Home | History | Annotate | Download | only in Analysis
      1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Shared implementation of BlockFrequency for IR and Machine Instructions.
     11 // See the documentation below for BlockFrequencyInfoImpl for details.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
     16 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
     17 
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/DenseSet.h"
     20 #include "llvm/ADT/GraphTraits.h"
     21 #include "llvm/ADT/Optional.h"
     22 #include "llvm/ADT/PostOrderIterator.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/ADT/SparseBitVector.h"
     25 #include "llvm/ADT/Twine.h"
     26 #include "llvm/ADT/iterator_range.h"
     27 #include "llvm/IR/BasicBlock.h"
     28 #include "llvm/Support/BlockFrequency.h"
     29 #include "llvm/Support/BranchProbability.h"
     30 #include "llvm/Support/DOTGraphTraits.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/Format.h"
     34 #include "llvm/Support/ScaledNumber.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include <algorithm>
     37 #include <cassert>
     38 #include <cstddef>
     39 #include <cstdint>
     40 #include <deque>
     41 #include <iterator>
     42 #include <limits>
     43 #include <list>
     44 #include <string>
     45 #include <utility>
     46 #include <vector>
     47 
     48 #define DEBUG_TYPE "block-freq"
     49 
     50 namespace llvm {
     51 
     52 class BranchProbabilityInfo;
     53 class Function;
     54 class Loop;
     55 class LoopInfo;
     56 class MachineBasicBlock;
     57 class MachineBranchProbabilityInfo;
     58 class MachineFunction;
     59 class MachineLoop;
     60 class MachineLoopInfo;
     61 
     62 namespace bfi_detail {
     63 
     64 struct IrreducibleGraph;
     65 
     66 // This is part of a workaround for a GCC 4.7 crash on lambdas.
     67 template <class BT> struct BlockEdgesAdder;
     68 
     69 /// Mass of a block.
     70 ///
     71 /// This class implements a sort of fixed-point fraction always between 0.0 and
     72 /// 1.0.  getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
     73 /// 1.0.
     74 ///
     75 /// Masses can be added and subtracted.  Simple saturation arithmetic is used,
     76 /// so arithmetic operations never overflow or underflow.
     77 ///
     78 /// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
     79 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
     80 /// quite, maximum precision).
     81 ///
     82 /// Masses can be scaled by \a BranchProbability at maximum precision.
     83 class BlockMass {
     84   uint64_t Mass = 0;
     85 
     86 public:
     87   BlockMass() = default;
     88   explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
     89 
     90   static BlockMass getEmpty() { return BlockMass(); }
     91 
     92   static BlockMass getFull() {
     93     return BlockMass(std::numeric_limits<uint64_t>::max());
     94   }
     95 
     96   uint64_t getMass() const { return Mass; }
     97 
     98   bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
     99   bool isEmpty() const { return !Mass; }
    100 
    101   bool operator!() const { return isEmpty(); }
    102 
    103   /// Add another mass.
    104   ///
    105   /// Adds another mass, saturating at \a isFull() rather than overflowing.
    106   BlockMass &operator+=(BlockMass X) {
    107     uint64_t Sum = Mass + X.Mass;
    108     Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
    109     return *this;
    110   }
    111 
    112   /// Subtract another mass.
    113   ///
    114   /// Subtracts another mass, saturating at \a isEmpty() rather than
    115   /// undeflowing.
    116   BlockMass &operator-=(BlockMass X) {
    117     uint64_t Diff = Mass - X.Mass;
    118     Mass = Diff > Mass ? 0 : Diff;
    119     return *this;
    120   }
    121 
    122   BlockMass &operator*=(BranchProbability P) {
    123     Mass = P.scale(Mass);
    124     return *this;
    125   }
    126 
    127   bool operator==(BlockMass X) const { return Mass == X.Mass; }
    128   bool operator!=(BlockMass X) const { return Mass != X.Mass; }
    129   bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
    130   bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
    131   bool operator<(BlockMass X) const { return Mass < X.Mass; }
    132   bool operator>(BlockMass X) const { return Mass > X.Mass; }
    133 
    134   /// Convert to scaled number.
    135   ///
    136   /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
    137   /// gives slightly above 0.0.
    138   ScaledNumber<uint64_t> toScaled() const;
    139 
    140   void dump() const;
    141   raw_ostream &print(raw_ostream &OS) const;
    142 };
    143 
    144 inline BlockMass operator+(BlockMass L, BlockMass R) {
    145   return BlockMass(L) += R;
    146 }
    147 inline BlockMass operator-(BlockMass L, BlockMass R) {
    148   return BlockMass(L) -= R;
    149 }
    150 inline BlockMass operator*(BlockMass L, BranchProbability R) {
    151   return BlockMass(L) *= R;
    152 }
    153 inline BlockMass operator*(BranchProbability L, BlockMass R) {
    154   return BlockMass(R) *= L;
    155 }
    156 
    157 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
    158   return X.print(OS);
    159 }
    160 
    161 } // end namespace bfi_detail
    162 
    163 template <> struct isPodLike<bfi_detail::BlockMass> {
    164   static const bool value = true;
    165 };
    166 
    167 /// Base class for BlockFrequencyInfoImpl
    168 ///
    169 /// BlockFrequencyInfoImplBase has supporting data structures and some
    170 /// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
    171 /// the block type (or that call such algorithms) are skipped here.
    172 ///
    173 /// Nevertheless, the majority of the overall algorithm documention lives with
    174 /// BlockFrequencyInfoImpl.  See there for details.
    175 class BlockFrequencyInfoImplBase {
    176 public:
    177   using Scaled64 = ScaledNumber<uint64_t>;
    178   using BlockMass = bfi_detail::BlockMass;
    179 
    180   /// Representative of a block.
    181   ///
    182   /// This is a simple wrapper around an index into the reverse-post-order
    183   /// traversal of the blocks.
    184   ///
    185   /// Unlike a block pointer, its order has meaning (location in the
    186   /// topological sort) and it's class is the same regardless of block type.
    187   struct BlockNode {
    188     using IndexType = uint32_t;
    189 
    190     IndexType Index = std::numeric_limits<uint32_t>::max();
    191 
    192     BlockNode() = default;
    193     BlockNode(IndexType Index) : Index(Index) {}
    194 
    195     bool operator==(const BlockNode &X) const { return Index == X.Index; }
    196     bool operator!=(const BlockNode &X) const { return Index != X.Index; }
    197     bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
    198     bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
    199     bool operator<(const BlockNode &X) const { return Index < X.Index; }
    200     bool operator>(const BlockNode &X) const { return Index > X.Index; }
    201 
    202     bool isValid() const { return Index <= getMaxIndex(); }
    203 
    204     static size_t getMaxIndex() {
    205        return std::numeric_limits<uint32_t>::max() - 1;
    206     }
    207   };
    208 
    209   /// Stats about a block itself.
