Home | History | Annotate | Download | only in Scalar
      1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Jump Threading pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Transforms/Scalar/JumpThreading.h"
     15 #include "llvm/ADT/DenseMap.h"
     16 #include "llvm/ADT/DenseSet.h"
     17 #include "llvm/ADT/Optional.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/AliasAnalysis.h"
     23 #include "llvm/Analysis/BlockFrequencyInfo.h"
     24 #include "llvm/Analysis/BranchProbabilityInfo.h"
     25 #include "llvm/Analysis/CFG.h"
     26 #include "llvm/Analysis/ConstantFolding.h"
     27 #include "llvm/Analysis/GlobalsModRef.h"
     28 #include "llvm/Analysis/InstructionSimplify.h"
     29 #include "llvm/Analysis/LazyValueInfo.h"
     30 #include "llvm/Analysis/Loads.h"
     31 #include "llvm/Analysis/LoopInfo.h"
     32 #include "llvm/Analysis/TargetLibraryInfo.h"
     33 #include "llvm/Transforms/Utils/Local.h"
     34 #include "llvm/Analysis/ValueTracking.h"
     35 #include "llvm/IR/BasicBlock.h"
     36 #include "llvm/IR/CFG.h"
     37 #include "llvm/IR/Constant.h"
     38 #include "llvm/IR/ConstantRange.h"
     39 #include "llvm/IR/Constants.h"
     40 #include "llvm/IR/DataLayout.h"
     41 #include "llvm/IR/Dominators.h"
     42 #include "llvm/IR/Function.h"
     43 #include "llvm/IR/InstrTypes.h"
     44 #include "llvm/IR/Instruction.h"
     45 #include "llvm/IR/Instructions.h"
     46 #include "llvm/IR/IntrinsicInst.h"
     47 #include "llvm/IR/Intrinsics.h"
     48 #include "llvm/IR/LLVMContext.h"
     49 #include "llvm/IR/MDBuilder.h"
     50 #include "llvm/IR/Metadata.h"
     51 #include "llvm/IR/Module.h"
     52 #include "llvm/IR/PassManager.h"
     53 #include "llvm/IR/PatternMatch.h"
     54 #include "llvm/IR/Type.h"
     55 #include "llvm/IR/Use.h"
     56 #include "llvm/IR/User.h"
     57 #include "llvm/IR/Value.h"
     58 #include "llvm/Pass.h"
     59 #include "llvm/Support/BlockFrequency.h"
     60 #include "llvm/Support/BranchProbability.h"
     61 #include "llvm/Support/Casting.h"
     62 #include "llvm/Support/CommandLine.h"
     63 #include "llvm/Support/Debug.h"
     64 #include "llvm/Support/raw_ostream.h"
     65 #include "llvm/Transforms/Scalar.h"
     66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     67 #include "llvm/Transforms/Utils/Cloning.h"
     68 #include "llvm/Transforms/Utils/SSAUpdater.h"
     69 #include "llvm/Transforms/Utils/ValueMapper.h"
     70 #include <algorithm>
     71 #include <cassert>
     72 #include <cstddef>
     73 #include <cstdint>
     74 #include <iterator>
     75 #include <memory>
     76 #include <utility>
     77 
     78 using namespace llvm;
     79 using namespace jumpthreading;
     80 
     81 #define DEBUG_TYPE "jump-threading"
     82 
     83 STATISTIC(NumThreads, "Number of jumps threaded");
     84 STATISTIC(NumFolds,   "Number of terminators folded");
     85 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
     86 
     87 static cl::opt<unsigned>
     88 BBDuplicateThreshold("jump-threading-threshold",
     89           cl::desc("Max block size to duplicate for jump threading"),
     90           cl::init(6), cl::Hidden);
     91 
     92 static cl::opt<unsigned>
     93 ImplicationSearchThreshold(
     94   "jump-threading-implication-search-threshold",
     95   cl::desc("The number of predecessors to search for a stronger "
     96            "condition to use to thread over a weaker condition"),
     97   cl::init(3), cl::Hidden);
     98 
     99 static cl::opt<bool> PrintLVIAfterJumpThreading(
    100     "print-lvi-after-jump-threading",
    101     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
    102     cl::Hidden);
    103 
    104 namespace {
    105 
    106   /// This pass performs 'jump threading', which looks at blocks that have
    107   /// multiple predecessors and multiple successors.  If one or more of the
    108   /// predecessors of the block can be proven to always jump to one of the
    109   /// successors, we forward the edge from the predecessor to the successor by
    110   /// duplicating the contents of this block.
