Home | History | Annotate | Download | only in wasm
      1 // Copyright 2015 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/wasm/wasm-objects.h"
      6 #include "src/utils.h"
      7 
      8 #include "src/assembler-inl.h"
      9 #include "src/base/iterator.h"
     10 #include "src/code-factory.h"
     11 #include "src/compiler/wasm-compiler.h"
     12 #include "src/debug/debug-interface.h"
     13 #include "src/objects-inl.h"
     14 #include "src/objects/debug-objects-inl.h"
     15 #include "src/objects/shared-function-info.h"
     16 #include "src/trap-handler/trap-handler.h"
     17 #include "src/wasm/jump-table-assembler.h"
     18 #include "src/wasm/module-compiler.h"
     19 #include "src/wasm/module-decoder.h"
     20 #include "src/wasm/wasm-code-manager.h"
     21 #include "src/wasm/wasm-engine.h"
     22 #include "src/wasm/wasm-limits.h"
     23 #include "src/wasm/wasm-memory.h"
     24 #include "src/wasm/wasm-module.h"
     25 #include "src/wasm/wasm-objects-inl.h"
     26 #include "src/wasm/wasm-text.h"
     27 
     28 #define TRACE(...)                                      \
     29   do {                                                  \
     30     if (FLAG_trace_wasm_instances) PrintF(__VA_ARGS__); \
     31   } while (false)
     32 
     33 #define TRACE_IFT(...)              \
     34   do {                              \
     35     if (false) PrintF(__VA_ARGS__); \
     36   } while (false)
     37 
     38 namespace v8 {
     39 namespace internal {
     40 
     41 // Import a few often used types from the wasm namespace.
     42 using WasmFunction = wasm::WasmFunction;
     43 using WasmModule = wasm::WasmModule;
     44 
     45 namespace {
     46 
     47 // Manages the natively-allocated memory for a WasmInstanceObject. Since
     48 // an instance finalizer is not guaranteed to run upon isolate shutdown,
     49 // we must use a Managed<WasmInstanceNativeAllocations> to guarantee
     50 // it is freed.
     51 // Native allocations are the signature ids and targets for indirect call
     52 // targets, as well as the call targets for imported functions.
     53 class WasmInstanceNativeAllocations {
     54  public:
     55 // Helper macro to set an internal field and the corresponding field
     56 // on an instance.
     57 #define SET(instance, field, value) \
     58   {                                 \
     59     auto v = value;                 \
     60     this->field##_ = v;             \
     61     instance->set_##field(v);       \
     62   }
     63 
     64   // Allocates initial native storage for a given instance.
     65   WasmInstanceNativeAllocations(Handle<WasmInstanceObject> instance,
     66                                 size_t num_imported_functions,
     67                                 size_t num_imported_mutable_globals) {
     68     SET(instance, imported_function_targets,
     69         reinterpret_cast<Address*>(
     70             calloc(num_imported_functions, sizeof(Address))));
     71     SET(instance, imported_mutable_globals,
     72         reinterpret_cast<Address*>(
     73             calloc(num_imported_mutable_globals, sizeof(Address))));
     74   }
     75   ~WasmInstanceNativeAllocations() { free(); }
     76   // Frees natively-allocated storage.
     77   void free() {
     78     ::free(indirect_function_table_sig_ids_);
     79     ::free(indirect_function_table_targets_);
     80     ::free(imported_function_targets_);
     81     ::free(imported_mutable_globals_);
     82     indirect_function_table_sig_ids_ = nullptr;
     83     indirect_function_table_targets_ = nullptr;
     84     imported_function_targets_ = nullptr;
     85     imported_mutable_globals_ = nullptr;
     86   }
     87   // Resizes the indirect function table.
     88   void resize_indirect_function_table(Isolate* isolate,
     89                                       Handle<WasmInstanceObject> instance,
     90                                       uint32_t new_size) {
     91     uint32_t old_size = instance->indirect_function_table_size();
     92     void* new_sig_ids = nullptr;
     93     void* new_targets = nullptr;
     94     Handle<FixedArray> new_instances;
     95     if (indirect_function_table_sig_ids_) {
     96       // Reallocate the old storage.
     97       new_sig_ids = realloc(indirect_function_table_sig_ids_,
     98                             new_size * sizeof(uint32_t));
     99       new_targets =
    100           realloc(indirect_function_table_targets_, new_size * sizeof(Address));
    101 
    102       Handle<FixedArray> old(instance->indirect_function_table_instances(),
    103                              isolate);
    104       new_instances = isolate->factory()->CopyFixedArrayAndGrow(
    105           old, static_cast<int>(new_size - old_size));
    106     } else {
    107       // Allocate new storage.
    108       new_sig_ids = malloc(new_size * sizeof(uint32_t));
    109       new_targets = malloc(new_size * sizeof(Address));
    110       new_instances =
    111           isolate->factory()->NewFixedArray(static_cast<int>(new_size));
    112     }
    113     // Initialize new entries.
    114     instance->set_indirect_function_table_size(new_size);
    115     SET(instance, indirect_function_table_sig_ids,
    116         reinterpret_cast<uint32_t*>(new_sig_ids));
    117     SET(instance, indirect_function_table_targets,
    118         reinterpret_cast<Address*>(new_targets));
    119 
    120     instance->set_indirect_function_table_instances(*new_instances);
    121     for (uint32_t j = old_size; j < new_size; j++) {
    122       IndirectFunctionTableEntry(instance, static_cast<int>(j)).clear();
    123     }
    124   }
    125   uint32_t* indirect_function_table_sig_ids_ = nullptr;
    126   Address* indirect_function_table_targets_ = nullptr;
    127   Address* imported_function_targets_ = nullptr;
    128   Address* imported_mutable_globals_ = nullptr;
    129 #undef SET
    130 };
    131 
    132 size_t EstimateNativeAllocationsSize(const WasmModule* module) {
    133   size_t estimate = sizeof(WasmInstanceNativeAllocations) +
    134                     (1 * kPointerSize * module->num_imported_mutable_globals) +
    135                     (2 * kPointerSize * module->num_imported_functions);
    136   for (auto& table : module->tables) {
    137     estimate += 3 * kPointerSize * table.initial_size;
    138   }
    139   return estimate;
    140 }
    141 
    142 WasmInstanceNativeAllocations* GetNativeAllocations(
    143     WasmInstanceObject* instance) {
    144   return reinterpret_cast<Managed<WasmInstanceNativeAllocations>*>(
    145              instance->managed_native_allocations())
    146       ->raw();
    147 }
    148 
    149 #ifdef DEBUG
    150 bool IsBreakablePosition(wasm::NativeModule* native_module, int func_index,
    151                          int offset_in_func) {
    152   AccountingAllocator alloc;
    153   Zone tmp(&alloc, ZONE_NAME);
    154   wasm::BodyLocalDecls locals(&tmp);
    155   const byte* module_start = native_module->wire_bytes().start();
    156   const WasmFunction& func = native_module->module()->functions[func_index];
    157   wasm::BytecodeIterator iterator(module_start + func.code.offset(),
    158                                   module_start + func.code.end_offset(),
    159                                   &locals);
    160   DCHECK_LT(0, locals.encoded_size);
    161   for (uint32_t offset : iterator.offsets()) {
    162     if (offset > static_cast<uint32_t>(offset_in_func)) break;
    163     if (offset == static_cast<uint32_t>(offset_in_func)) return true;
    164   }
    165   return false;
    166 }
    167 #endif  // DEBUG
    168 
    169 enum DispatchTableElements : int {
    170   kDispatchTableInstanceOffset,
    171   kDispatchTableIndexOffset,
    172   kDispatchTableFunctionTableOffset,
    173   // Marker:
    174   kDispatchTableNumElements
    175 };
    176 
    177 }  // namespace
    178 
    179 // static
    180 Handle<WasmModuleObject> WasmModuleObject::New(
    181     Isolate* isolate, const wasm::WasmFeatures& enabled,
    182     std::shared_ptr<const wasm::WasmModule> shared_module, wasm::ModuleEnv& env,
    183     OwnedVector<const uint8_t> wire_bytes, Handle<Script> script,
    184     Handle<ByteArray> asm_js_offset_table) {
    185   DCHECK_EQ(shared_module.get(), env.module);
    186 
    187   // Create a new {NativeModule} first.
    188   size_t native_memory_estimate =
    189       isolate->wasm_engine()->code_manager()->EstimateNativeModuleSize(
    190           env.module);
    191   auto native_module = isolate->wasm_engine()->code_manager()->NewNativeModule(
    192       isolate, enabled, native_memory_estimate,
    193       wasm::NativeModule::kCanAllocateMoreMemory, std::move(shared_module),
    194       env);
    195   native_module->set_wire_bytes(std::move(wire_bytes));
    196   native_module->SetRuntimeStubs(isolate);
    197 
    198   // Delegate to the shared {WasmModuleObject::New} allocator.