    210   struct FrequencyData {
    211     Scaled64 Scaled;
    212     uint64_t Integer;
    213   };
    214 
    215   /// Data about a loop.
    216   ///
    217   /// Contains the data necessary to represent a loop as a pseudo-node once it's
    218   /// packaged.
    219   struct LoopData {
    220     using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
    221     using NodeList = SmallVector<BlockNode, 4>;
    222     using HeaderMassList = SmallVector<BlockMass, 1>;
    223 
    224     LoopData *Parent;            ///< The parent loop.
    225     bool IsPackaged = false;     ///< Whether this has been packaged.
    226     uint32_t NumHeaders = 1;     ///< Number of headers.
    227     ExitMap Exits;               ///< Successor edges (and weights).
    228     NodeList Nodes;              ///< Header and the members of the loop.
    229     HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
    230     BlockMass Mass;
    231     Scaled64 Scale;
    232 
    233     LoopData(LoopData *Parent, const BlockNode &Header)
    234       : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
    235 
    236     template <class It1, class It2>
    237     LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
    238              It2 LastOther)
    239         : Parent(Parent), Nodes(FirstHeader, LastHeader) {
    240       NumHeaders = Nodes.size();
    241       Nodes.insert(Nodes.end(), FirstOther, LastOther);
    242       BackedgeMass.resize(NumHeaders);
    243     }
    244 
    245     bool isHeader(const BlockNode &Node) const {
    246       if (isIrreducible())
    247         return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
    248                                   Node);
    249       return Node == Nodes[0];
    250     }
    251 
    252     BlockNode getHeader() const { return Nodes[0]; }
    253     bool isIrreducible() const { return NumHeaders > 1; }
    254 
    255     HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
    256       assert(isHeader(B) && "this is only valid on loop header blocks");
    257       if (isIrreducible())
    258         return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
    259                Nodes.begin();
    260       return 0;
    261     }
    262 
    263     NodeList::const_iterator members_begin() const {
    264       return Nodes.begin() + NumHeaders;
    265     }
    266 
    267     NodeList::const_iterator members_end() const { return Nodes.end(); }
    268     iterator_range<NodeList::const_iterator> members() const {
    269       return make_range(members_begin(), members_end());
    270     }
    271   };
    272 
    273   /// Index of loop information.
    274   struct WorkingData {
    275     BlockNode Node;           ///< This node.
    276     LoopData *Loop = nullptr; ///< The loop this block is inside.
    277     BlockMass Mass;           ///< Mass distribution from the entry block.
    278 
    279     WorkingData(const BlockNode &Node) : Node(Node) {}
    280 
    281     bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
    282 
    283     bool isDoubleLoopHeader() const {
    284       return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
    285              Loop->Parent->isHeader(Node);
    286     }
    287 
    288     LoopData *getContainingLoop() const {
    289       if (!isLoopHeader())
    290         return Loop;
    291       if (!isDoubleLoopHeader())
    292         return Loop->Parent;
    293       return Loop->Parent->Parent;
    294     }
    295 
    296     /// Resolve a node to its representative.
    297     ///
    298     /// Get the node currently representing Node, which could be a containing
    299     /// loop.
    300     ///
    301     /// This function should only be called when distributing mass.  As long as
    302     /// there are no irreducible edges to Node, then it will have complexity
    303     /// O(1) in this context.
    304     ///
    305     /// In general, the complexity is O(L), where L is the number of loop
    306     /// headers Node has been packaged into.  Since this method is called in
    307     /// the context of distributing mass, L will be the number of loop headers
    308     /// an early exit edge jumps out of.
    309     BlockNode getResolvedNode() const {
    310       auto L = getPackagedLoop();
    311       return L ? L->getHeader() : Node;
    312     }
    313 
    314     LoopData *getPackagedLoop() const {
    315       if (!Loop || !Loop->IsPackaged)
    316         return nullptr;
    317       auto L = Loop;
    318       while (L->Parent && L->Parent->IsPackaged)
    319         L = L->Parent;
    320       return L;
    321     }
    322 
    323     /// Get the appropriate mass for a node.
    324     ///
    325     /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
    326     /// has been packaged), returns the mass of its pseudo-node.  If it's a
    327     /// node inside a packaged loop, it returns the loop's mass.
    328     BlockMass &getMass() {
    329       if (!isAPackage())
    330         return Mass;
    331       if (!isADoublePackage())
    332         return Loop->Mass;
    333       return Loop->Parent->Mass;
    334     }
    335 
    336     /// Has ContainingLoop been packaged up?
    337     bool isPackaged() const { return getResolvedNode() != Node; }
    338 
    339     /// Has Loop been packaged up?
    340     bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
    341 
    342     /// Has Loop been packaged up twice?
    343     bool isADoublePackage() const {
    344       return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
    345     }
    346   };
    347 
    348   /// Unscaled probability weight.
    349   ///
    350   /// Probability weight for an edge in the graph (including the
    351   /// successor/target node).
    352   ///
    353   /// All edges in the original function are 32-bit.  However, exit edges from
    354   /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
    355   /// space in general.
    356   ///
    357   /// In addition to the raw weight amount, Weight stores the type of the edge
    358   /// in the current context (i.e., the context of the loop being processed).
    359   /// Is this a local edge within the loop, an exit from the loop, or a
    360   /// backedge to the loop header?
    361   struct Weight {
    362     enum DistType { Local, Exit, Backedge };
    363     DistType Type = Local;
    364     BlockNode TargetNode;
    365     uint64_t Amount = 0;
    366 
    367     Weight() = default;
    368     Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
    369         : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
    370   };
    371 
    372   /// Distribution of unscaled probability weight.
    373   ///
    374   /// Distribution of unscaled probability weight to a set of successors.
    375   ///
    376   /// This class collates the successor edge weights for later processing.
    377   ///
    378   /// \a DidOverflow indicates whether \a Total did overflow while adding to
    379   /// the distribution.  It should never overflow twice.
    380   struct Distribution {
    381     using WeightList = SmallVector<Weight, 4>;
    382 
    383     WeightList Weights;       ///< Individual successor weights.
    384     uint64_t Total = 0;       ///< Sum of all weights.
    385     bool DidOverflow = false; ///< Whether \a Total did overflow.
    386 
    387     Distribution() = default;
    388 
    389     void addLocal(const BlockNode &Node, uint64_t Amount) {
    390       add(Node, Amount, Weight::Local);
    391     }
    392 
    393     void addExit(const BlockNode &Node, uint64_t Amount) {
    394       add(Node, Amount, Weight::Exit);
    395     }
    396 
    397     void addBackedge(const BlockNode &Node, uint64_t Amount) {
    398       add(Node, Amount, Weight::Backedge);
    399     }
    400 
    401     /// Normalize the distribution.
