Home | History | Annotate | Download | only in CodeGen
      1 //===- FastISel.h - Definition of the FastISel class ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// This file defines the FastISel class.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CODEGEN_FASTISEL_H
     16 #define LLVM_CODEGEN_FASTISEL_H
     17 
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/StringRef.h"
     21 #include "llvm/CodeGen/MachineBasicBlock.h"
     22 #include "llvm/CodeGen/TargetLowering.h"
     23 #include "llvm/IR/Attributes.h"
     24 #include "llvm/IR/CallSite.h"
     25 #include "llvm/IR/CallingConv.h"
     26 #include "llvm/IR/DebugLoc.h"
     27 #include "llvm/IR/DerivedTypes.h"
     28 #include "llvm/IR/InstrTypes.h"
     29 #include "llvm/IR/IntrinsicInst.h"
     30 #include "llvm/Support/MachineValueType.h"
     31 #include <algorithm>
     32 #include <cstdint>
     33 #include <utility>
     34 
     35 namespace llvm {
     36 
     37 class AllocaInst;
     38 class BasicBlock;
     39 class CallInst;
     40 class Constant;
     41 class ConstantFP;
     42 class DataLayout;
     43 class FunctionLoweringInfo;
     44 class LoadInst;
     45 class MachineConstantPool;
     46 class MachineFrameInfo;
     47 class MachineFunction;
     48 class MachineInstr;
     49 class MachineMemOperand;
     50 class MachineOperand;
     51 class MachineRegisterInfo;
     52 class MCContext;
     53 class MCInstrDesc;
     54 class MCSymbol;
     55 class TargetInstrInfo;
     56 class TargetLibraryInfo;
     57 class TargetMachine;
     58 class TargetRegisterClass;
     59 class TargetRegisterInfo;
     60 class Type;
     61 class User;
     62 class Value;
     63 
     64 /// This is a fast-path instruction selection class that generates poor
     65 /// code and doesn't support illegal types or non-trivial lowering, but runs
     66 /// quickly.
     67 class FastISel {
     68 public:
     69   using ArgListEntry = TargetLoweringBase::ArgListEntry;
     70   using ArgListTy = TargetLoweringBase::ArgListTy;
     71   struct CallLoweringInfo {
     72     Type *RetTy = nullptr;
     73     bool RetSExt : 1;
     74     bool RetZExt : 1;
     75     bool IsVarArg : 1;
     76     bool IsInReg : 1;
     77     bool DoesNotReturn : 1;
     78     bool IsReturnValueUsed : 1;
     79     bool IsPatchPoint : 1;
     80 
     81     // IsTailCall Should be modified by implementations of FastLowerCall
     82     // that perform tail call conversions.
     83     bool IsTailCall = false;
     84 
     85     unsigned NumFixedArgs = -1;
     86     CallingConv::ID CallConv = CallingConv::C;
     87     const Value *Callee = nullptr;
     88     MCSymbol *Symbol = nullptr;
     89     ArgListTy Args;
     90     ImmutableCallSite *CS = nullptr;
     91     MachineInstr *Call = nullptr;
     92     unsigned ResultReg = 0;
     93     unsigned NumResultRegs = 0;
     94 
     95     SmallVector<Value *, 16> OutVals;
     96     SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
     97     SmallVector<unsigned, 16> OutRegs;
     98     SmallVector<ISD::InputArg, 4> Ins;
     99     SmallVector<unsigned, 4> InRegs;
    100 
    101     CallLoweringInfo()
    102         : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
    103           DoesNotReturn(false), IsReturnValueUsed(true), IsPatchPoint(false) {}
    104 
    105     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
    106                                 const Value *Target, ArgListTy &&ArgsList,
    107                                 ImmutableCallSite &Call) {
    108       RetTy = ResultTy;
    109       Callee = Target;
    110 
    111       IsInReg = Call.hasRetAttr(Attribute::InReg);
    112       DoesNotReturn = Call.doesNotReturn();
    113       IsVarArg = FuncTy->isVarArg();
    114       IsReturnValueUsed = !Call.getInstruction()->use_empty();
    115       RetSExt = Call.hasRetAttr(Attribute::SExt);
    116       RetZExt = Call.hasRetAttr(Attribute::ZExt);
    117 
    118       CallConv = Call.getCallingConv();
    119       Args = std::move(ArgsList);
    120       NumFixedArgs = FuncTy->getNumParams();
    121 
    122       CS = &Call;
    123 