    111   ///
    112   /// An example of when this can occur is code like this:
    113   ///
    114   ///   if () { ...
    115   ///     X = 4;
    116   ///   }
    117   ///   if (X < 3) {
    118   ///
    119   /// In this case, the unconditional branch at the end of the first if can be
    120   /// revectored to the false side of the second if.
    121   class JumpThreading : public FunctionPass {
    122     JumpThreadingPass Impl;
    123 
    124   public:
    125     static char ID; // Pass identification
    126 
    127     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
    128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
    129     }
    130 
    131     bool runOnFunction(Function &F) override;
    132 
    133     void getAnalysisUsage(AnalysisUsage &AU) const override {
    134       AU.addRequired<DominatorTreeWrapperPass>();
    135       AU.addPreserved<DominatorTreeWrapperPass>();
    136       AU.addRequired<AAResultsWrapperPass>();
    137       AU.addRequired<LazyValueInfoWrapperPass>();
    138       AU.addPreserved<LazyValueInfoWrapperPass>();
    139       AU.addPreserved<GlobalsAAWrapperPass>();
    140       AU.addRequired<TargetLibraryInfoWrapperPass>();
    141     }
    142 
    143     void releaseMemory() override { Impl.releaseMemory(); }
    144   };
    145 
    146 } // end anonymous namespace
    147 
    148 char JumpThreading::ID = 0;
    149 
    150 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
    151                 "Jump Threading", false, false)
    152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    153 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
    154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    156 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
    157                 "Jump Threading", false, false)
    158 
    159 // Public interface to the Jump Threading pass
    160 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
    161   return new JumpThreading(Threshold);
    162 }
    163 
    164 JumpThreadingPass::JumpThreadingPass(int T) {
    165   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
    166 }
    167 
    168 // Update branch probability information according to conditional
    169 // branch probability. This is usually made possible for cloned branches
    170 // in inline instances by the context specific profile in the caller.
    171 // For instance,
    172 //
    173 //  [Block PredBB]
    174 //  [Branch PredBr]
    175 //  if (t) {
    176 //     Block A;
    177 //  } else {
    178 //     Block B;
    179 //  }
    180 //
    181 //  [Block BB]
    182 //  cond = PN([true, %A], [..., %B]); // PHI node
    183 //  [Branch CondBr]
    184 //  if (cond) {
    185 //    ...  // P(cond == true) = 1%
    186 //  }
    187 //
    188 //  Here we know that when block A is taken, cond must be true, which means
    189 //      P(cond == true | A) = 1
    190 //
    191 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
    192 //                               P(cond == true | B) * P(B)
    193 //  we get:
    194 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
    195 //
    196 //  which gives us:
    197 //     P(A) is less than P(cond == true), i.e.
    198 //     P(t == true) <= P(cond == true)
    199 //
    200 //  In other words, if we know P(cond == true) is unlikely, we know
    201 //  that P(t == true) is also unlikely.