    402     ///
    403     /// Combines multiple edges to the same \a Weight::TargetNode and scales
    404     /// down so that \a Total fits into 32-bits.
    405     ///
    406     /// This is linear in the size of \a Weights.  For the vast majority of
    407     /// cases, adjacent edge weights are combined by sorting WeightList and
    408     /// combining adjacent weights.  However, for very large edge lists an
    409     /// auxiliary hash table is used.
    410     void normalize();
    411 
    412   private:
    413     void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
    414   };
    415 
    416   /// Data about each block.  This is used downstream.
    417   std::vector<FrequencyData> Freqs;
    418 
    419   /// Whether each block is an irreducible loop header.
    420   /// This is used downstream.
    421   SparseBitVector<> IsIrrLoopHeader;
    422 
    423   /// Loop data: see initializeLoops().
    424   std::vector<WorkingData> Working;
    425 
    426   /// Indexed information about loops.
    427   std::list<LoopData> Loops;
    428 
    429   /// Virtual destructor.
    430   ///
    431   /// Need a virtual destructor to mask the compiler warning about
    432   /// getBlockName().
    433   virtual ~BlockFrequencyInfoImplBase() = default;
    434 
    435   /// Add all edges out of a packaged loop to the distribution.
    436   ///
    437   /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
    438   /// successor edge.
    439   ///
    440   /// \return \c true unless there's an irreducible backedge.
    441   bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
    442                                Distribution &Dist);
    443 
    444   /// Add an edge to the distribution.
    445   ///
    446   /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
    447   /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
    448   /// every edge should be a local edge (since all the loops are packaged up).
    449   ///
    450   /// \return \c true unless aborted due to an irreducible backedge.
    451   bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
    452                  const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
    453 
    454   LoopData &getLoopPackage(const BlockNode &Head) {
    455     assert(Head.Index < Working.size());
    456     assert(Working[Head.Index].isLoopHeader());
    457     return *Working[Head.Index].Loop;
    458   }
    459 
    460   /// Analyze irreducible SCCs.
    461   ///
    462   /// Separate irreducible SCCs from \c G, which is an explict graph of \c
    463   /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
    464   /// Insert them into \a Loops before \c Insert.
    465   ///
    466   /// \return the \c LoopData nodes representing the irreducible SCCs.
    467   iterator_range<std::list<LoopData>::iterator>
    468   analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
    469                      std::list<LoopData>::iterator Insert);
    470 
    471   /// Update a loop after packaging irreducible SCCs inside of it.
    472   ///
    473   /// Update \c OuterLoop.  Before finding irreducible control flow, it was
    474   /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
    475   /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
    476   /// up need to be removed from \a OuterLoop::Nodes.
    477   void updateLoopWithIrreducible(LoopData &OuterLoop);
    478 
    479   /// Distribute mass according to a distribution.
    480   ///
    481   /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
    482   /// backedges and exits are stored in its entry in Loops.
    483   ///
    484   /// Mass is distributed in parallel from two copies of the source mass.
    485   void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
    486                       Distribution &Dist);
    487 
    488   /// Compute the loop scale for a loop.
    489   void computeLoopScale(LoopData &Loop);
    490 
    491   /// Adjust the mass of all headers in an irreducible loop.
    492   ///
    493   /// Initially, irreducible loops are assumed to distribute their mass
    494   /// equally among its headers. This can lead to wrong frequency estimates
    495   /// since some headers may be executed more frequently than others.
    496   ///
    497   /// This adjusts header mass distribution so it matches the weights of
    498   /// the backedges going into each of the loop headers.
    499   void adjustLoopHeaderMass(LoopData &Loop);
    500 
    501   void distributeIrrLoopHeaderMass(Distribution &Dist);
    502 
    503   /// Package up a loop.
    504   void packageLoop(LoopData &Loop);
    505 
    506   /// Unwrap loops.
    507   void unwrapLoops();
    508 
    509   /// Finalize frequency metrics.
    510   ///
    511   /// Calculates final frequencies and cleans up no-longer-needed data
    512   /// structures.
    513   void finalizeMetrics();
    514 
    515   /// Clear all memory.
    516   void clear();
    517 
    518   virtual std::string getBlockName(const BlockNode &Node) const;
    519   std::string getLoopName(const LoopData &Loop) const;
    520 
    521   virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
    522   void dump() const { print(dbgs()); }
    523 
    524   Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
    525 
    526   BlockFrequency getBlockFreq(const BlockNode &Node) const;
    527   Optional<uint64_t> getBlockProfileCount(const Function &F,
    528                                           const BlockNode &Node) const;
    529   Optional<uint64_t> getProfileCountFromFreq(const Function &F,
    530                                              uint64_t Freq) const;
    531   bool isIrrLoopHeader(const BlockNode &Node);
    532 
    533   void setBlockFreq(const BlockNode &Node, uint64_t Freq);
    534 
    535   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
    536   raw_ostream &printBlockFreq(raw_ostream &OS,
    537                               const BlockFrequency &Freq) const;
    538 
    539   uint64_t getEntryFreq() const {
    540     assert(!Freqs.empty());
    541     return Freqs[0].Integer;
    542   }
    543 };
    544 
    545 namespace bfi_detail {
    546 
    547 template <class BlockT> struct TypeMap {};
    548 template <> struct TypeMap<BasicBlock> {
    549   using BlockT = BasicBlock;
    550   using FunctionT = Function;
    551   using BranchProbabilityInfoT = BranchProbabilityInfo;
    552   using LoopT = Loop;
    553   using LoopInfoT = LoopInfo;
    554 };
    555 template <> struct TypeMap<MachineBasicBlock> {
    556   using BlockT = MachineBasicBlock;
    557   using FunctionT = MachineFunction;
    558   using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
    559   using LoopT = MachineLoop;
    560   using LoopInfoT = MachineLoopInfo;
    561 };
    562 
    563 /// Get the name of a MachineBasicBlock.
    564 ///
    565 /// Get the name of a MachineBasicBlock.  It's templated so that including from
    566 /// CodeGen is unnecessary (that would be a layering issue).
    567 ///
    568 /// This is used mainly for debug output.  The name is similar to
    569 /// MachineBasicBlock::getFullName(), but skips the name of the function.
    570 template <class BlockT> std::string getBlockName(const BlockT *BB) {
    571   assert(BB && "Unexpected nullptr");
    572   auto MachineName = "BB" + Twine(BB->getNumber());
    573   if (BB->getBasicBlock())
    574     return (MachineName + "[" + BB->getName() + "]").str();
    575   return MachineName.str();
    576 }
    577 /// Get the name of a BasicBlock.
    578 template <> inline std::string getBlockName(const BasicBlock *BB) {
    579   assert(BB && "Unexpected nullptr");
    580   return BB->getName().str();
    581 }
    582 
    583 /// Graph of irreducible control flow.
    584 ///
    585 /// This graph is used for determining the SCCs in a loop (or top-level
    586 /// function) that has irreducible control flow.
