     } else if (semantic == resultExpr) {
   4238       if (forLValue)
   4239         result.LV = CGF.EmitLValue(semantic);
   4240       else
   4241         result.RV = CGF.EmitAnyExpr(semantic, slot);
   4242 
   4243     // Otherwise, evaluate the expression in an ignored context.
   4244     } else {
   4245       CGF.EmitIgnoredExpr(semantic);
   4246     }
   4247   }
   4248 
   4249   // Unbind all the opaques now.
   4250   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
   4251     opaques[i].unbind(CGF);
   4252 
   4253   return result;
   4254 }
   4255 
   4256 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
   4257                                                AggValueSlot slot) {
   4258   return emitPseudoObjectExpr(*this, E, false, slot).RV;
   4259 }
   4260 
   4261 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
   4262   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
   4263 }
   4264