    202 //
    203 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
    204   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
    205   if (!CondBr)
    206     return;
    207 
    208   BranchProbability BP;
    209   uint64_t TrueWeight, FalseWeight;
    210   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
    211     return;
    212 
    213   // Returns the outgoing edge of the dominating predecessor block
    214   // that leads to the PhiNode's incoming block:
    215   auto GetPredOutEdge =
    216       [](BasicBlock *IncomingBB,
    217          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
    218     auto *PredBB = IncomingBB;
    219     auto *SuccBB = PhiBB;
    220     while (true) {
    221       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
    222       if (PredBr && PredBr->isConditional())
    223         return {PredBB, SuccBB};
    224       auto *SinglePredBB = PredBB->getSinglePredecessor();
    225       if (!SinglePredBB)
    226         return {nullptr, nullptr};
    227       SuccBB = PredBB;
    228       PredBB = SinglePredBB;
    229     }
    230   };
    231 
    232   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    233     Value *PhiOpnd = PN->getIncomingValue(i);
    234     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
    235 
    236     if (!CI || !CI->getType()->isIntegerTy(1))
    237       continue;
    238 
    239     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
    240                             TrueWeight, TrueWeight + FalseWeight)
    241                       : BranchProbability::getBranchProbability(
    242                             FalseWeight, TrueWeight + FalseWeight));
    243 
    244     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
    245     if (!PredOutEdge.first)
    246       return;
    247 
    248     BasicBlock *PredBB = PredOutEdge.first;
    249     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
    250 
    251     uint64_t PredTrueWeight, PredFalseWeight;
    252     // FIXME: We currently only set the profile data when it is missing.
    253     // With PGO, this can be used to refine even existing profile data with
    254     // context information. This needs to be done after more performance
    255     // testing.
    256     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
    257       continue;
    258 
    259     // We can not infer anything useful when BP >= 50%, because BP is the
    260     // upper bound probability value.
    261     if (BP >= BranchProbability(50, 100))
    262       continue;
    263 
    264     SmallVector<uint32_t, 2> Weights;
    265     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
    266       Weights.push_back(BP.getNumerator());
    267       Weights.push_back(BP.getCompl().getNumerator());
    268     } else {
    269       Weights.push_back(BP.getCompl().getNumerator());
    270       Weights.push_back(BP.getNumerator());
    271     }
    272     PredBr->setMetadata(LLVMContext::MD_prof,
    273                         MDBuilder(PredBr->getParent()->getContext())
    274                             .createBranchWeights(Weights));
    275   }
    276 }
    277 
    278 /// runOnFunction - Toplevel algorithm.
    279 bool JumpThreading::runOnFunction(Function &F) {
    280   if (skipFunction(F))
    281     return false;
    282   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    283   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
    284   // DT if it's available.
    285   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    286   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
    287   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    288   DeferredDominance DDT(*DT);
    289   std::unique_ptr<BlockFrequencyInfo> BFI;
    290   std::unique_ptr<BranchProbabilityInfo> BPI;
    291   bool HasProfileData = F.hasProfileData();
    292   if (HasProfileData) {
    293     LoopInfo LI{DominatorTree(F)};
    294     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
    295     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
    296   }
    297 
    298   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData,
    299                               std::move(BFI), std::move(BPI));
    300   if (PrintLVIAfterJumpThreading) {
    301     dbgs() << "LVI for function '" << F.getName() << "':\n";
    302     LVI->printLVI(F, *DT, dbgs());
    303   }
    304   return Changed;
    305 }
    306 
    307 PreservedAnalyses JumpThreadingPass::run(Function &F,
    308                                          FunctionAnalysisManager &AM) {
    309   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
    310   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
    311   // DT if it's available.