    587 ///
    588 /// During the block frequency algorithm, the local graphs are defined in a
    589 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
    590 /// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
    591 /// latter only has successor information.
    592 ///
    593 /// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
    594 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
    595 /// and it explicitly lists predecessors and successors.  The initialization
    596 /// that relies on \c MachineBasicBlock is defined in the header.
    597 struct IrreducibleGraph {
    598   using BFIBase = BlockFrequencyInfoImplBase;
    599 
    600   BFIBase &BFI;
    601 
    602   using BlockNode = BFIBase::BlockNode;
    603   struct IrrNode {
    604     BlockNode Node;
    605     unsigned NumIn = 0;
    606     std::deque<const IrrNode *> Edges;
    607 
    608     IrrNode(const BlockNode &Node) : Node(Node) {}
    609 
    610     using iterator = std::deque<const IrrNode *>::const_iterator;
    611 
    612     iterator pred_begin() const { return Edges.begin(); }
    613     iterator succ_begin() const { return Edges.begin() + NumIn; }
    614     iterator pred_end() const { return succ_begin(); }
    615     iterator succ_end() const { return Edges.end(); }
    616   };
    617   BlockNode Start;
    618   const IrrNode *StartIrr = nullptr;
    619   std::vector<IrrNode> Nodes;
    620   SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
    621 
    622   /// Construct an explicit graph containing irreducible control flow.
    623   ///
    624   /// Construct an explicit graph of the control flow in \c OuterLoop (or the
    625   /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
    626   /// addBlockEdges to add block successors that have not been packaged into
    627   /// loops.
    628   ///
    629   /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
    630   /// user of this.
    631   template <class BlockEdgesAdder>
    632   IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
    633                    BlockEdgesAdder addBlockEdges) : BFI(BFI) {
    634     initialize(OuterLoop, addBlockEdges);
    635   }
    636 
    637   template <class BlockEdgesAdder>
    638   void initialize(const BFIBase::LoopData *OuterLoop,
    639                   BlockEdgesAdder addBlockEdges);
    640   void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
    641   void addNodesInFunction();
    642 
    643   void addNode(const BlockNode &Node) {
    644     Nodes.emplace_back(Node);
    645     BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
    646   }
    647 
    648   void indexNodes();
    649   template <class BlockEdgesAdder>
    650   void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
    651                 BlockEdgesAdder addBlockEdges);
    652   void addEdge(IrrNode &Irr, const BlockNode &Succ,
    653                const BFIBase::LoopData *OuterLoop);
    654 };
    655 
    656 template <class BlockEdgesAdder>
    657 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
    658                                   BlockEdgesAdder addBlockEdges) {
    659   if (OuterLoop) {
    660     addNodesInLoop(*OuterLoop);
    661     for (auto N : OuterLoop->Nodes)
    662       addEdges(N, OuterLoop, addBlockEdges);
    663   } else {
    664     addNodesInFunction();
    665     for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
    666       addEdges(Index, OuterLoop, addBlockEdges);
    667   }
    668   StartIrr = Lookup[Start.Index];
    669 }
    670 
    671 template <class BlockEdgesAdder>
    672 void IrreducibleGraph::addEdges(const BlockNode &Node,
    673                                 const BFIBase::LoopData *OuterLoop,
    674                                 BlockEdgesAdder addBlockEdges) {
    675   auto L = Lookup.find(Node.Index);
    676   if (L == Lookup.end())
    677     return;
    678   IrrNode &Irr = *L->second;
    679   const auto &Working = BFI.Working[Node.Index];
    680 
    681   if (Working.isAPackage())
    682     for (const auto &I : Working.Loop->Exits)
    683       addEdge(Irr, I.first, OuterLoop);
    684   else
    685     addBlockEdges(*this, Irr, OuterLoop);
    686 }
    687 
    688 } // end namespace bfi_detail
    689 
    690 /// Shared implementation for block frequency analysis.
    691 ///
    692 /// This is a shared implementation of BlockFrequencyInfo and
    693 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
    694 /// blocks.
    695 ///
    696 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
    697 /// which is called the header.  A given loop, L, can have sub-loops, which are
    698 /// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
    699 /// consists of a single block that does not have a self-edge.)
    700 ///
    701 /// In addition to loops, this algorithm has limited support for irreducible
    702 /// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
    703 /// discovered on they fly, and modelled as loops with multiple headers.
    704 ///
    705 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
    706 /// nodes that are targets of a backedge within it (excluding backedges within
    707 /// true sub-loops).  Block frequency calculations act as if a block is
    708 /// inserted that intercepts all the edges to the headers.  All backedges and
    709 /// entries point to this block.  Its successors are the headers, which split
    710 /// the frequency evenly.
    711 ///
    712 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
    713 /// separates mass distribution from loop scaling, and dithers to eliminate
    714 /// probability mass loss.
    715 ///
    716 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
    717 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
    718 /// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
    719 /// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
    720 /// reverse-post order.  This gives two advantages:  it's easy to compare the
    721 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
    722 /// by vectors.
    723 ///
    724 /// This algorithm is O(V+E), unless there is irreducible control flow, in
    725 /// which case it's O(V*E) in the worst case.
    726 ///
    727 /// These are the main stages:
    728 ///
    729 ///  0. Reverse post-order traversal (\a initializeRPOT()).
    730 ///
    731 ///     Run a single post-order traversal and save it (in reverse) in RPOT.
    732 ///     All other stages make use of this ordering.  Save a lookup from BlockT
    733 ///     to BlockNode (the index into RPOT) in Nodes.
    734 ///
    735 ///  1. Loop initialization (\a initializeLoops()).
    736 ///
    737 ///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
    738 ///     the algorithm.  In particular, store the immediate members of each loop
    739 ///     in reverse post-order.
    740 ///
    741 ///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
    742 ///
    743 ///     For each loop (bottom-up), distribute mass through the DAG resulting
    744 ///     from ignoring backedges and treating sub-loops as a single pseudo-node.
    745 ///     Track the backedge mass distributed to the loop header, and use it to
    746 ///     calculate the loop scale (number of loop iterations).  Immediate
    747 ///     members that represent sub-loops will already have been visited and
    748 ///     packaged into a pseudo-node.
    749 ///
    750 ///     Distributing mass in a loop is a reverse-post-order traversal through
    751 ///     the loop.  Start by assigning full mass to the Loop header.  For each
    752 ///     node in the loop:
    753 ///
    754 ///         - Fetch and categorize the weight distribution for its successors.
    755 ///           If this is a packaged-subloop, the weight distribution is stored
    756 ///           in \a LoopData::Exits.  Otherwise, fetch it from
    757 ///           BranchProbabilityInfo.
    758 ///
    759 ///         - Each successor is categorized as \a Weight::Local, a local edge
    760 ///           within the current loop, \a Weight::Backedge, a backedge to the
    761 ///           loop header, or \a Weight::Exit, any successor outside the loop.