    199   Handle<WasmModuleObject> module_object =
    200       New(isolate, std::move(native_module), script);
    201   if (!asm_js_offset_table.is_null()) {
    202     module_object->set_asm_js_offset_table(*asm_js_offset_table);
    203   }
    204   return module_object;
    205 }
    206 
    207 // static
    208 Handle<WasmModuleObject> WasmModuleObject::New(
    209     Isolate* isolate, std::shared_ptr<wasm::NativeModule> native_module,
    210     Handle<Script> script) {
    211   int export_wrapper_size =
    212       static_cast<int>(native_module->module()->num_exported_functions);
    213   Handle<FixedArray> export_wrappers =
    214       isolate->factory()->NewFixedArray(export_wrapper_size, TENURED);
    215 
    216   // Use the given shared {NativeModule}, but increase its reference count by
    217   // allocating a new {Managed<T>} that the {WasmModuleObject} references.
    218   size_t native_memory_estimate =
    219       isolate->wasm_engine()->code_manager()->EstimateNativeModuleSize(
    220           native_module->module());
    221   size_t memory_estimate =
    222       EstimateWasmModuleSize(native_module->module()) + native_memory_estimate;
    223   Handle<Managed<wasm::NativeModule>> managed_native_module =
    224       Managed<wasm::NativeModule>::FromSharedPtr(isolate, memory_estimate,
    225                                                  std::move(native_module));
    226 
    227   Handle<WasmModuleObject> module_object = Handle<WasmModuleObject>::cast(
    228       isolate->factory()->NewJSObject(isolate->wasm_module_constructor()));
    229   module_object->set_export_wrappers(*export_wrappers);
    230   if (script->type() == Script::TYPE_WASM) {
    231     script->set_wasm_module_object(*module_object);
    232   }
    233   module_object->set_script(*script);
    234   module_object->set_weak_instance_list(
    235       ReadOnlyRoots(isolate).empty_weak_array_list());
    236   module_object->set_managed_native_module(*managed_native_module);
    237   return module_object;
    238 }
    239 
    240 bool WasmModuleObject::SetBreakPoint(Handle<WasmModuleObject> module_object,
    241                                      int* position,
    242                                      Handle<BreakPoint> break_point) {
    243   Isolate* isolate = module_object->GetIsolate();
    244 
    245   // Find the function for this breakpoint.
    246   int func_index = module_object->GetContainingFunction(*position);
    247   if (func_index < 0) return false;
    248   const WasmFunction& func = module_object->module()->functions[func_index];
    249   int offset_in_func = *position - func.code.offset();
    250 
    251   // According to the current design, we should only be called with valid
    252   // breakable positions.
    253   DCHECK(IsBreakablePosition(module_object->native_module(), func_index,
    254                              offset_in_func));
    255 
    256   // Insert new break point into break_positions of module object.
    257   WasmModuleObject::AddBreakpoint(module_object, *position, break_point);
    258 
    259   // Iterate over all instances of this module and tell them to set this new
    260   // breakpoint. We do this using the weak list of all instances.
    261   Handle<WeakArrayList> weak_instance_list(module_object->weak_instance_list(),
    262                                            isolate);
    263   for (int i = 0; i < weak_instance_list->length(); ++i) {
    264     MaybeObject* maybe_instance = weak_instance_list->Get(i);
    265     if (maybe_instance->IsWeakHeapObject()) {
    266       Handle<WasmInstanceObject> instance(
    267           WasmInstanceObject::cast(maybe_instance->ToWeakHeapObject()),
    268           isolate);
    269       Handle<WasmDebugInfo> debug_info =
    270           WasmInstanceObject::GetOrCreateDebugInfo(instance);
    271       WasmDebugInfo::SetBreakpoint(debug_info, func_index, offset_in_func);
    272     }
    273   }
    274 
    275   return true;
    276 }
    277 
    278 namespace {
    279 
    280 int GetBreakpointPos(Isolate* isolate, Object* break_point_info_or_undef) {
    281   if (break_point_info_or_undef->IsUndefined(isolate)) return kMaxInt;
    282   return BreakPointInfo::cast(break_point_info_or_undef)->source_position();
    283 }
    284 
    285 int FindBreakpointInfoInsertPos(Isolate* isolate,
    286                                 Handle<FixedArray> breakpoint_infos,
    287                                 int position) {
    288   // Find insert location via binary search, taking care of undefined values on
    289   // the right. Position is always greater than zero.
    290   DCHECK_LT(0, position);
    291 
    292   int left = 0;                            // inclusive
    293   int right = breakpoint_infos->length();  // exclusive
    294   while (right - left > 1) {
    295     int mid = left + (right - left) / 2;
    296     Object* mid_obj = breakpoint_infos->get(mid);
    297     if (GetBreakpointPos(isolate, mid_obj) <= position) {
    298       left = mid;
    299     } else {
    300       right = mid;
    301     }
    302   }
    303 
    304   int left_pos = GetBreakpointPos(isolate, breakpoint_infos->get(left));
    305   return left_pos < position ? left + 1 : left;
    306 }
    307 
    308 }  // namespace
    309 
    310 void WasmModuleObject::AddBreakpoint(Handle<WasmModuleObject> module_object,
    311                                      int position,
    312                                      Handle<BreakPoint> break_point) {
    313   Isolate* isolate = module_object->GetIsolate();
    314   Handle<FixedArray> breakpoint_infos;
    315   if (module_object->has_breakpoint_infos()) {
    316     breakpoint_infos = handle(module_object->breakpoint_infos(), isolate);
    317   } else {
    318     breakpoint_infos = isolate->factory()->NewFixedArray(4, TENURED);
    319     module_object->set_breakpoint_infos(*breakpoint_infos);
    320   }
    321 
    322   int insert_pos =
    323       FindBreakpointInfoInsertPos(isolate, breakpoint_infos, position);
    324 
    325   // If a BreakPointInfo object already exists for this position, add the new
    326   // breakpoint object and return.
    327   if (insert_pos < breakpoint_infos->length() &&
    328       GetBreakpointPos(isolate, breakpoint_infos->get(insert_pos)) ==
    329           position) {
    330     Handle<BreakPointInfo> old_info(
    331         BreakPointInfo::cast(breakpoint_infos->get(insert_pos)), isolate);
    332     BreakPointInfo::SetBreakPoint(isolate, old_info, break_point);
    333     return;
    334   }
    335 
    336   // Enlarge break positions array if necessary.
    337   bool need_realloc = !breakpoint_infos->get(breakpoint_infos->length() - 1)
    338                            ->IsUndefined(isolate);
    339   Handle<FixedArray> new_breakpoint_infos = breakpoint_infos;
    340   if (need_realloc) {
    341     new_breakpoint_infos = isolate->factory()->NewFixedArray(
    342         2 * breakpoint_infos->length(), TENURED);
    343     module_object->set_breakpoint_infos(*new_breakpoint_infos);
    344     // Copy over the entries [0, insert_pos).
    345     for (int i = 0; i < insert_pos; ++i)
    346       new_breakpoint_infos->set(i, breakpoint_infos->get(i));
    347   }
    348 
    349   // Move elements [insert_pos, ...] up by one.
    350   for (int i = breakpoint_infos->length() - 1; i >= insert_pos; --i) {
    351     Object* entry = breakpoint_infos->get(i);
    352     if (entry->IsUndefined(isolate)) continue;
    353     new_breakpoint_infos->set(i + 1, entry);
    354   }
    355 
    356   // Generate new BreakpointInfo.
    357   Handle<BreakPointInfo> breakpoint_info =
    358       isolate->factory()->NewBreakPointInfo(position);
    359   BreakPointInfo::SetBreakPoint(isolate, breakpoint_info, break_point);
    360 
    361   // Now insert new position at insert_pos.
    362   new_breakpoint_infos->set(insert_pos, *breakpoint_info);
    363 }
    364 
    365 void WasmModuleObject::SetBreakpointsOnNewInstance(
    366     Handle<WasmModuleObject> module_object,
    367     Handle<WasmInstanceObject> instance) {
    368   if (!module_object->has_breakpoint_infos()) return;
    369   Isolate* isolate = module_object->GetIsolate();
    370   Handle<WasmDebugInfo> debug_info =
    371       WasmInstanceObject::GetOrCreateDebugInfo(instance);
    372 
    373   Handle<FixedArray> breakpoint_infos(module_object->breakpoint_infos(),
    374                                       isolate);
    375   // If the array exists, it should not be empty.