    312   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
    313   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
    314   auto &AA = AM.getResult<AAManager>(F);
    315   DeferredDominance DDT(DT);
    316 
    317   std::unique_ptr<BlockFrequencyInfo> BFI;
    318   std::unique_ptr<BranchProbabilityInfo> BPI;
    319   if (F.hasProfileData()) {
    320     LoopInfo LI{DominatorTree(F)};
    321     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
    322     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
    323   }
    324 
    325   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData,
    326                          std::move(BFI), std::move(BPI));
    327 
    328   if (!Changed)
    329     return PreservedAnalyses::all();
    330   PreservedAnalyses PA;
    331   PA.preserve<GlobalsAA>();
    332   PA.preserve<DominatorTreeAnalysis>();
    333   PA.preserve<LazyValueAnalysis>();
    334   return PA;
    335 }
    336 
    337 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
    338                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
    339                                 DeferredDominance *DDT_, bool HasProfileData_,
    340                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
    341                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
    342   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
    343   TLI = TLI_;
    344   LVI = LVI_;
    345   AA = AA_;
    346   DDT = DDT_;
    347   BFI.reset();
    348   BPI.reset();
    349   // When profile data is available, we need to update edge weights after
    350   // successful jump threading, which requires both BPI and BFI being available.
    351   HasProfileData = HasProfileData_;
    352   auto *GuardDecl = F.getParent()->getFunction(
    353       Intrinsic::getName(Intrinsic::experimental_guard));
    354   HasGuards = GuardDecl && !GuardDecl->use_empty();
    355   if (HasProfileData) {
    356     BPI = std::move(BPI_);
    357     BFI = std::move(BFI_);
    358   }
    359 
    360   // JumpThreading must not processes blocks unreachable from entry. It's a
    361   // waste of compute time and can potentially lead to hangs.
    362   SmallPtrSet<BasicBlock *, 16> Unreachable;
    363   DominatorTree &DT = DDT->flush();
    364   for (auto &BB : F)
    365     if (!DT.isReachableFromEntry(&BB))
    366       Unreachable.insert(&BB);
    367 
    368   FindLoopHeaders(F);
    369 
    370   bool EverChanged = false;
    371   bool Changed;
    372   do {
    373     Changed = false;
    374     for (auto &BB : F) {
    375       if (Unreachable.count(&BB))
    376         continue;
    377       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
    378         Changed = true;
    379       // Stop processing BB if it's the entry or is now deleted. The following
    380       // routines attempt to eliminate BB and locating a suitable replacement
    381       // for the entry is non-trivial.
    382       if (&BB == &F.getEntryBlock() || DDT->pendingDeletedBB(&BB))
    383         continue;
    384 
    385       if (pred_empty(&BB)) {
    386         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
    387         // the instructions in it. We must remove BB to prevent invalid IR.
    388         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
    389                           << "' with terminator: " << *BB.getTerminator()
    390                           << '\n');
    391         LoopHeaders.erase(&BB);
    392         LVI->eraseBlock(&BB);
    393         DeleteDeadBlock(&BB, DDT);
    394         Changed = true;
    395         continue;
    396       }
    397 
    398       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
    399       // is "almost empty", we attempt to merge BB with its sole successor.
    400       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
    401       if (BI && BI->isUnconditional() &&
    402           // The terminator must be the only non-phi instruction in BB.
    403           BB.getFirstNonPHIOrDbg()->isTerminator() &&
    404           // Don't alter Loop headers and latches to ensure another pass can
    405           // detect and transform nested loops later.
    406           !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
    407           TryToSimplifyUncondBranchFromEmptyBlock(&BB, DDT)) {
    408         // BB is valid for cleanup here because we passed in DDT. F remains
    409         // BB's parent until a DDT->flush() event.
    410         LVI->eraseBlock(&BB);
    411         Changed = true;
    412       }
    413     }
    414     EverChanged |= Changed;
    415   } while (Changed);
    416 
    417   LoopHeaders.clear();
    418   DDT->flush();
    419   LVI->enableDT();
    420   return EverChanged;
    421 }
    422 
    423 // Replace uses of Cond with ToVal when safe to do so. If all uses are
    424 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
    425 // because we may incorrectly replace uses when guards/assumes are uses of
    426 // of `Cond` and we used the guards/assume to reason about the `Cond` value
    427 // at the end of block. RAUW unconditionally replaces all uses
    428 // including the guards/assumes themselves and the uses before the
    429 // guard/assume.