    762 ///           The weight, the successor, and its category are stored in \a
    763 ///           Distribution.  There can be multiple edges to each successor.
    764 ///
    765 ///         - If there's a backedge to a non-header, there's an irreducible SCC.
    766 ///           The usual flow is temporarily aborted.  \a
    767 ///           computeIrreducibleMass() finds the irreducible SCCs within the
    768 ///           loop, packages them up, and restarts the flow.
    769 ///
    770 ///         - Normalize the distribution:  scale weights down so that their sum
    771 ///           is 32-bits, and coalesce multiple edges to the same node.
    772 ///
    773 ///         - Distribute the mass accordingly, dithering to minimize mass loss,
    774 ///           as described in \a distributeMass().
    775 ///
    776 ///     In the case of irreducible loops, instead of a single loop header,
    777 ///     there will be several. The computation of backedge masses is similar
    778 ///     but instead of having a single backedge mass, there will be one
    779 ///     backedge per loop header. In these cases, each backedge will carry
    780 ///     a mass proportional to the edge weights along the corresponding
    781 ///     path.
    782 ///
    783 ///     At the end of propagation, the full mass assigned to the loop will be
    784 ///     distributed among the loop headers proportionally according to the
    785 ///     mass flowing through their backedges.
    786 ///
    787 ///     Finally, calculate the loop scale from the accumulated backedge mass.
    788 ///
    789 ///  3. Distribute mass in the function (\a computeMassInFunction()).
    790 ///
    791 ///     Finally, distribute mass through the DAG resulting from packaging all
    792 ///     loops in the function.  This uses the same algorithm as distributing
    793 ///     mass in a loop, except that there are no exit or backedge edges.
    794 ///
    795 ///  4. Unpackage loops (\a unwrapLoops()).
    796 ///
    797 ///     Initialize each block's frequency to a floating point representation of
    798 ///     its mass.
    799 ///
    800 ///     Visit loops top-down, scaling the frequencies of its immediate members
    801 ///     by the loop's pseudo-node's frequency.
    802 ///
    803 ///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
    804 ///
    805 ///     Using the min and max frequencies as a guide, translate floating point
    806 ///     frequencies to an appropriate range in uint64_t.
    807 ///
    808 /// It has some known flaws.
    809 ///
    810 ///   - The model of irreducible control flow is a rough approximation.
    811 ///
    812 ///     Modelling irreducible control flow exactly involves setting up and
    813 ///     solving a group of infinite geometric series.  Such precision is
    814 ///     unlikely to be worthwhile, since most of our algorithms give up on
    815 ///     irreducible control flow anyway.
    816 ///
    817 ///     Nevertheless, we might find that we need to get closer.  Here's a sort
    818 ///     of TODO list for the model with diminishing returns, to be completed as
    819 ///     necessary.
    820 ///
    821 ///       - The headers for the \a LoopData representing an irreducible SCC
    822 ///         include non-entry blocks.  When these extra blocks exist, they
    823 ///         indicate a self-contained irreducible sub-SCC.  We could treat them
    824 ///         as sub-loops, rather than arbitrarily shoving the problematic
    825 ///         blocks into the headers of the main irreducible SCC.
    826 ///
    827 ///       - Entry frequencies are assumed to be evenly split between the
    828 ///         headers of a given irreducible SCC, which is the only option if we
    829 ///         need to compute mass in the SCC before its parent loop.  Instead,
    830 ///         we could partially compute mass in the parent loop, and stop when
    831 ///         we get to the SCC.  Here, we have the correct ratio of entry
    832 ///         masses, which we can use to adjust their relative frequencies.
    833 ///         Compute mass in the SCC, and then continue propagation in the
    834 ///         parent.
    835 ///
    836 ///       - We can propagate mass iteratively through the SCC, for some fixed
    837 ///         number of iterations.  Each iteration starts by assigning the entry
    838 ///         blocks their backedge mass from the prior iteration.  The final
    839 ///         mass for each block (and each exit, and the total backedge mass
    840 ///         used for computing loop scale) is the sum of all iterations.
    841 ///         (Running this until fixed point would "solve" the geometric
    842 ///         series by simulation.)
    843 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
    844   // This is part of a workaround for a GCC 4.7 crash on lambdas.
    845   friend struct bfi_detail::BlockEdgesAdder<BT>;
    846 
    847   using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
    848   using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
    849   using BranchProbabilityInfoT =
    850       typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
    851   using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
    852   using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
    853   using Successor = GraphTraits<const BlockT *>;
    854   using Predecessor = GraphTraits<Inverse<const BlockT *>>;
    855 
    856   const BranchProbabilityInfoT *BPI = nullptr;
    857   const LoopInfoT *LI = nullptr;
    858   const FunctionT *F = nullptr;
    859 
    860   // All blocks in reverse postorder.
    861   std::vector<const BlockT *> RPOT;
    862   DenseMap<const BlockT *, BlockNode> Nodes;
    863 
    864   using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
    865 
    866   rpot_iterator rpot_begin() const { return RPOT.begin(); }
    867   rpot_iterator rpot_end() const { return RPOT.end(); }
    868 
    869   size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
    870 
    871   BlockNode getNode(const rpot_iterator &I) const {
    872     return BlockNode(getIndex(I));
    873   }
    874   BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
    875 
    876   const BlockT *getBlock(const BlockNode &Node) const {
    877     assert(Node.Index < RPOT.size());
    878     return RPOT[Node.Index];
    879   }
    880 
    881   /// Run (and save) a post-order traversal.
    882   ///
    883   /// Saves a reverse post-order traversal of all the nodes in \a F.
    884   void initializeRPOT();
    885 
    886   /// Initialize loop data.
    887   ///
    888   /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
    889   /// each block to the deepest loop it's in, but we need the inverse.  For each
    890   /// loop, we store in reverse post-order its "immediate" members, defined as
    891   /// the header, the headers of immediate sub-loops, and all other blocks in
    892   /// the loop that are not in sub-loops.
    893   void initializeLoops();
    894 
    895   /// Propagate to a block's successors.
    896   ///
    897   /// In the context of distributing mass through \c OuterLoop, divide the mass
    898   /// currently assigned to \c Node between its successors.
    899   ///
    900   /// \return \c true unless there's an irreducible backedge.
    901   bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
    902 
    903   /// Compute mass in a particular loop.
    904   ///
    905   /// Assign mass to \c Loop's header, and then for each block in \c Loop in
    906   /// reverse post-order, distribute mass to its successors.  Only visits nodes
    907   /// that have not been packaged into sub-loops.
    908   ///
    909   /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
    910   /// \return \c true unless there's an irreducible backedge.
    911   bool computeMassInLoop(LoopData &Loop);
    912 
    913   /// Try to compute mass in the top-level function.