    376   DCHECK_LT(0, breakpoint_infos->length());
    377 
    378   for (int i = 0, e = breakpoint_infos->length(); i < e; ++i) {
    379     Handle<Object> obj(breakpoint_infos->get(i), isolate);
    380     if (obj->IsUndefined(isolate)) {
    381       for (; i < e; ++i) {
    382         DCHECK(breakpoint_infos->get(i)->IsUndefined(isolate));
    383       }
    384       break;
    385     }
    386     Handle<BreakPointInfo> breakpoint_info = Handle<BreakPointInfo>::cast(obj);
    387     int position = breakpoint_info->source_position();
    388 
    389     // Find the function for this breakpoint, and set the breakpoint.
    390     int func_index = module_object->GetContainingFunction(position);
    391     DCHECK_LE(0, func_index);
    392     const WasmFunction& func = module_object->module()->functions[func_index];
    393     int offset_in_func = position - func.code.offset();
    394     WasmDebugInfo::SetBreakpoint(debug_info, func_index, offset_in_func);
    395   }
    396 }
    397 
    398 namespace {
    399 
    400 enum AsmJsOffsetTableEntryLayout {
    401   kOTEByteOffset,
    402   kOTECallPosition,
    403   kOTENumberConvPosition,
    404   kOTESize
    405 };
    406 
    407 Handle<ByteArray> GetDecodedAsmJsOffsetTable(
    408     Handle<WasmModuleObject> module_object, Isolate* isolate) {
    409   DCHECK(module_object->is_asm_js());
    410   Handle<ByteArray> offset_table(module_object->asm_js_offset_table(), isolate);
    411 
    412   // The last byte in the asm_js_offset_tables ByteArray tells whether it is
    413   // still encoded (0) or decoded (1).
    414   enum AsmJsTableType : int { Encoded = 0, Decoded = 1 };
    415   int table_type = offset_table->get(offset_table->length() - 1);
    416   DCHECK(table_type == Encoded || table_type == Decoded);
    417   if (table_type == Decoded) return offset_table;
    418 
    419   wasm::AsmJsOffsetsResult asm_offsets;
    420   {
    421     DisallowHeapAllocation no_gc;
    422     byte* bytes_start = offset_table->GetDataStartAddress();
    423     byte* bytes_end = reinterpret_cast<byte*>(
    424         reinterpret_cast<Address>(bytes_start) + offset_table->length() - 1);
    425     asm_offsets = wasm::DecodeAsmJsOffsets(bytes_start, bytes_end);
    426   }
    427   // Wasm bytes must be valid and must contain asm.js offset table.
    428   DCHECK(asm_offsets.ok());
    429   DCHECK_GE(kMaxInt, asm_offsets.val.size());
    430   int num_functions = static_cast<int>(asm_offsets.val.size());
    431   int num_imported_functions =
    432       static_cast<int>(module_object->module()->num_imported_functions);
    433   DCHECK_EQ(module_object->module()->functions.size(),
    434             static_cast<size_t>(num_functions) + num_imported_functions);
    435   int num_entries = 0;
    436   for (int func = 0; func < num_functions; ++func) {
    437     size_t new_size = asm_offsets.val[func].size();
    438     DCHECK_LE(new_size, static_cast<size_t>(kMaxInt) - num_entries);
    439     num_entries += static_cast<int>(new_size);
    440   }
    441   // One byte to encode that this is a decoded table.
    442   DCHECK_GE(kMaxInt,
    443             1 + static_cast<uint64_t>(num_entries) * kOTESize * kIntSize);
    444   int total_size = 1 + num_entries * kOTESize * kIntSize;
    445   Handle<ByteArray> decoded_table =
    446       isolate->factory()->NewByteArray(total_size, TENURED);
    447   decoded_table->set(total_size - 1, AsmJsTableType::Decoded);
    448   module_object->set_asm_js_offset_table(*decoded_table);
    449 
    450   int idx = 0;
    451   const std::vector<WasmFunction>& wasm_funs =
    452       module_object->module()->functions;
    453   for (int func = 0; func < num_functions; ++func) {
    454     std::vector<wasm::AsmJsOffsetEntry>& func_asm_offsets =
    455         asm_offsets.val[func];
    456     if (func_asm_offsets.empty()) continue;
    457     int func_offset = wasm_funs[num_imported_functions + func].code.offset();
    458     for (wasm::AsmJsOffsetEntry& e : func_asm_offsets) {
    459       // Byte offsets must be strictly monotonously increasing:
    460       DCHECK_IMPLIES(idx > 0, func_offset + e.byte_offset >
    461                                   decoded_table->get_int(idx - kOTESize));
    462       decoded_table->set_int(idx + kOTEByteOffset, func_offset + e.byte_offset);
    463       decoded_table->set_int(idx + kOTECallPosition, e.source_position_call);
    464       decoded_table->set_int(idx + kOTENumberConvPosition,
    465                              e.source_position_number_conversion);
    466       idx += kOTESize;
    467     }
    468   }
    469   DCHECK_EQ(total_size, idx * kIntSize + 1);
    470   return decoded_table;
    471 }
    472 
    473 }  // namespace
    474 
    475 int WasmModuleObject::GetSourcePosition(Handle<WasmModuleObject> module_object,
    476                                         uint32_t func_index,
    477                                         uint32_t byte_offset,
    478                                         bool is_at_number_conversion) {
    479   Isolate* isolate = module_object->GetIsolate();
    480   const WasmModule* module = module_object->module();
    481 
    482   if (module->origin != wasm::kAsmJsOrigin) {
    483     // for non-asm.js modules, we just add the function's start offset
    484     // to make a module-relative position.
    485     return byte_offset + module_object->GetFunctionOffset(func_index);
    486   }
    487 
    488   // asm.js modules have an additional offset table that must be searched.
    489   Handle<ByteArray> offset_table =
    490       GetDecodedAsmJsOffsetTable(module_object, isolate);
    491 
    492   DCHECK_LT(func_index, module->functions.size());
    493   uint32_t func_code_offset = module->functions[func_index].code.offset();
    494   uint32_t total_offset = func_code_offset + byte_offset;
    495 
    496   // Binary search for the total byte offset.
    497   int left = 0;                                              // inclusive
    498   int right = offset_table->length() / kIntSize / kOTESize;  // exclusive
    499   DCHECK_LT(left, right);
    500   while (right - left > 1) {
    501     int mid = left + (right - left) / 2;
    502     int mid_entry = offset_table->get_int(kOTESize * mid);
    503     DCHECK_GE(kMaxInt, mid_entry);
    504     if (static_cast<uint32_t>(mid_entry) <= total_offset) {
    505       left = mid;
    506     } else {
    507       right = mid;
    508     }
    509   }
    510   // There should be an entry for each position that could show up on the stack
    511   // trace:
    512   DCHECK_EQ(total_offset, offset_table->get_int(kOTESize * left));
    513   int idx = is_at_number_conversion ? kOTENumberConvPosition : kOTECallPosition;
    514   return offset_table->get_int(kOTESize * left + idx);
    515 }
    516 
    517 v8::debug::WasmDisassembly WasmModuleObject::DisassembleFunction(
    518     int func_index) {
    519   DisallowHeapAllocation no_gc;
    520 
    521   if (func_index < 0 ||
    522       static_cast<uint32_t>(func_index) >= module()->functions.size())
    523     return {};
    524 
    525   Vector<const byte> wire_bytes = native_module()->wire_bytes();
    526 
    527   std::ostringstream disassembly_os;
    528   v8::debug::WasmDisassembly::OffsetTable offset_table;
    529 
    530   PrintWasmText(module(), wire_bytes, static_cast<uint32_t>(func_index),
    531                 disassembly_os, &offset_table);
    532 
    533   return {disassembly_os.str(), std::move(offset_table)};
    534 }
    535 
    536 bool WasmModuleObject::GetPossibleBreakpoints(
    537     const v8::debug::Location& start, const v8::debug::Location& end,
    538     std::vector<v8::debug::BreakLocation>* locations) {
    539   DisallowHeapAllocation no_gc;
    540 
    541   const std::vector<WasmFunction>& functions = module()->functions;
    542   if (start.GetLineNumber() < 0 || start.GetColumnNumber() < 0 ||
    543       (!end.IsEmpty() &&
    544        (end.GetLineNumber() < 0 || end.GetColumnNumber() < 0)))
    545     return false;
    546 
    547   // start_func_index, start_offset and end_func_index is inclusive.
    548   // end_offset is exclusive.
    549   // start_offset and end_offset are module-relative byte offsets.
    550   uint32_t start_func_index = start.GetLineNumber();
    551   if (start_func_index >= functions.size()) return false;
    552   int start_func_len = functions[start_func_index].code.length();
    553   if (start.GetColumnNumber() > start_func_len) return false;
    554   uint32_t start_offset =
    555       functions[start_func_index].code.offset() + start.GetColumnNumber();
    556   uint32_t end_func_index;
    557   uint32_t end_offset;
    558   if (end.IsEmpty()) {
    559     // Default: everything till the end of the Script.