    430 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
    431   assert(Cond->getType() == ToVal->getType());
    432   auto *BB = Cond->getParent();
    433   // We can unconditionally replace all uses in non-local blocks (i.e. uses
    434   // strictly dominated by BB), since LVI information is true from the
    435   // terminator of BB.
    436   replaceNonLocalUsesWith(Cond, ToVal);
    437   for (Instruction &I : reverse(*BB)) {
    438     // Reached the Cond whose uses we are trying to replace, so there are no
    439     // more uses.
    440     if (&I == Cond)
    441       break;
    442     // We only replace uses in instructions that are guaranteed to reach the end
    443     // of BB, where we know Cond is ToVal.
    444     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
    445       break;
    446     I.replaceUsesOfWith(Cond, ToVal);
    447   }
    448   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
    449     Cond->eraseFromParent();
    450 }
    451 
    452 /// Return the cost of duplicating a piece of this block from first non-phi
    453 /// and before StopAt instruction to thread across it. Stop scanning the block
    454 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
    455 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
    456                                              Instruction *StopAt,
    457                                              unsigned Threshold) {
    458   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
    459   /// Ignore PHI nodes, these will be flattened when duplication happens.
    460   BasicBlock::const_iterator I(BB->getFirstNonPHI());
    461 
    462   // FIXME: THREADING will delete values that are just used to compute the
    463   // branch, so they shouldn't count against the duplication cost.
    464 
    465   unsigned Bonus = 0;
    466   if (BB->getTerminator() == StopAt) {
    467     // Threading through a switch statement is particularly profitable.  If this
    468     // block ends in a switch, decrease its cost to make it more likely to
    469     // happen.
    470     if (isa<SwitchInst>(StopAt))
    471       Bonus = 6;
    472 
    473     // The same holds for indirect branches, but slightly more so.
    474     if (isa<IndirectBrInst>(StopAt))
    475       Bonus = 8;
    476   }
    477 
    478   // Bump the threshold up so the early exit from the loop doesn't skip the
    479   // terminator-based Size adjustment at the end.
    480   Threshold += Bonus;
    481 
    482   // Sum up the cost of each instruction until we get to the terminator.  Don't
    483   // include the terminator because the copy won't include it.
    484   unsigned Size = 0;
    485   for (; &*I != StopAt; ++I) {
    486 
    487     // Stop scanning the block if we've reached the threshold.
    488     if (Size > Threshold)
    489       return Size;
    490 
    491     // Debugger intrinsics don't incur code size.
    492     if (isa<DbgInfoIntrinsic>(I)) continue;
    493 
    494     // If this is a pointer->pointer bitcast, it is free.
    495     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
    496       continue;
    497 
    498     // Bail out if this instruction gives back a token type, it is not possible
    499     // to duplicate it if it is used outside this BB.
    500     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
    501       return ~0U;
    502 
    503     // All other instructions count for at least one unit.
    504     ++Size;
    505 
    506     // Calls are more expensive.  If they are non-intrinsic calls, we model them
    507     // as having cost of 4.  If they are a non-vector intrinsic, we model them
    508     // as having cost of 2 total, and if they are a vector intrinsic, we model
    509     // them as having cost 1.
    510     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
    511       if (CI->cannotDuplicate() || CI->isConvergent())
    512         // Blocks with NoDuplicate are modelled as having infinite cost, so they
    513         // are never duplicated.
    514         return ~0U;
    515       else if (!isa<IntrinsicInst>(CI))
    516         Size += 3;
    517       else if (!CI->getType()->isVectorTy())
    518         Size += 1;
    519     }
    520   }
    521 
    522   return Size > Bonus ? Size - Bonus : 0;
    523 }
    524 
    525 /// FindLoopHeaders - We do not want jump threading to turn proper loop
    526 /// structures into irreducible loops.  Doing this breaks up the loop nesting
    527 /// hierarchy and pessimizes later transformations.  To prevent this from
    528 /// happening, we first have to find the loop headers.  Here we approximate this
    529 /// by finding targets of backedges in the CFG.