    124       return *this;
    125     }
    126 
    127     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
    128                                 MCSymbol *Target, ArgListTy &&ArgsList,
    129                                 ImmutableCallSite &Call,
    130                                 unsigned FixedArgs = ~0U) {
    131       RetTy = ResultTy;
    132       Callee = Call.getCalledValue();
    133       Symbol = Target;
    134 
    135       IsInReg = Call.hasRetAttr(Attribute::InReg);
    136       DoesNotReturn = Call.doesNotReturn();
    137       IsVarArg = FuncTy->isVarArg();
    138       IsReturnValueUsed = !Call.getInstruction()->use_empty();
    139       RetSExt = Call.hasRetAttr(Attribute::SExt);
    140       RetZExt = Call.hasRetAttr(Attribute::ZExt);
    141 
    142       CallConv = Call.getCallingConv();
    143       Args = std::move(ArgsList);
    144       NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;
    145 
    146       CS = &Call;
    147 
    148       return *this;
    149     }
    150 
    151     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
    152                                 const Value *Target, ArgListTy &&ArgsList,
    153                                 unsigned FixedArgs = ~0U) {
    154       RetTy = ResultTy;
    155       Callee = Target;
    156       CallConv = CC;
    157       Args = std::move(ArgsList);
    158       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
    159       return *this;
    160     }
    161 
    162     CallLoweringInfo &setCallee(const DataLayout &DL, MCContext &Ctx,
    163                                 CallingConv::ID CC, Type *ResultTy,
    164                                 StringRef Target, ArgListTy &&ArgsList,
    165                                 unsigned FixedArgs = ~0U);
    166 
    167     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
    168                                 MCSymbol *Target, ArgListTy &&ArgsList,
    169                                 unsigned FixedArgs = ~0U) {
    170       RetTy = ResultTy;
    171       Symbol = Target;
    172       CallConv = CC;
    173       Args = std::move(ArgsList);
    174       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
    175       return *this;
    176     }
    177 
    178     CallLoweringInfo &setTailCall(bool Value = true) {
    179       IsTailCall = Value;
    180       return *this;
    181     }
    182 
    183     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
    184       IsPatchPoint = Value;
    185       return *this;
    186     }
    187 
    188     ArgListTy &getArgs() { return Args; }
    189 
    190     void clearOuts() {
    191       OutVals.clear();
    192       OutFlags.clear();
    193       OutRegs.clear();
    194     }
    195 
    196     void clearIns() {
    197       Ins.clear();
    198       InRegs.clear();
    199     }
    200   };
    201 
    202 protected:
    203   DenseMap<const Value *, unsigned> LocalValueMap;
    204   FunctionLoweringInfo &FuncInfo;
    205   MachineFunction *MF;
    206   MachineRegisterInfo &MRI;
    207   MachineFrameInfo &MFI;
    208   MachineConstantPool &MCP;
    209   DebugLoc DbgLoc;
    210   const TargetMachine &TM;
    211   const DataLayout &DL;
    212   const TargetInstrInfo &TII;
    213   const TargetLowering &TLI;
    214   const TargetRegisterInfo &TRI;
    215   const TargetLibraryInfo *LibInfo;
    216   bool SkipTargetIndependentISel;
    217 
    218   /// The position of the last instruction for materializing constants
    219   /// for use in the current block. It resets to EmitStartPt when it makes sense
    220   /// (for example, it's usually profitable to avoid function calls between the
    221   /// definition and the use)
    222   MachineInstr *LastLocalValue;
    223 
    224   /// The top most instruction in the current block that is allowed for
    225   /// emitting local variables. LastLocalValue resets to EmitStartPt when it
    226   /// makes sense (for example, on function calls)
    227   MachineInstr *EmitStartPt;
    228 
    229   /// Last local value flush point. On a subsequent flush, no local value will
    230   /// sink past this point.