    560     end_func_index = static_cast<uint32_t>(functions.size() - 1);
    561     end_offset = functions[end_func_index].code.end_offset();
    562   } else {
    563     // If end is specified: Use it and check for valid input.
    564     end_func_index = static_cast<uint32_t>(end.GetLineNumber());
    565 
    566     // Special case: Stop before the start of the next function. Change to: Stop
    567     // at the end of the function before, such that we don't disassemble the
    568     // next function also.
    569     if (end.GetColumnNumber() == 0 && end_func_index > 0) {
    570       --end_func_index;
    571       end_offset = functions[end_func_index].code.end_offset();
    572     } else {
    573       if (end_func_index >= functions.size()) return false;
    574       end_offset =
    575           functions[end_func_index].code.offset() + end.GetColumnNumber();
    576       if (end_offset > functions[end_func_index].code.end_offset())
    577         return false;
    578     }
    579   }
    580 
    581   AccountingAllocator alloc;
    582   Zone tmp(&alloc, ZONE_NAME);
    583   const byte* module_start = native_module()->wire_bytes().start();
    584 
    585   for (uint32_t func_idx = start_func_index; func_idx <= end_func_index;
    586        ++func_idx) {
    587     const WasmFunction& func = functions[func_idx];
    588     if (func.code.length() == 0) continue;
    589 
    590     wasm::BodyLocalDecls locals(&tmp);
    591     wasm::BytecodeIterator iterator(module_start + func.code.offset(),
    592                                     module_start + func.code.end_offset(),
    593                                     &locals);
    594     DCHECK_LT(0u, locals.encoded_size);
    595     for (uint32_t offset : iterator.offsets()) {
    596       uint32_t total_offset = func.code.offset() + offset;
    597       if (total_offset >= end_offset) {
    598         DCHECK_EQ(end_func_index, func_idx);
    599         break;
    600       }
    601       if (total_offset < start_offset) continue;
    602       locations->emplace_back(func_idx, offset, debug::kCommonBreakLocation);
    603     }
    604   }
    605   return true;
    606 }
    607 
    608 MaybeHandle<FixedArray> WasmModuleObject::CheckBreakPoints(
    609     Isolate* isolate, Handle<WasmModuleObject> module_object, int position) {
    610   if (!module_object->has_breakpoint_infos()) return {};
    611 
    612   Handle<FixedArray> breakpoint_infos(module_object->breakpoint_infos(),
    613                                       isolate);
    614   int insert_pos =
    615       FindBreakpointInfoInsertPos(isolate, breakpoint_infos, position);
    616   if (insert_pos >= breakpoint_infos->length()) return {};
    617 
    618   Handle<Object> maybe_breakpoint_info(breakpoint_infos->get(insert_pos),
    619                                        isolate);
    620   if (maybe_breakpoint_info->IsUndefined(isolate)) return {};
    621   Handle<BreakPointInfo> breakpoint_info =
    622       Handle<BreakPointInfo>::cast(maybe_breakpoint_info);
    623   if (breakpoint_info->source_position() != position) return {};
    624 
    625   // There is no support for conditional break points. Just assume that every
    626   // break point always hits.
    627   Handle<Object> break_points(breakpoint_info->break_points(), isolate);
    628   if (break_points->IsFixedArray()) {
    629     return Handle<FixedArray>::cast(break_points);
    630   }
    631   Handle<FixedArray> break_points_hit = isolate->factory()->NewFixedArray(1);
    632   break_points_hit->set(0, *break_points);
    633   return break_points_hit;
    634 }
    635 
    636 MaybeHandle<String> WasmModuleObject::ExtractUtf8StringFromModuleBytes(
    637     Isolate* isolate, Handle<WasmModuleObject> module_object,
    638     wasm::WireBytesRef ref) {
    639   // TODO(wasm): cache strings from modules if it's a performance win.
    640   Vector<const uint8_t> wire_bytes =
    641       module_object->native_module()->wire_bytes();
    642   return ExtractUtf8StringFromModuleBytes(isolate, wire_bytes, ref);
    643 }
    644 
    645 MaybeHandle<String> WasmModuleObject::ExtractUtf8StringFromModuleBytes(
    646     Isolate* isolate, Vector<const uint8_t> wire_bytes,
    647     wasm::WireBytesRef ref) {
    648   Vector<const uint8_t> name_vec = wire_bytes + ref.offset();
    649   name_vec.Truncate(ref.length());
    650   // UTF8 validation happens at decode time.
    651   DCHECK(unibrow::Utf8::ValidateEncoding(name_vec.start(), name_vec.length()));
    652   return isolate->factory()->NewStringFromUtf8(
    653       Vector<const char>::cast(name_vec));
    654 }
    655 
    656 MaybeHandle<String> WasmModuleObject::GetModuleNameOrNull(
    657     Isolate* isolate, Handle<WasmModuleObject> module_object) {
    658   const WasmModule* module = module_object->module();
    659   if (!module->name.is_set()) return {};
    660   return ExtractUtf8StringFromModuleBytes(isolate, module_object, module->name);
    661 }
    662 
    663 MaybeHandle<String> WasmModuleObject::GetFunctionNameOrNull(
    664     Isolate* isolate, Handle<WasmModuleObject> module_object,
    665     uint32_t func_index) {
    666   DCHECK_LT(func_index, module_object->module()->functions.size());
    667   wasm::WireBytesRef name = module_object->module()->LookupFunctionName(
    668       wasm::ModuleWireBytes(module_object->native_module()->wire_bytes()),
    669       func_index);
    670   if (!name.is_set()) return {};
    671   return ExtractUtf8StringFromModuleBytes(isolate, module_object, name);
    672 }
    673 
    674 Handle<String> WasmModuleObject::GetFunctionName(
    675     Isolate* isolate, Handle<WasmModuleObject> module_object,
    676     uint32_t func_index) {
    677   MaybeHandle<String> name =
    678       GetFunctionNameOrNull(isolate, module_object, func_index);
    679   if (!name.is_null()) return name.ToHandleChecked();
    680   EmbeddedVector<char, 32> buffer;
    681   int length = SNPrintF(buffer, "wasm-function[%u]", func_index);
    682   return isolate->factory()
    683       ->NewStringFromOneByte(Vector<uint8_t>::cast(buffer.SubVector(0, length)))
    684       .ToHandleChecked();
    685 }
    686 
    687 Vector<const uint8_t> WasmModuleObject::GetRawFunctionName(
    688     uint32_t func_index) {
    689   DCHECK_GT(module()->functions.size(), func_index);
    690   wasm::ModuleWireBytes wire_bytes(native_module()->wire_bytes());
    691   wasm::WireBytesRef name_ref =
    692       module()->LookupFunctionName(wire_bytes, func_index);
    693   wasm::WasmName name = wire_bytes.GetName(name_ref);
    694   return Vector<const uint8_t>::cast(name);
    695 }
    696 
    697 int WasmModuleObject::GetFunctionOffset(uint32_t func_index) {
    698   const std::vector<WasmFunction>& functions = module()->functions;
    699   if (static_cast<uint32_t>(func_index) >= functions.size()) return -1;
    700   DCHECK_GE(kMaxInt, functions[func_index].code.offset());
    701   return static_cast<int>(functions[func_index].code.offset());
    702 }
    703 
    704 int WasmModuleObject::GetContainingFunction(uint32_t byte_offset) {
    705   const std::vector<WasmFunction>& functions = module()->functions;
    706 
    707   // Binary search for a function containing the given position.
    708   int left = 0;                                    // inclusive
    709   int right = static_cast<int>(functions.size());  // exclusive
    710   if (right == 0) return false;
    711   while (right - left > 1) {
    712     int mid = left + (right - left) / 2;
    713     if (functions[mid].code.offset() <= byte_offset) {
    714       left = mid;
    715     } else {
    716       right = mid;
    717     }
    718   }
    719   // If the found function does not contains the given position, return -1.