    914   ///
    915   /// Assign mass to the entry block, and then for each block in reverse
    916   /// post-order, distribute mass to its successors.  Skips nodes that have
    917   /// been packaged into loops.
    918   ///
    919   /// \pre \a computeMassInLoops() has been called.
    920   /// \return \c true unless there's an irreducible backedge.
    921   bool tryToComputeMassInFunction();
    922 
    923   /// Compute mass in (and package up) irreducible SCCs.
    924   ///
    925   /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
    926   /// of \c Insert), and call \a computeMassInLoop() on each of them.
    927   ///
    928   /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
    929   ///
    930   /// \pre \a computeMassInLoop() has been called for each subloop of \c
    931   /// OuterLoop.
    932   /// \pre \c Insert points at the last loop successfully processed by \a
    933   /// computeMassInLoop().
    934   /// \pre \c OuterLoop has irreducible SCCs.
    935   void computeIrreducibleMass(LoopData *OuterLoop,
    936                               std::list<LoopData>::iterator Insert);
    937 
    938   /// Compute mass in all loops.
    939   ///
    940   /// For each loop bottom-up, call \a computeMassInLoop().
    941   ///
    942   /// \a computeMassInLoop() aborts (and returns \c false) on loops that
    943   /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
    944   /// re-enter \a computeMassInLoop().
    945   ///
    946   /// \post \a computeMassInLoop() has returned \c true for every loop.
    947   void computeMassInLoops();
    948 
    949   /// Compute mass in the top-level function.
    950   ///
    951   /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
    952   /// compute mass in the top-level function.
    953   ///
    954   /// \post \a tryToComputeMassInFunction() has returned \c true.
    955   void computeMassInFunction();
    956 
    957   std::string getBlockName(const BlockNode &Node) const override {
    958     return bfi_detail::getBlockName(getBlock(Node));
    959   }
    960 
    961 public:
    962   BlockFrequencyInfoImpl() = default;
    963 
    964   const FunctionT *getFunction() const { return F; }
    965 
    966   void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
    967                  const LoopInfoT &LI);
    968 
    969   using BlockFrequencyInfoImplBase::getEntryFreq;
    970 
    971   BlockFrequency getBlockFreq(const BlockT *BB) const {
    972     return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
    973   }
    974 
    975   Optional<uint64_t> getBlockProfileCount(const Function &F,
    976                                           const BlockT *BB) const {
    977     return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB));
    978   }
    979 
    980   Optional<uint64_t> getProfileCountFromFreq(const Function &F,
    981                                              uint64_t Freq) const {
    982     return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq);
    983   }
    984 
    985   bool isIrrLoopHeader(const BlockT *BB) {
    986     return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB));
    987   }
    988 
    989   void setBlockFreq(const BlockT *BB, uint64_t Freq);
    990 
    991   Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
    992     return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
    993   }
    994 
    995   const BranchProbabilityInfoT &getBPI() const { return *BPI; }
    996 
    997   /// Print the frequencies for the current function.
    998   ///
    999   /// Prints the frequencies for the blocks in the current function.
   1000   ///
   1001   /// Blocks are printed in the natural iteration order of the function, rather
   1002   /// than reverse post-order.  This provides two advantages:  writing -analyze
   1003   /// tests is easier (since blocks come out in source order), and even
   1004   /// unreachable blocks are printed.
   1005   ///
   1006   /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
   1007   /// we need to override it here.
   1008   raw_ostream &print(raw_ostream &OS) const override;
   1009 
   1010   using BlockFrequencyInfoImplBase::dump;
   1011   using BlockFrequencyInfoImplBase::printBlockFreq;
   1012 
   1013   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
   1014     return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
   1015   }
   1016 };
   1017 
   1018 template <class BT>
   1019 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
   1020                                            const BranchProbabilityInfoT &BPI,
   1021                                            const LoopInfoT &LI) {
   1022   // Save the parameters.
   1023   this->BPI = &BPI;
   1024   this->LI = &LI;
   1025   this->F = &F;
   1026 
   1027   // Clean up left-over data structures.
   1028   BlockFrequencyInfoImplBase::clear();
   1029   RPOT.clear();
   1030   Nodes.clear();
   1031 
   1032   // Initialize.
   1033   LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
   1034                     << "\n================="
   1035                     << std::string(F.getName().size(), '=') << "\n");
   1036   initializeRPOT();
   1037   initializeLoops();
   1038 
   1039   // Visit loops in post-order to find the local mass distribution, and then do
   1040   // the full function.
   1041   computeMassInLoops();
   1042   computeMassInFunction();
   1043   unwrapLoops();
   1044   finalizeMetrics();
   1045 }
   1046 
   1047 template <class BT>
   1048 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
   1049   if (Nodes.count(BB))
   1050     BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
   1051   else {
   1052     // If BB is a newly added block after BFI is done, we need to create a new
   1053     // BlockNode for it assigned with a new index. The index can be determined
   1054     // by the size of Freqs.
   1055     BlockNode NewNode(Freqs.size());
   1056     Nodes[BB] = NewNode;
   1057     Freqs.emplace_back();
   1058     BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
   1059   }
   1060 }
   1061 
   1062 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
   1063   const BlockT *Entry = &F->front();
   1064   RPOT.reserve(F->size());
   1065   std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
   1066   std::reverse(RPOT.begin(), RPOT.end());
   1067 
   1068   assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
   1069          "More nodes in function than Block Frequency Info supports");
   1070 
   1071   LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
   1072   for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
   1073     BlockNode Node = getNode(I);
   1074     LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
   1075                       << "\n");
   1076     Nodes[*I] = Node;
   1077   }
   1078 
   1079   Working.reserve(RPOT.size());
   1080   for (size_t Index = 0; Index < RPOT.size(); ++Index)
   1081     Working.emplace_back(Index);
   1082   Freqs.resize(RPOT.size());
   1083 }
   1084 
   1085 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
   1086   LLVM_DEBUG(dbgs() << "loop-detection\n");
   1087   if (LI->empty())
   1088     return;
   1089 
   1090   // Visit loops top down and assign them an index.
   1091   std::deque<std::pair<const LoopT *, LoopData *>> Q;
   1092   for (const LoopT *L : *LI)
   1093     Q.emplace_back(L, nullptr);
   1094   while (!Q.empty()) {
   1095     const LoopT *Loop = Q.front().first;
   1096     LoopData *Parent = Q.front().second;
   1097     Q.pop_front();
   1098 
   1099     BlockNode Header = getNode(Loop->getHeader());
   1100     assert(Header.isValid());
   1101 
   1102     Loops.emplace_back(Parent, Header);
   1103     Working[Header.Index].Loop = &Loops.back();
   1104     LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
   1105 
   1106     for (const LoopT *L : *Loop)
   1107       Q.emplace_back(L, &Loops.back());
   1108   }
   1109 
   1110   // Visit nodes in reverse post-order and add them to their deepest containing
   1111   // loop.