    231   MachineBasicBlock::iterator LastFlushPoint;
    232 
    233 public:
    234   virtual ~FastISel();
    235 
    236   /// Return the position of the last instruction emitted for
    237   /// materializing constants for use in the current block.
    238   MachineInstr *getLastLocalValue() { return LastLocalValue; }
    239 
    240   /// Update the position of the last instruction emitted for
    241   /// materializing constants for use in the current block.
    242   void setLastLocalValue(MachineInstr *I) {
    243     EmitStartPt = I;
    244     LastLocalValue = I;
    245   }
    246 
    247   /// Set the current block to which generated machine instructions will
    248   /// be appended.
    249   void startNewBlock();
    250 
    251   /// Flush the local value map and sink local values if possible.
    252   void finishBasicBlock();
    253 
    254   /// Return current debug location information.
    255   DebugLoc getCurDebugLoc() const { return DbgLoc; }
    256 
    257   /// Do "fast" instruction selection for function arguments and append
    258   /// the machine instructions to the current block. Returns true when
    259   /// successful.
    260   bool lowerArguments();
    261 
    262   /// Do "fast" instruction selection for the given LLVM IR instruction
    263   /// and append the generated machine instructions to the current block.
    264   /// Returns true if selection was successful.
    265   bool selectInstruction(const Instruction *I);
    266 
    267   /// Do "fast" instruction selection for the given LLVM IR operator
    268   /// (Instruction or ConstantExpr), and append generated machine instructions
    269   /// to the current block. Return true if selection was successful.
    270   bool selectOperator(const User *I, unsigned Opcode);
    271 
    272   /// Create a virtual register and arrange for it to be assigned the
    273   /// value for the given LLVM value.
    274   unsigned getRegForValue(const Value *V);
    275 
    276   /// Look up the value to see if its value is already cached in a
    277   /// register. It may be defined by instructions across blocks or defined
    278   /// locally.
    279   unsigned lookUpRegForValue(const Value *V);
    280 
    281   /// This is a wrapper around getRegForValue that also takes care of
    282   /// truncating or sign-extending the given getelementptr index value.
    283   std::pair<unsigned, bool> getRegForGEPIndex(const Value *Idx);
    284 
    285   /// We're checking to see if we can fold \p LI into \p FoldInst. Note
    286   /// that we could have a sequence where multiple LLVM IR instructions are
    287   /// folded into the same machineinstr.  For example we could have:
    288   ///
    289   ///   A: x = load i32 *P
    290   ///   B: y = icmp A, 42
    291   ///   C: br y, ...
    292   ///
    293   /// In this scenario, \p LI is "A", and \p FoldInst is "C".  We know about "B"
    294   /// (and any other folded instructions) because it is between A and C.
    295   ///
    296   /// If we succeed folding, return true.
    297   bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
    298 
    299   /// The specified machine instr operand is a vreg, and that vreg is
    300   /// being provided by the specified load instruction.  If possible, try to
    301   /// fold the load as an operand to the instruction, returning true if
    302   /// possible.
    303   ///
    304   /// This method should be implemented by targets.
    305   virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
    306                                    const LoadInst * /*LI*/) {
    307     return false;
    308   }
    309 
    310   /// Reset InsertPt to prepare for inserting instructions into the
    311   /// current block.
    312   void recomputeInsertPt();
    313 
    314   /// Remove all dead instructions between the I and E.
    315   void removeDeadCode(MachineBasicBlock::iterator I,
    316                       MachineBasicBlock::iterator E);
    317 
    318   struct SavePoint {
    319     MachineBasicBlock::iterator InsertPt;
    320     DebugLoc DL;
    321   };
    322 
    323   /// Prepare InsertPt to begin inserting instructions into the local
    324   /// value area and return the old insert position.