    720   const WasmFunction& func = functions[left];
    721   if (byte_offset < func.code.offset() ||
    722       byte_offset >= func.code.end_offset()) {
    723     return -1;
    724   }
    725 
    726   return left;
    727 }
    728 
    729 bool WasmModuleObject::GetPositionInfo(uint32_t position,
    730                                        Script::PositionInfo* info) {
    731   int func_index = GetContainingFunction(position);
    732   if (func_index < 0) return false;
    733 
    734   const WasmFunction& function = module()->functions[func_index];
    735 
    736   info->line = func_index;
    737   info->column = position - function.code.offset();
    738   info->line_start = function.code.offset();
    739   info->line_end = function.code.end_offset();
    740   return true;
    741 }
    742 
    743 Handle<WasmTableObject> WasmTableObject::New(Isolate* isolate, uint32_t initial,
    744                                              int64_t maximum,
    745                                              Handle<FixedArray>* js_functions) {
    746   Handle<JSFunction> table_ctor(
    747       isolate->native_context()->wasm_table_constructor(), isolate);
    748   auto table_obj = Handle<WasmTableObject>::cast(
    749       isolate->factory()->NewJSObject(table_ctor));
    750 
    751   *js_functions = isolate->factory()->NewFixedArray(initial);
    752   Object* null = ReadOnlyRoots(isolate).null_value();
    753   for (int i = 0; i < static_cast<int>(initial); ++i) {
    754     (*js_functions)->set(i, null);
    755   }
    756   table_obj->set_functions(**js_functions);
    757   DCHECK_EQ(maximum, static_cast<int>(maximum));
    758   Handle<Object> max = isolate->factory()->NewNumber(maximum);
    759   table_obj->set_maximum_length(*max);
    760 
    761   table_obj->set_dispatch_tables(ReadOnlyRoots(isolate).empty_fixed_array());
    762   return Handle<WasmTableObject>::cast(table_obj);
    763 }
    764 
    765 void WasmTableObject::AddDispatchTable(Isolate* isolate,
    766                                        Handle<WasmTableObject> table_obj,
    767                                        Handle<WasmInstanceObject> instance,
    768                                        int table_index) {
    769   Handle<FixedArray> dispatch_tables(table_obj->dispatch_tables(), isolate);
    770   int old_length = dispatch_tables->length();
    771   DCHECK_EQ(0, old_length % kDispatchTableNumElements);
    772 
    773   if (instance.is_null()) return;
    774   // TODO(titzer): use weak cells here to avoid leaking instances.
    775 
    776   // Grow the dispatch table and add a new entry at the end.
    777   Handle<FixedArray> new_dispatch_tables =
    778       isolate->factory()->CopyFixedArrayAndGrow(dispatch_tables,
    779                                                 kDispatchTableNumElements);
    780 
    781   new_dispatch_tables->set(old_length + kDispatchTableInstanceOffset,
    782                            *instance);
    783   new_dispatch_tables->set(old_length + kDispatchTableIndexOffset,
    784                            Smi::FromInt(table_index));
    785 
    786   table_obj->set_dispatch_tables(*new_dispatch_tables);
    787 }
    788 
    789 void WasmTableObject::Grow(Isolate* isolate, uint32_t count) {
    790   if (count == 0) return;  // Degenerate case: nothing to do.
    791 
    792   Handle<FixedArray> dispatch_tables(this->dispatch_tables(), isolate);
    793   DCHECK_EQ(0, dispatch_tables->length() % kDispatchTableNumElements);
    794   uint32_t old_size = functions()->length();
    795 
    796   // Tables are stored in the instance object, no code patching is
    797   // necessary. We simply have to grow the raw tables in each instance
    798   // that has imported this table.
    799 
    800   // TODO(titzer): replace the dispatch table with a weak list of all
    801   // the instances that import a given table.
    802   for (int i = 0; i < dispatch_tables->length();
    803        i += kDispatchTableNumElements) {
    804     Handle<WasmInstanceObject> instance(
    805         WasmInstanceObject::cast(dispatch_tables->get(i)), isolate);
    806     DCHECK_EQ(old_size, instance->indirect_function_table_size());
    807     uint32_t new_size = old_size + count;
    808     WasmInstanceObject::EnsureIndirectFunctionTableWithMinimumSize(instance,
    809                                                                    new_size);
    810   }
    811 }
    812 
    813 void WasmTableObject::Set(Isolate* isolate, Handle<WasmTableObject> table,
    814                           int32_t table_index, Handle<JSFunction> function) {
    815   Handle<FixedArray> array(table->functions(), isolate);
    816   if (function.is_null()) {
    817     ClearDispatchTables(isolate, table, table_index);  // Degenerate case.
    818     array->set(table_index, ReadOnlyRoots(isolate).null_value());
    819     return;
    820   }
    821 
    822   // TODO(titzer): Change this to MaybeHandle<WasmExportedFunction>
    823   DCHECK(WasmExportedFunction::IsWasmExportedFunction(*function));
    824   auto exported_function = Handle<WasmExportedFunction>::cast(function);
    825   Handle<WasmInstanceObject> other_instance(exported_function->instance(),
    826                                             isolate);
    827   int func_index = exported_function->function_index();
    828   auto* wasm_function = &other_instance->module()->functions[func_index];
    829   DCHECK_NOT_NULL(wasm_function);
    830   DCHECK_NOT_NULL(wasm_function->sig);
    831   Address call_target = exported_function->GetWasmCallTarget();
    832   UpdateDispatchTables(isolate, table, table_index, wasm_function->sig,
    833                        handle(exported_function->instance(), isolate),
    834                        call_target);
    835   array->set(table_index, *function);
    836 }
    837 
    838 void WasmTableObject::UpdateDispatchTables(
    839     Isolate* isolate, Handle<WasmTableObject> table, int table_index,
    840     wasm::FunctionSig* sig, Handle<WasmInstanceObject> from_instance,
    841     Address call_target) {
    842   // We simply need to update the IFTs for each instance that imports
    843   // this table.
    844   Handle<FixedArray> dispatch_tables(table->dispatch_tables(), isolate);
    845   DCHECK_EQ(0, dispatch_tables->length() % kDispatchTableNumElements);
    846 
    847   for (int i = 0; i < dispatch_tables->length();
    848        i += kDispatchTableNumElements) {
    849     Handle<WasmInstanceObject> to_instance(
    850         WasmInstanceObject::cast(
    851             dispatch_tables->get(i + kDispatchTableInstanceOffset)),
    852         isolate);
    853     // Note that {SignatureMap::Find} may return {-1} if the signature is
    854     // not found; it will simply never match any check.
    855     auto sig_id = to_instance->module()->signature_map.Find(*sig);
    856     IndirectFunctionTableEntry(to_instance, table_index)
    857         .set(sig_id, *from_instance, call_target);
    858   }
    859 }
    860 
    861 void WasmTableObject::ClearDispatchTables(Isolate* isolate,
    862                                           Handle<WasmTableObject> table,
    863                                           int index) {
    864   Handle<FixedArray> dispatch_tables(table->dispatch_tables(), isolate);
    865   DCHECK_EQ(0, dispatch_tables->length() % kDispatchTableNumElements);
    866   for (int i = 0; i < dispatch_tables->length();
    867        i += kDispatchTableNumElements) {
    868     Handle<WasmInstanceObject> target_instance(
    869         WasmInstanceObject::cast(
    870             dispatch_tables->get(i + kDispatchTableInstanceOffset)),
    871         isolate);
    872     DCHECK_LT(index, target_instance->indirect_function_table_size());
    873     IndirectFunctionTableEntry(target_instance, index).clear();
    874   }
    875 }
    876 
    877 namespace {
    878 MaybeHandle<JSArrayBuffer> GrowMemoryBuffer(Isolate* isolate,
    879                                             Handle<JSArrayBuffer> old_buffer,
    880                                             uint32_t pages,
    881                                             uint32_t maximum_pages) {
    882   if (!old_buffer->is_growable()) return {};
    883   void* old_mem_start = old_buffer->backing_store();
    884   size_t old_size = old_buffer->byte_length()->Number();
    885   CHECK_GE(wasm::kV8MaxWasmMemoryBytes, old_size);
    886   CHECK_EQ(0, old_size % wasm::kWasmPageSize);
    887   size_t old_pages = old_size / wasm::kWasmPageSize;
    888   if (old_pages > maximum_pages ||            // already reached maximum
    889       (pages > maximum_pages - old_pages) ||  // exceeds remaining
    890       (pages > FLAG_wasm_max_mem_pages - old_pages)) {  // exceeds limit
    891     return {};
    892   }
    893   size_t new_size =
    894       static_cast<size_t>(old_pages + pages) * wasm::kWasmPageSize;
    895   CHECK_GE(wasm::kV8MaxWasmMemoryBytes, new_size);
    896 
    897   // Reusing the backing store from externalized buffers causes problems with
    898   // Blink's array buffers. The connection between the two is lost, which can
    899   // lead to Blink not knowing about the other reference to the buffer and
    900   // freeing it too early.
    901   if (!old_buffer->is_external() &&
    902       ((new_size < old_buffer->allocation_length()) || old_size == new_size)) {
    903     if (old_size != new_size) {
    904       DCHECK_NOT_NULL(old_buffer->backing_store());
    905       // If adjusting permissions fails, propagate error back to return
    906       // failure to grow.