   1112   for (size_t Index = 0; Index < RPOT.size(); ++Index) {
   1113     // Loop headers have already been mostly mapped.
   1114     if (Working[Index].isLoopHeader()) {
   1115       LoopData *ContainingLoop = Working[Index].getContainingLoop();
   1116       if (ContainingLoop)
   1117         ContainingLoop->Nodes.push_back(Index);
   1118       continue;
   1119     }
   1120 
   1121     const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
   1122     if (!Loop)
   1123       continue;
   1124 
   1125     // Add this node to its containing loop's member list.
   1126     BlockNode Header = getNode(Loop->getHeader());
   1127     assert(Header.isValid());
   1128     const auto &HeaderData = Working[Header.Index];
   1129     assert(HeaderData.isLoopHeader());
   1130 
   1131     Working[Index].Loop = HeaderData.Loop;
   1132     HeaderData.Loop->Nodes.push_back(Index);
   1133     LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
   1134                       << ": member = " << getBlockName(Index) << "\n");
   1135   }
   1136 }
   1137 
   1138 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
   1139   // Visit loops with the deepest first, and the top-level loops last.
   1140   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
   1141     if (computeMassInLoop(*L))
   1142       continue;
   1143     auto Next = std::next(L);
   1144     computeIrreducibleMass(&*L, L.base());
   1145     L = std::prev(Next);
   1146     if (computeMassInLoop(*L))
   1147       continue;
   1148     llvm_unreachable("unhandled irreducible control flow");
   1149   }
   1150 }
   1151 
   1152 template <class BT>
   1153 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
   1154   // Compute mass in loop.
   1155   LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
   1156 
   1157   if (Loop.isIrreducible()) {
   1158     LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
   1159     Distribution Dist;
   1160     unsigned NumHeadersWithWeight = 0;
   1161     Optional<uint64_t> MinHeaderWeight;
   1162     DenseSet<uint32_t> HeadersWithoutWeight;
   1163     HeadersWithoutWeight.reserve(Loop.NumHeaders);
   1164     for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
   1165       auto &HeaderNode = Loop.Nodes[H];
   1166       const BlockT *Block = getBlock(HeaderNode);
   1167       IsIrrLoopHeader.set(Loop.Nodes[H].Index);
   1168       Optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
   1169       if (!HeaderWeight) {
   1170         LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
   1171                           << getBlockName(HeaderNode) << "\n");
   1172         HeadersWithoutWeight.insert(H);
   1173         continue;
   1174       }
   1175       LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
   1176                         << " has irr loop header weight "
   1177                         << HeaderWeight.getValue() << "\n");
   1178       NumHeadersWithWeight++;
   1179       uint64_t HeaderWeightValue = HeaderWeight.getValue();
   1180       if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
   1181         MinHeaderWeight = HeaderWeightValue;
   1182       if (HeaderWeightValue) {
   1183         Dist.addLocal(HeaderNode, HeaderWeightValue);
   1184       }
   1185     }
   1186     // As a heuristic, if some headers don't have a weight, give them the
   1187     // minimium weight seen (not to disrupt the existing trends too much by
   1188     // using a weight that's in the general range of the other headers' weights,
   1189     // and the minimum seems to perform better than the average.)
   1190     // FIXME: better update in the passes that drop the header weight.
   1191     // If no headers have a weight, give them even weight (use weight 1).
   1192     if (!MinHeaderWeight)
   1193       MinHeaderWeight = 1;
   1194     for (uint32_t H : HeadersWithoutWeight) {
   1195       auto &HeaderNode = Loop.Nodes[H];
   1196       assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
   1197              "Shouldn't have a weight metadata");
   1198       uint64_t MinWeight = MinHeaderWeight.getValue();
   1199       LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
   1200                         << getBlockName(HeaderNode) << "\n");
   1201       if (MinWeight)
   1202         Dist.addLocal(HeaderNode, MinWeight);
   1203     }
   1204     distributeIrrLoopHeaderMass(Dist);
   1205     for (const BlockNode &M : Loop.Nodes)
   1206       if (!propagateMassToSuccessors(&Loop, M))
   1207         llvm_unreachable("unhandled irreducible control flow");
   1208     if (NumHeadersWithWeight == 0)
   1209       // No headers have a metadata. Adjust header mass.
   1210       adjustLoopHeaderMass(Loop);
   1211   } else {
   1212     Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
   1213     if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
   1214       llvm_unreachable("irreducible control flow to loop header!?");
   1215     for (const BlockNode &M : Loop.members())
   1216       if (!propagateMassToSuccessors(&Loop, M))
   1217         // Irreducible backedge.
   1218         return false;
   1219   }
   1220 
   1221   computeLoopScale(Loop);
   1222   packageLoop(Loop);
   1223   return true;
   1224 }
   1225 
   1226 template <class BT>
   1227 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
   1228   // Compute mass in function.
   1229   LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
   1230   assert(!Working.empty() && "no blocks in function");
   1231   assert(!Working[0].isLoopHeader() && "entry block is a loop header");
   1232 
   1233   Working[0].getMass() = BlockMass::getFull();
   1234   for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
   1235     // Check for nodes that have been packaged.
   1236     BlockNode Node = getNode(I);
   1237     if (Working[Node.Index].isPackaged())
   1238       continue;
   1239 
   1240     if (!propagateMassToSuccessors(nullptr, Node))
   1241       return false;
   1242   }
   1243   return true;
   1244 }
   1245 
   1246 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
   1247   if (tryToComputeMassInFunction())
   1248     return;
   1249   computeIrreducibleMass(nullptr, Loops.begin());
   1250   if (tryToComputeMassInFunction())
   1251     return;
   1252   llvm_unreachable("unhandled irreducible control flow");
   1253 }
   1254 
   1255 /// \note This should be a lambda, but that crashes GCC 4.7.
   1256 namespace bfi_detail {
   1257 
   1258 template <class BT> struct BlockEdgesAdder {
   1259   using BlockT = BT;
   1260   using LoopData = BlockFrequencyInfoImplBase::LoopData;
   1261   using Successor = GraphTraits<const BlockT *>;
   1262 
   1263   const BlockFrequencyInfoImpl<BT> &BFI;
   1264 
   1265   explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
   1266       : BFI(BFI) {}
   1267 
   1268   void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
   1269                   const LoopData *OuterLoop) {
   1270     const BlockT *BB = BFI.RPOT[Irr.Node.Index];
   1271     for (const auto Succ : children<const BlockT *>(BB))
   1272       G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
   1273   }
   1274 };
   1275 
   1276 } // end namespace bfi_detail
   1277 
   1278 template <class BT>
   1279 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
   1280     LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
   1281   LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
   1282              if (OuterLoop) dbgs()
   1283              << "loop: " << getLoopName(*OuterLoop) << "\n";
   1284              else dbgs() << "function\n");
   1285 
   1286   using namespace bfi_detail;
   1287 
   1288   // Ideally, addBlockEdges() would be declared here as a lambda, but that
   1289   // crashes GCC 4.7.