    325   SavePoint enterLocalValueArea();
    326 
    327   /// Reset InsertPt to the given old insert position.
    328   void leaveLocalValueArea(SavePoint Old);
    329 
    330 protected:
    331   explicit FastISel(FunctionLoweringInfo &FuncInfo,
    332                     const TargetLibraryInfo *LibInfo,
    333                     bool SkipTargetIndependentISel = false);
    334 
    335   /// This method is called by target-independent code when the normal
    336   /// FastISel process fails to select an instruction. This gives targets a
    337   /// chance to emit code for anything that doesn't fit into FastISel's
    338   /// framework. It returns true if it was successful.
    339   virtual bool fastSelectInstruction(const Instruction *I) = 0;
    340 
    341   /// This method is called by target-independent code to do target-
    342   /// specific argument lowering. It returns true if it was successful.
    343   virtual bool fastLowerArguments();
    344 
    345   /// This method is called by target-independent code to do target-
    346   /// specific call lowering. It returns true if it was successful.
    347   virtual bool fastLowerCall(CallLoweringInfo &CLI);
    348 
    349   /// This method is called by target-independent code to do target-
    350   /// specific intrinsic lowering. It returns true if it was successful.
    351   virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);
    352 
    353   /// This method is called by target-independent code to request that an
    354   /// instruction with the given type and opcode be emitted.
    355   virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);
    356 
    357   /// This method is called by target-independent code to request that an
    358   /// instruction with the given type, opcode, and register operand be emitted.
    359   virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    360                               bool Op0IsKill);
    361 
    362   /// This method is called by target-independent code to request that an
    363   /// instruction with the given type, opcode, and register operands be emitted.
    364   virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    365                                bool Op0IsKill, unsigned Op1, bool Op1IsKill);
    366 
    367   /// This method is called by target-independent code to request that an
    368   /// instruction with the given type, opcode, and register and immediate
    369   /// operands be emitted.
    370   virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
    371                                bool Op0IsKill, uint64_t Imm);
    372 
    373   /// This method is a wrapper of fastEmit_ri.
    374   ///
    375   /// It first tries to emit an instruction with an immediate operand using
    376   /// fastEmit_ri.  If that fails, it materializes the immediate into a register
    377   /// and try fastEmit_rr instead.
    378   unsigned fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill,
    379                         uint64_t Imm, MVT ImmType);
    380 
    381   /// This method is called by target-independent code to request that an
    382   /// instruction with the given type, opcode, and immediate operand be emitted.
    383   virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);
    384 
    385   /// This method is called by target-independent code to request that an
    386   /// instruction with the given type, opcode, and floating-point immediate
    387   /// operand be emitted.
    388   virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
    389                               const ConstantFP *FPImm);
    390 
    391   /// Emit a MachineInstr with no operands and a result register in the
    392   /// given register class.
    393   unsigned fastEmitInst_(unsigned MachineInstOpcode,
    394                          const TargetRegisterClass *RC);
    395 
    396   /// Emit a MachineInstr with one register operand and a result register
    397   /// in the given register class.
    398   unsigned fastEmitInst_r(unsigned MachineInstOpcode,
    399                           const TargetRegisterClass *RC, unsigned Op0,
    400                           bool Op0IsKill);
    401 
    402   /// Emit a MachineInstr with two register operands and a result
    403   /// register in the given register class.
    404   unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
    405                            const TargetRegisterClass *RC, unsigned Op0,
    406                            bool Op0IsKill, unsigned Op1, bool Op1IsKill);
    407 
    408   /// Emit a MachineInstr with three register operands and a result
    409   /// register in the given register class.
    410   unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
    411                             const TargetRegisterClass *RC, unsigned Op0,
    412                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
    413                             unsigned Op2, bool Op2IsKill);
    414 
    415   /// Emit a MachineInstr with a register operand, an immediate, and a
    416   /// result register in the given register class.