    907       if (!i::SetPermissions(old_mem_start, new_size,
    908                              PageAllocator::kReadWrite)) {
    909         return {};
    910       }
    911       reinterpret_cast<v8::Isolate*>(isolate)
    912           ->AdjustAmountOfExternalAllocatedMemory(pages * wasm::kWasmPageSize);
    913     }
    914     // NOTE: We must allocate a new array buffer here because the spec
    915     // assumes that ArrayBuffers do not change size.
    916     void* backing_store = old_buffer->backing_store();
    917     bool is_external = old_buffer->is_external();
    918     // Disconnect buffer early so GC won't free it.
    919     i::wasm::DetachMemoryBuffer(isolate, old_buffer, false);
    920     Handle<JSArrayBuffer> new_buffer =
    921         wasm::SetupArrayBuffer(isolate, backing_store, new_size, is_external);
    922     return new_buffer;
    923   } else {
    924     // We couldn't reuse the old backing store, so create a new one and copy the
    925     // old contents in.
    926     Handle<JSArrayBuffer> new_buffer;
    927     if (!wasm::NewArrayBuffer(isolate, new_size).ToHandle(&new_buffer)) {
    928       return {};
    929     }
    930     wasm::WasmMemoryTracker* const memory_tracker =
    931         isolate->wasm_engine()->memory_tracker();
    932     // If the old buffer had full guard regions, we can only safely use the new
    933     // buffer if it also has full guard regions. Otherwise, we'd have to
    934     // recompile all the instances using this memory to insert bounds checks.
    935     if (memory_tracker->HasFullGuardRegions(old_mem_start) &&
    936         !memory_tracker->HasFullGuardRegions(new_buffer->backing_store())) {
    937       return {};
    938     }
    939     if (old_size == 0) return new_buffer;
    940     memcpy(new_buffer->backing_store(), old_mem_start, old_size);
    941     DCHECK(old_buffer.is_null() || !old_buffer->is_shared());
    942     constexpr bool free_memory = true;
    943     i::wasm::DetachMemoryBuffer(isolate, old_buffer, free_memory);
    944     return new_buffer;
    945   }
    946 }
    947 
    948 // May GC, because SetSpecializationMemInfoFrom may GC
    949 void SetInstanceMemory(Handle<WasmInstanceObject> instance,
    950                        Handle<JSArrayBuffer> buffer) {
    951   instance->SetRawMemory(reinterpret_cast<byte*>(buffer->backing_store()),
    952                          buffer->byte_length()->Number());
    953 #if DEBUG
    954   if (!FLAG_mock_arraybuffer_allocator) {
    955     // To flush out bugs earlier, in DEBUG mode, check that all pages of the
    956     // memory are accessible by reading and writing one byte on each page.
    957     // Don't do this if the mock ArrayBuffer allocator is enabled.
    958     byte* mem_start = instance->memory_start();
    959     size_t mem_size = instance->memory_size();
    960     for (size_t offset = 0; offset < mem_size; offset += wasm::kWasmPageSize) {
    961       byte val = mem_start[offset];
    962       USE(val);
    963       mem_start[offset] = val;
    964     }
    965   }
    966 #endif
    967 }
    968 
    969 }  // namespace
    970 
    971 Handle<WasmMemoryObject> WasmMemoryObject::New(
    972     Isolate* isolate, MaybeHandle<JSArrayBuffer> maybe_buffer,
    973     int32_t maximum) {
    974   // TODO(kschimpf): Do we need to add an argument that defines the
    975   // style of memory the user prefers (with/without trap handling), so
    976   // that the memory will match the style of the compiled wasm module.
    977   // See issue v8:7143
    978   Handle<JSFunction> memory_ctor(
    979       isolate->native_context()->wasm_memory_constructor(), isolate);
    980   auto memory_obj = Handle<WasmMemoryObject>::cast(
    981       isolate->factory()->NewJSObject(memory_ctor, TENURED));
    982 
    983   Handle<JSArrayBuffer> buffer;
    984   if (!maybe_buffer.ToHandle(&buffer)) {
    985     // If no buffer was provided, create a 0-length one.
    986     buffer = wasm::SetupArrayBuffer(isolate, nullptr, 0, false);
    987   }
    988   memory_obj->set_array_buffer(*buffer);
    989   memory_obj->set_maximum_pages(maximum);
    990 
    991   return memory_obj;
    992 }
    993 
    994 uint32_t WasmMemoryObject::current_pages() {
    995   uint32_t byte_length;
    996   CHECK(array_buffer()->byte_length()->ToUint32(&byte_length));
    997   return byte_length / wasm::kWasmPageSize;
    998 }
    999 
   1000 bool WasmMemoryObject::has_full_guard_region(Isolate* isolate) {
   1001   const wasm::WasmMemoryTracker::AllocationData* allocation =
   1002       isolate->wasm_engine()->memory_tracker()->FindAllocationData(
   1003           array_buffer()->backing_store());
   1004   CHECK_NOT_NULL(allocation);
   1005 
   1006   Address allocation_base =
   1007       reinterpret_cast<Address>(allocation->allocation_base);
   1008   Address buffer_start = reinterpret_cast<Address>(allocation->buffer_start);
   1009 
   1010   // Return whether the allocation covers every possible Wasm heap index.
   1011   //
   1012   // We always have the following relationship:
   1013   // allocation_base <= buffer_start <= buffer_start + memory_size <=
   1014   // allocation_base + allocation_length
   1015   // (in other words, the buffer fits within the allocation)
   1016   //
   1017   // The space between buffer_start + memory_size and allocation_base +
   1018   // allocation_length is the guard region. Here we make sure the guard region
   1019   // is large enough for any Wasm heap offset.
   1020   return buffer_start + wasm::kWasmMaxHeapOffset <=
   1021          allocation_base + allocation->allocation_length;
   1022 }
   1023 
   1024 void WasmMemoryObject::AddInstance(Isolate* isolate,
   1025                                    Handle<WasmMemoryObject> memory,
   1026                                    Handle<WasmInstanceObject> instance) {
   1027   Handle<WeakArrayList> old_instances =
   1028       memory->has_instances()
   1029           ? Handle<WeakArrayList>(memory->instances(), isolate)
   1030           : handle(ReadOnlyRoots(isolate->heap()).empty_weak_array_list(),
   1031                    isolate);
   1032   Handle<WeakArrayList> new_instances = WeakArrayList::AddToEnd(
   1033       isolate, old_instances, MaybeObjectHandle::Weak(instance));
   1034   memory->set_instances(*new_instances);
   1035   Handle<JSArrayBuffer> buffer(memory->array_buffer(), isolate);
   1036   SetInstanceMemory(instance, buffer);
   1037 }
   1038 
   1039 void WasmMemoryObject::RemoveInstance(Handle<WasmMemoryObject> memory,
   1040                                       Handle<WasmInstanceObject> instance) {
   1041   if (memory->has_instances()) {
   1042     memory->instances()->RemoveOne(MaybeObjectHandle::Weak(instance));
   1043   }
   1044 }
   1045 
   1046 // static
   1047 int32_t WasmMemoryObject::Grow(Isolate* isolate,
   1048                                Handle<WasmMemoryObject> memory_object,
   1049                                uint32_t pages) {
   1050   Handle<JSArrayBuffer> old_buffer(memory_object->array_buffer(), isolate);
   1051   if (!old_buffer->is_growable()) return -1;
   1052   uint32_t old_size = 0;
   1053   CHECK(old_buffer->byte_length()->ToUint32(&old_size));
   1054   DCHECK_EQ(0, old_size % wasm::kWasmPageSize);
   1055   Handle<JSArrayBuffer> new_buffer;
   1056 
   1057   uint32_t maximum_pages = FLAG_wasm_max_mem_pages;
   1058   if (memory_object->has_maximum_pages()) {
   1059     maximum_pages = Min(FLAG_wasm_max_mem_pages,
   1060                         static_cast<uint32_t>(memory_object->maximum_pages()));
   1061   }
   1062   if (!GrowMemoryBuffer(isolate, old_buffer, pages, maximum_pages)
   1063            .ToHandle(&new_buffer)) {
   1064     return -1;
   1065   }
   1066 
   1067   if (memory_object->has_instances()) {
   1068     Handle<WeakArrayList> instances(memory_object->instances(), isolate);
   1069     for (int i = 0; i < instances->length(); i++) {
   1070       MaybeObject* elem = instances->Get(i);
   1071       HeapObject* heap_object;
   1072       if (elem->ToWeakHeapObject(&heap_object)) {
   1073         Handle<WasmInstanceObject> instance(
   1074             WasmInstanceObject::cast(heap_object), isolate);
   1075         SetInstanceMemory(instance, new_buffer);
   1076       } else {
   1077         DCHECK(elem->IsClearedWeakHeapObject());
   1078       }
   1079     }
   1080   }
   1081   memory_object->set_array_buffer(*new_buffer);
   1082   return old_size / wasm::kWasmPageSize;
   1083 }
   1084 
   1085 // static
   1086 MaybeHandle<WasmGlobalObject> WasmGlobalObject::New(
   1087     Isolate* isolate, MaybeHandle<JSArrayBuffer> maybe_buffer,
   1088     wasm::ValueType type, int32_t offset, bool is_mutable) {
   1089   Handle<JSFunction> global_ctor(
   1090       isolate->native_context()->wasm_global_constructor(), isolate);
   1091   auto global_obj = Handle<WasmGlobalObject>::cast(
   1092       isolate->factory()->NewJSObject(global_ctor));
   1093 
   1094   uint32_t type_size = wasm::ValueTypes::ElementSizeInBytes(type);
   1095 
   1096   Handle<JSArrayBuffer> buffer;
   1097   if (!maybe_buffer.ToHandle(&buffer)) {
   1098     // If no buffer was provided, create one long enough for the given type.