   1290   BlockEdgesAdder<BT> addBlockEdges(*this);
   1291   IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
   1292 
   1293   for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
   1294     computeMassInLoop(L);
   1295 
   1296   if (!OuterLoop)
   1297     return;
   1298   updateLoopWithIrreducible(*OuterLoop);
   1299 }
   1300 
   1301 // A helper function that converts a branch probability into weight.
   1302 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
   1303   return Prob.getNumerator();
   1304 }
   1305 
   1306 template <class BT>
   1307 bool
   1308 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
   1309                                                       const BlockNode &Node) {
   1310   LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
   1311   // Calculate probability for successors.
   1312   Distribution Dist;
   1313   if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
   1314     assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
   1315     if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
   1316       // Irreducible backedge.
   1317       return false;
   1318   } else {
   1319     const BlockT *BB = getBlock(Node);
   1320     for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
   1321               SE = GraphTraits<const BlockT *>::child_end(BB);
   1322          SI != SE; ++SI)
   1323       if (!addToDist(
   1324               Dist, OuterLoop, Node, getNode(*SI),
   1325               getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
   1326         // Irreducible backedge.
   1327         return false;
   1328   }
   1329 
   1330   // Distribute mass to successors, saving exit and backedge data in the
   1331   // loop header.
   1332   distributeMass(Node, OuterLoop, Dist);
   1333   return true;
   1334 }
   1335 
   1336 template <class BT>
   1337 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
   1338   if (!F)
   1339     return OS;
   1340   OS << "block-frequency-info: " << F->getName() << "\n";
   1341   for (const BlockT &BB : *F) {
   1342     OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
   1343     getFloatingBlockFreq(&BB).print(OS, 5)
   1344         << ", int = " << getBlockFreq(&BB).getFrequency();
   1345     if (Optional<uint64_t> ProfileCount =
   1346         BlockFrequencyInfoImplBase::getBlockProfileCount(
   1347             F->getFunction(), getNode(&BB)))
   1348       OS << ", count = " << ProfileCount.getValue();
   1349     if (Optional<uint64_t> IrrLoopHeaderWeight =
   1350         BB.getIrrLoopHeaderWeight())
   1351       OS << ", irr_loop_header_weight = " << IrrLoopHeaderWeight.getValue();
   1352     OS << "\n";
   1353   }
   1354 
   1355   // Add an extra newline for readability.
   1356   OS << "\n";
   1357   return OS;
   1358 }
   1359 
   1360 // Graph trait base class for block frequency information graph
   1361 // viewer.
   1362 
   1363 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
   1364 
   1365 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
   1366 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
   1367   using GTraits = GraphTraits<BlockFrequencyInfoT *>;
   1368   using NodeRef = typename GTraits::NodeRef;
   1369   using EdgeIter = typename GTraits::ChildIteratorType;
   1370   using NodeIter = typename GTraits::nodes_iterator;
   1371 
   1372   uint64_t MaxFrequency = 0;
   1373 
   1374   explicit BFIDOTGraphTraitsBase(bool isSimple = false)
   1375       : DefaultDOTGraphTraits(isSimple) {}
   1376 
   1377   static std::string getGraphName(const BlockFrequencyInfoT *G) {
   1378     return G->getFunction()->getName();
   1379   }
   1380 
   1381   std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
   1382                                 unsigned HotPercentThreshold = 0) {
   1383     std::string Result;
   1384     if (!HotPercentThreshold)
   1385       return Result;
   1386 
   1387     // Compute MaxFrequency on the fly:
   1388     if (!MaxFrequency) {
   1389       for (NodeIter I = GTraits::nodes_begin(Graph),
   1390                     E = GTraits::nodes_end(Graph);
   1391            I != E; ++I) {
   1392         NodeRef N = *I;
   1393         MaxFrequency =
   1394             std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
   1395       }
   1396     }
   1397     BlockFrequency Freq = Graph->getBlockFreq(Node);
   1398     BlockFrequency HotFreq =
   1399         (BlockFrequency(MaxFrequency) *
   1400          BranchProbability::getBranchProbability(HotPercentThreshold, 100));
   1401 
   1402     if (Freq < HotFreq)
   1403       return Result;
   1404 
   1405     raw_string_ostream OS(Result);
   1406     OS << "color=\"red\"";
   1407     OS.flush();
   1408     return Result;
   1409   }
   1410 
   1411   std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
   1412                            GVDAGType GType, int layout_order = -1) {
   1413     std::string Result;
   1414     raw_string_ostream OS(Result);
   1415 
   1416     if (layout_order != -1)
   1417       OS << Node->getName() << "[" << layout_order << "] : ";
   1418     else
   1419       OS << Node->getName() << " : ";
   1420     switch (GType) {
   1421     case GVDT_Fraction:
   1422       Graph->printBlockFreq(OS, Node);
   1423       break;
   1424     case GVDT_Integer:
   1425       OS << Graph->getBlockFreq(Node).getFrequency();
   1426       break;
   1427     case GVDT_Count: {
   1428       auto Count = Graph->getBlockProfileCount(Node);
   1429       if (Count)
   1430         OS << Count.getValue();
   1431       else
   1432         OS << "Unknown";
   1433       break;
   1434     }
   1435     case GVDT_None:
   1436       llvm_unreachable("If we are not supposed to render a graph we should "
   1437                        "never reach this point.");
   1438     }
   1439     return Result;
   1440   }
   1441 
   1442   std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
   1443                                 const BlockFrequencyInfoT *BFI,
   1444                                 const BranchProbabilityInfoT *BPI,
   1445                                 unsigned HotPercentThreshold = 0) {
   1446     std::string Str;
   1447     if (!BPI)
   1448       return Str;
   1449 
   1450     BranchProbability BP = BPI->getEdgeProbability(Node, EI);
   1451     uint32_t N = BP.getNumerator();
   1452     uint32_t D = BP.getDenominator();
   1453     double Percent = 100.0 * N / D;
   1454     raw_string_ostream OS(Str);
   1455     OS << format("label=\"%.1f%%\"", Percent);
   1456 
   1457     if (HotPercentThreshold) {
   1458       BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
   1459       BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
   1460                                BranchProbability(HotPercentThreshold, 100);
   1461 
   1462       if (EFreq >= HotFreq) {
   1463         OS << ",color=\"red\"";
   1464       }
   1465     }
   1466 
   1467     OS.flush();
   1468     return Str;
   1469   }
   1470 };
   1471 
   1472 } // end namespace llvm
   1473 
   1474 #undef DEBUG_TYPE
   1475 
   1476 #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
   1477