    417   unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
    418                            const TargetRegisterClass *RC, unsigned Op0,
    419                            bool Op0IsKill, uint64_t Imm);
    420 
    421   /// Emit a MachineInstr with one register operand and two immediate
    422   /// operands.
    423   unsigned fastEmitInst_rii(unsigned MachineInstOpcode,
    424                             const TargetRegisterClass *RC, unsigned Op0,
    425                             bool Op0IsKill, uint64_t Imm1, uint64_t Imm2);
    426 
    427   /// Emit a MachineInstr with a floating point immediate, and a result
    428   /// register in the given register class.
    429   unsigned fastEmitInst_f(unsigned MachineInstOpcode,
    430                           const TargetRegisterClass *RC,
    431                           const ConstantFP *FPImm);
    432 
    433   /// Emit a MachineInstr with two register operands, an immediate, and a
    434   /// result register in the given register class.
    435   unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
    436                             const TargetRegisterClass *RC, unsigned Op0,
    437                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
    438                             uint64_t Imm);
    439 
    440   /// Emit a MachineInstr with a single immediate operand, and a result
    441   /// register in the given register class.
    442   unsigned fastEmitInst_i(unsigned MachineInstOpcode,
    443                           const TargetRegisterClass *RC, uint64_t Imm);
    444 
    445   /// Emit a MachineInstr for an extract_subreg from a specified index of
    446   /// a superregister to a specified type.
    447   unsigned fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill,
    448                                       uint32_t Idx);
    449 
    450   /// Emit MachineInstrs to compute the value of Op with all but the
    451   /// least significant bit set to zero.
    452   unsigned fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill);
    453 
    454   /// Emit an unconditional branch to the given block, unless it is the
    455   /// immediate (fall-through) successor, and update the CFG.
    456   void fastEmitBranch(MachineBasicBlock *MSucc, const DebugLoc &DbgLoc);
    457 
    458   /// Emit an unconditional branch to \p FalseMBB, obtains the branch weight
    459   /// and adds TrueMBB and FalseMBB to the successor list.
    460   void finishCondBranch(const BasicBlock *BranchBB, MachineBasicBlock *TrueMBB,
    461                         MachineBasicBlock *FalseMBB);
    462 
    463   /// Update the value map to include the new mapping for this
    464   /// instruction, or insert an extra copy to get the result in a previous
    465   /// determined register.
    466   ///
    467   /// NOTE: This is only necessary because we might select a block that uses a
    468   /// value before we select the block that defines the value. It might be
    469   /// possible to fix this by selecting blocks in reverse postorder.
    470   void updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs = 1);
    471 
    472   unsigned createResultReg(const TargetRegisterClass *RC);
    473 
    474   /// Try to constrain Op so that it is usable by argument OpNum of the
    475   /// provided MCInstrDesc. If this fails, create a new virtual register in the
    476   /// correct class and COPY the value there.
    477   unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
    478                                     unsigned OpNum);
    479 
    480   /// Emit a constant in a register using target-specific logic, such as
    481   /// constant pool loads.
    482   virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }
    483 
    484   /// Emit an alloca address in a register using target-specific logic.
    485   virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }
    486 
    487   /// Emit the floating-point constant +0.0 in a register using target-
    488   /// specific logic.
    489   virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
    490     return 0;
    491   }
    492 
    493   /// Check if \c Add is an add that can be safely folded into \c GEP.
    494   ///
    495   /// \c Add can be folded into \c GEP if:
    496   /// - \c Add is an add,
    497   /// - \c Add's size matches \c GEP's,
    498   /// - \c Add is in the same basic block as \c GEP, and
    499   /// - \c Add has a constant operand.
    500   bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
    501 
    502   /// Test whether the given value has exactly one use.
    503   bool hasTrivialKill(const Value *V);
    504 
    505   /// Create a machine mem operand from the given instruction.