   1099     buffer =
   1100         isolate->factory()->NewJSArrayBuffer(SharedFlag::kNotShared, TENURED);
   1101 
   1102     const bool initialize = true;
   1103     if (!JSArrayBuffer::SetupAllocatingData(buffer, isolate, type_size,
   1104                                             initialize)) {
   1105       return {};
   1106     }
   1107   }
   1108 
   1109   // Check that the offset is in bounds.
   1110   uint32_t buffer_size = 0;
   1111   CHECK(buffer->byte_length()->ToUint32(&buffer_size));
   1112   CHECK(offset + type_size <= buffer_size);
   1113 
   1114   global_obj->set_array_buffer(*buffer);
   1115   global_obj->set_flags(0);
   1116   global_obj->set_type(type);
   1117   global_obj->set_offset(offset);
   1118   global_obj->set_is_mutable(is_mutable);
   1119 
   1120   return global_obj;
   1121 }
   1122 
   1123 void IndirectFunctionTableEntry::clear() {
   1124   instance_->indirect_function_table_sig_ids()[index_] = -1;
   1125   instance_->indirect_function_table_targets()[index_] = 0;
   1126   instance_->indirect_function_table_instances()->set(
   1127       index_, ReadOnlyRoots(instance_->GetIsolate()).undefined_value());
   1128 }
   1129 
   1130 void IndirectFunctionTableEntry::set(int sig_id, WasmInstanceObject* instance,
   1131                                      Address call_target) {
   1132   TRACE_IFT("IFT entry %p[%d] = {sig_id=%d, instance=%p, target=%" PRIuPTR
   1133             "}\n",
   1134             *instance_, index_, sig_id, instance, call_target);
   1135   instance_->indirect_function_table_sig_ids()[index_] = sig_id;
   1136   instance_->indirect_function_table_targets()[index_] = call_target;
   1137   instance_->indirect_function_table_instances()->set(index_, instance);
   1138 }
   1139 
   1140 WasmInstanceObject* IndirectFunctionTableEntry::instance() {
   1141   return WasmInstanceObject::cast(
   1142       instance_->indirect_function_table_instances()->get(index_));
   1143 }
   1144 
   1145 int IndirectFunctionTableEntry::sig_id() {
   1146   return instance_->indirect_function_table_sig_ids()[index_];
   1147 }
   1148 
   1149 Address IndirectFunctionTableEntry::target() {
   1150   return instance_->indirect_function_table_targets()[index_];
   1151 }
   1152 
   1153 void ImportedFunctionEntry::set_wasm_to_js(
   1154     JSReceiver* callable, const wasm::WasmCode* wasm_to_js_wrapper) {
   1155   TRACE_IFT("Import callable %p[%d] = {callable=%p, target=%p}\n", *instance_,
   1156             index_, callable, wasm_to_js_wrapper->instructions().start());
   1157   DCHECK_EQ(wasm::WasmCode::kWasmToJsWrapper, wasm_to_js_wrapper->kind());
   1158   instance_->imported_function_instances()->set(index_, *instance_);
   1159   instance_->imported_function_callables()->set(index_, callable);
   1160   instance_->imported_function_targets()[index_] =
   1161       wasm_to_js_wrapper->instruction_start();
   1162 }
   1163 
   1164 void ImportedFunctionEntry::set_wasm_to_wasm(WasmInstanceObject* instance,
   1165                                              Address call_target) {
   1166   TRACE_IFT("Import WASM %p[%d] = {instance=%p, target=%" PRIuPTR "}\n",
   1167             *instance_, index_, instance, call_target);
   1168   instance_->imported_function_instances()->set(index_, instance);
   1169   instance_->imported_function_callables()->set(
   1170       index_, instance_->GetReadOnlyRoots().undefined_value());
   1171   instance_->imported_function_targets()[index_] = call_target;
   1172 }
   1173 
   1174 WasmInstanceObject* ImportedFunctionEntry::instance() {
   1175   return WasmInstanceObject::cast(
   1176       instance_->imported_function_instances()->get(index_));
   1177 }
   1178 
   1179 JSReceiver* ImportedFunctionEntry::callable() {
   1180   return JSReceiver::cast(
   1181       instance_->imported_function_callables()->get(index_));
   1182 }
   1183 
   1184 Address ImportedFunctionEntry::target() {
   1185   return instance_->imported_function_targets()[index_];
   1186 }
   1187 
   1188 bool ImportedFunctionEntry::is_js_receiver_entry() {
   1189   return instance_->imported_function_callables()->get(index_)->IsJSReceiver();
   1190 }
   1191 
   1192 bool WasmInstanceObject::EnsureIndirectFunctionTableWithMinimumSize(
   1193     Handle<WasmInstanceObject> instance, uint32_t minimum_size) {
   1194   uint32_t old_size = instance->indirect_function_table_size();
   1195   if (old_size >= minimum_size) return false;  // Nothing to do.
   1196 
   1197   Isolate* isolate = instance->GetIsolate();
   1198   HandleScope scope(isolate);
   1199   auto native_allocations = GetNativeAllocations(*instance);
   1200   native_allocations->resize_indirect_function_table(isolate, instance,
   1201                                                      minimum_size);
   1202   return true;
   1203 }
   1204 
   1205 void WasmInstanceObject::SetRawMemory(byte* mem_start, size_t mem_size) {
   1206   CHECK_LE(mem_size, wasm::kV8MaxWasmMemoryBytes);
   1207 #if V8_HOST_ARCH_64_BIT
   1208   uint64_t mem_mask64 = base::bits::RoundUpToPowerOfTwo64(mem_size) - 1;
   1209   set_memory_start(mem_start);
   1210   set_memory_size(mem_size);
   1211   set_memory_mask(mem_mask64);
   1212 #else
   1213   // Must handle memory > 2GiB specially.
   1214   CHECK_LE(mem_size, size_t{kMaxUInt32});
   1215   uint32_t mem_mask32 =
   1216       (mem_size > 2 * size_t{GB})
   1217           ? 0xFFFFFFFFu
   1218           : base::bits::RoundUpToPowerOfTwo32(static_cast<uint32_t>(mem_size)) -
   1219                 1;
   1220   set_memory_start(mem_start);
   1221   set_memory_size(mem_size);
   1222   set_memory_mask(mem_mask32);
   1223 #endif
   1224 }
   1225 
   1226 const WasmModule* WasmInstanceObject::module() {
   1227   return module_object()->module();
   1228 }
   1229 
   1230 Handle<WasmDebugInfo> WasmInstanceObject::GetOrCreateDebugInfo(
   1231     Handle<WasmInstanceObject> instance) {
   1232   if (instance->has_debug_info()) {
   1233     return handle(instance->debug_info(), instance->GetIsolate());
   1234   }
   1235   Handle<WasmDebugInfo> new_info = WasmDebugInfo::New(instance);
   1236   DCHECK(instance->has_debug_info());
   1237   return new_info;
   1238 }
   1239 
   1240 Handle<WasmInstanceObject> WasmInstanceObject::New(
   1241     Isolate* isolate, Handle<WasmModuleObject> module_object) {
   1242   Handle<JSFunction> instance_cons(
   1243       isolate->native_context()->wasm_instance_constructor(), isolate);
   1244   Handle<JSObject> instance_object =
   1245       isolate->factory()->NewJSObject(instance_cons, TENURED);
   1246 
   1247   Handle<WasmInstanceObject> instance(
   1248       reinterpret_cast<WasmInstanceObject*>(*instance_object), isolate);
   1249 
   1250   // Initialize the imported function arrays.
   1251   auto module = module_object->module();
   1252   auto num_imported_functions = module->num_imported_functions;
   1253   auto num_imported_mutable_globals = module->num_imported_mutable_globals;
   1254   size_t native_allocations_size = EstimateNativeAllocationsSize(module);
   1255   auto native_allocations = Managed<WasmInstanceNativeAllocations>::Allocate(
   1256       isolate, native_allocations_size, instance, num_imported_functions,
   1257       num_imported_mutable_globals);
   1258   instance->set_managed_native_allocations(*native_allocations);
   1259 
   1260   Handle<FixedArray> imported_function_instances =
   1261       isolate->factory()->NewFixedArray(num_imported_functions);
   1262   instance->set_imported_function_instances(*imported_function_instances);
   1263 
   1264   Handle<FixedArray> imported_function_callables =
   1265       isolate->factory()->NewFixedArray(num_imported_functions);
   1266   instance->set_imported_function_callables(*imported_function_callables);
   1267 
   1268   Handle<Code> centry_stub = CodeFactory::CEntry(isolate);
   1269   instance->set_centry_stub(*centry_stub);
   1270 
   1271   instance->SetRawMemory(nullptr, 0);
   1272   instance->set_roots_array_address(
   1273       reinterpret_cast<Address>(isolate->heap()->roots_array_start()));
   1274   instance->set_stack_limit_address(
   1275       isolate->stack_guard()->address_of_jslimit());
   1276   instance->set_real_stack_limit_address(
   1277       isolate->stack_guard()->address_of_real_jslimit());
   1278   instance->set_globals_start(nullptr);
   1279   instance->set_indirect_function_table_size(0);
   1280   instance->set_indirect_function_table_sig_ids(nullptr);
   1281   instance->set_indirect_function_table_targets(nullptr);
   1282   instance->set_native_context(*isolate->native_context());
   1283   instance->set_module_object(*module_object);
   1284   instance->set_undefined_value(ReadOnlyRoots(isolate).undefined_value());
   1285   instance->set_null_value(ReadOnlyRoots(isolate).null_value());
   1286   instance->set_jump_table_start(
   1287       module_object->native_module()->jump_table_start());
   1288 
   1289   // Insert the new instance into the modules weak list of instances.
   1290   // TODO(mstarzinger): Allow to reuse holes in the {WeakArrayList} below.
   1291   Handle<WeakArrayList> weak_instance_list(module_object->weak_instance_list(),
   1292                                            isolate);
   1293   weak_instance_list = WeakArrayList::AddToEnd(
   1294       isolate, weak_instance_list, MaybeObjectHandle::Weak(instance));
   1295   module_object->set_weak_instance_list(*weak_instance_list);
   1296 
   1297   return instance;
   1298 }
   1299 
   1300 namespace {
   1301 void InstanceFinalizer(const v8::WeakCallbackInfo<void>& data) {
   1302   DisallowHeapAllocation no_gc;
   1303   JSObject** p = reinterpret_cast<JSObject**>(data.GetParameter());
   1304   WasmInstanceObject* instance = reinterpret_cast<WasmInstanceObject*>(*p);
   1305   Isolate* isolate = reinterpret_cast<Isolate*>(data.GetIsolate());
   1306   // If a link to shared memory instances exists, update the list of memory
   1307   // instances before the instance is destroyed.
   1308   TRACE("Finalizing instance of %p {\n",
   1309         instance->module_object()->native_module());
   1310 
   1311   // Since the order of finalizers is not guaranteed, it can be the case
   1312   // that {instance->compiled_module()->module()}, which is a
   1313   // {Managed<WasmModule>} has been collected earlier in this GC cycle.
   1314   // Weak references to this instance won't be cleared until
   1315   // the next GC cycle, so we need to manually break some links (such as
   1316   // the weak references from {WasmMemoryObject::instances}.
   1317   if (instance->has_memory_object()) {
   1318     WasmMemoryObject::RemoveInstance(handle(instance->memory_object(), isolate),
   1319                                      handle(instance, isolate));
   1320   }
   1321 
   1322   // Free raw C++ memory associated with the instance.
   1323   GetNativeAllocations(instance)->free();
   1324 
   1325   GlobalHandles::Destroy(reinterpret_cast<Object**>(p));
   1326   TRACE("}\n");
   1327 }
   1328 
   1329 }  // namespace
   1330 
   1331 void WasmInstanceObject::InstallFinalizer(Isolate* isolate,
   1332                                           Handle<WasmInstanceObject> instance) {
   1333   Handle<Object> global_handle = isolate->global_handles()->Create(*instance);
   1334   GlobalHandles::MakeWeak(global_handle.location(), global_handle.location(),
   1335                           InstanceFinalizer, v8::WeakCallbackType::kFinalizer);
   1336 }
   1337 
   1338 Address WasmInstanceObject::GetCallTarget(uint32_t func_index) {
   1339   wasm::NativeModule* native_module = module_object()->native_module();
   1340   if (func_index < native_module->num_imported_functions()) {
   1341     return imported_function_targets()[func_index];
   1342   }
   1343   return native_module->GetCallTargetForFunction(func_index);
   1344 }
   1345 
   1346 bool WasmExportedFunction::IsWasmExportedFunction(Object* object) {
   1347   if (!object->IsJSFunction()) return false;
   1348   JSFunction* js_function = JSFunction::cast(object);
   1349   if (Code::JS_TO_WASM_FUNCTION != js_function->code()->kind()) return false;
   1350   DCHECK(js_function->shared()->HasWasmExportedFunctionData());
   1351   return true;
   1352 }
   1353 
   1354 WasmExportedFunction* WasmExportedFunction::cast(Object* object) {
   1355   DCHECK(IsWasmExportedFunction(object));
   1356   return reinterpret_cast<WasmExportedFunction*>(object);
   1357 }
   1358 
   1359 WasmInstanceObject* WasmExportedFunction::instance() {
   1360   return shared()->wasm_exported_function_data()->instance();
   1361 }
   1362 
   1363 int WasmExportedFunction::function_index() {
   1364   return shared()->wasm_exported_function_data()->function_index();
   1365 }
   1366 
   1367 Handle<WasmExportedFunction> WasmExportedFunction::New(
   1368     Isolate* isolate, Handle<WasmInstanceObject> instance,
   1369     MaybeHandle<String> maybe_name, int func_index, int arity,
   1370     Handle<Code> export_wrapper) {
   1371   DCHECK_EQ(Code::JS_TO_WASM_FUNCTION, export_wrapper->kind());
   1372   int num_imported_functions = instance->module()->num_imported_functions;
   1373   int jump_table_offset = -1;
   1374   if (func_index >= num_imported_functions) {
   1375     ptrdiff_t jump_table_diff =
   1376         instance->module_object()->native_module()->jump_table_offset(
   1377             func_index);
   1378     DCHECK(jump_table_diff >= 0 && jump_table_diff <= INT_MAX);
   1379     jump_table_offset = static_cast<int>(jump_table_diff);
   1380   }
   1381   Handle<WasmExportedFunctionData> function_data =
   1382       Handle<WasmExportedFunctionData>::cast(isolate->factory()->NewStruct(
   1383           WASM_EXPORTED_FUNCTION_DATA_TYPE, TENURED));
   1384   function_data->set_wrapper_code(*export_wrapper);
   1385   function_data->set_instance(*instance);
   1386   function_data->set_jump_table_offset(jump_table_offset);
   1387   function_data->set_function_index(func_index);
   1388   Handle<String> name;
   1389   if (!maybe_name.ToHandle(&name)) {
   1390     EmbeddedVector<char, 16> buffer;
   1391     int length = SNPrintF(buffer, "%d", func_index);
   1392     name = isolate->factory()
   1393                ->NewStringFromOneByte(
   1394                    Vector<uint8_t>::cast(buffer.SubVector(0, length)))
   1395                .ToHandleChecked();
   1396   }
   1397   NewFunctionArgs args = NewFunctionArgs::ForWasm(
   1398       name, function_data, isolate->sloppy_function_without_prototype_map());
   1399   Handle<JSFunction> js_function = isolate->factory()->NewFunction(args);
   1400   // According to the spec, exported functions should not have a [[Construct]]
   1401   // method.
   1402   DCHECK(!js_function->IsConstructor());
   1403   js_function->shared()->set_length(arity);
   1404   js_function->shared()->set_internal_formal_parameter_count(arity);
   1405   return Handle<WasmExportedFunction>::cast(js_function);
   1406 }
   1407 
   1408 Address WasmExportedFunction::GetWasmCallTarget() {
   1409   return instance()->GetCallTarget(function_index());
   1410 }
   1411 
   1412 #undef TRACE
   1413 #undef TRACE_IFT
   1414 }  // namespace internal
   1415 }  // namespace v8
   1416