    506   MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
    507 
    508   CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;
    509 
    510   bool lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs);
    511   bool lowerCallTo(const CallInst *CI, const char *SymName,
    512                    unsigned NumArgs);
    513   bool lowerCallTo(CallLoweringInfo &CLI);
    514 
    515   bool isCommutativeIntrinsic(IntrinsicInst const *II) {
    516     switch (II->getIntrinsicID()) {
    517     case Intrinsic::sadd_with_overflow:
    518     case Intrinsic::uadd_with_overflow:
    519     case Intrinsic::smul_with_overflow:
    520     case Intrinsic::umul_with_overflow:
    521       return true;
    522     default:
    523       return false;
    524     }
    525   }
    526 
    527   bool lowerCall(const CallInst *I);
    528   /// Select and emit code for a binary operator instruction, which has
    529   /// an opcode which directly corresponds to the given ISD opcode.
    530   bool selectBinaryOp(const User *I, unsigned ISDOpcode);
    531   bool selectFNeg(const User *I);
    532   bool selectGetElementPtr(const User *I);
    533   bool selectStackmap(const CallInst *I);
    534   bool selectPatchpoint(const CallInst *I);
    535   bool selectCall(const User *I);
    536   bool selectIntrinsicCall(const IntrinsicInst *II);
    537   bool selectBitCast(const User *I);
    538   bool selectCast(const User *I, unsigned Opcode);
    539   bool selectExtractValue(const User *U);
    540   bool selectInsertValue(const User *I);
    541   bool selectXRayCustomEvent(const CallInst *II);
    542   bool selectXRayTypedEvent(const CallInst *II);
    543 
    544 private:
    545   /// Handle PHI nodes in successor blocks.
    546   ///
    547   /// Emit code to ensure constants are copied into registers when needed.
    548   /// Remember the virtual registers that need to be added to the Machine PHI
    549   /// nodes as input.  We cannot just directly add them, because expansion might
    550   /// result in multiple MBB's for one BB.  As such, the start of the BB might
    551   /// correspond to a different MBB than the end.
    552   bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
    553 
    554   /// Helper for materializeRegForValue to materialize a constant in a
    555   /// target-independent way.
    556   unsigned materializeConstant(const Value *V, MVT VT);
    557 
    558   /// Helper for getRegForVale. This function is called when the value
    559   /// isn't already available in a register and must be materialized with new
    560   /// instructions.
    561   unsigned materializeRegForValue(const Value *V, MVT VT);
    562 
    563   /// Clears LocalValueMap and moves the area for the new local variables
    564   /// to the beginning of the block. It helps to avoid spilling cached variables
    565   /// across heavy instructions like calls.
    566   void flushLocalValueMap();
    567 
    568   /// Removes dead local value instructions after SavedLastLocalvalue.
    569   void removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue);
    570 
    571   struct InstOrderMap {
    572     DenseMap<MachineInstr *, unsigned> Orders;
    573     MachineInstr *FirstTerminator = nullptr;
    574     unsigned FirstTerminatorOrder = std::numeric_limits<unsigned>::max();
    575 
    576     void initialize(MachineBasicBlock *MBB,
    577                     MachineBasicBlock::iterator LastFlushPoint);
    578   };
    579 
    580   /// Sinks the local value materialization instruction LocalMI to its first use
    581   /// in the basic block, or deletes it if it is not used.
    582   void sinkLocalValueMaterialization(MachineInstr &LocalMI, unsigned DefReg,
    583                                      InstOrderMap &OrderMap);
    584 
    585   /// Insertion point before trying to select the current instruction.
    586   MachineBasicBlock::iterator SavedInsertPt;
    587 
    588   /// Add a stackmap or patchpoint intrinsic call's live variable
    589   /// operands to a stackmap or patchpoint machine instruction.
    590   bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
    591                            const CallInst *CI, unsigned StartIdx);
    592   bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
    593                          const Value *Callee, bool ForceRetVoidTy,
    594                          CallLoweringInfo &CLI);
    595 };
    596 
    597 } // end namespace llvm
    598 
    599 #endif // LLVM_CODEGEN_FASTISEL_H
    600