    530 ///
    531 /// Note that there definitely are cases when we want to allow threading of
    532 /// edges across a loop header.  For example, threading a jump from outside the
    533 /// loop (the preheader) to an exit block of the loop is definitely profitable.
    534 /// It is also almost always profitable to thread backedges from within the loop
    535 /// to exit blocks, and is often profitable to thread backedges to other blocks
    536 /// within the loop (forming a nested loop).  This simple analysis is not rich
    537 /// enough to track all of these properties and keep it up-to-date as the CFG
    538 /// mutates, so we don't allow any of these transformations.
    539 void JumpThreadingPass::FindLoopHeaders(Function &F) {
    540   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
    541   FindFunctionBackedges(F, Edges);
    542 
    543   for (const auto &Edge : Edges)
    544     LoopHeaders.insert(Edge.second);
    545 }
    546 
    547 /// getKnownConstant - Helper method to determine if we can thread over a
    548 /// terminator with the given value as its condition, and if so what value to
    549 /// use for that. What kind of value this is depends on whether we want an
    550 /// integer or a block address, but an undef is always accepted.
    551 /// Returns null if Val is null or not an appropriate constant.
    552 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
    553   if (!Val)
    554     return nullptr;
    555 
    556   // Undef is "known" enough.
    557   if (UndefValue *U = dyn_cast<UndefValue>(Val))
    558     return U;
    559 
    560   if (Preference == WantBlockAddress)
    561     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
    562 
    563   return dyn_cast<ConstantInt>(Val);
    564 }
    565 
    566 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
    567 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
    568 /// in any of our predecessors.  If so, return the known list of value and pred
    569 /// BB in the result vector.
    570 ///
    571 /// This returns true if there were any known values.
    572 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
    573     Value *V, BasicBlock *BB, PredValueInfo &Result,
    574     ConstantPreference Preference, Instruction *CxtI) {
    575   // This method walks up use-def chains recursively.  Because of this, we could
    576   // get into an infinite loop going around loops in the use-def chain.  To
    577   // prevent this, keep track of what (value, block) pairs we've already visited
    578   // and terminate the search if we loop back to them
    579   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
    580     return false;
    581 
    582   // An RAII help to remove this pair from the recursion set once the recursion
    583   // stack pops back out again.
    584   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
    585 
    586   // If V is a constant, then it is known in all predecessors.
    587   if (Constant *KC = getKnownConstant(V, Preference)) {
    588     for (BasicBlock *Pred : predecessors(BB))
    589       Result.push_back(std::make_pair(KC, Pred));
    590 
    591     return !Result.empty();
    592   }
    593 
    594   // If V is a non-instruction value, or an instruction in a different block,
    595   // then it can't be derived from a PHI.
    596   Instruction *I = dyn_cast<Instruction>(V);
    597   if (!I || I->getParent() != BB) {
    598 
    599     // Okay, if this is a live-in value, see if it has a known value at the end
    600     // of any of our predecessors.
    601     //
    602     // FIXME: This should be an edge property, not a block end property.
    603     /// TODO: Per PR2563, we could infer value range information about a
    604     /// predecessor based on its terminator.
    605     //
    606     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
    607     // "I" is a non-local compare-with-a-constant instruction.  This would be
    608     // able to handle value inequalities better, for example if the compare is
    609     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
    610     // Perhaps getConstantOnEdge should be smart enough to do this?
    611 
    612     if (DDT->pending())
    613       LVI->disableDT();
    614     else
    615       LVI->enableDT();
    616     for (BasicBlock *P : predecessors(BB)) {
    617       // If the value is known by LazyValueInfo to be a constant in a
    618       // predecessor, use that information to try to thread this block.
    619       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
    620       if (Constant *KC = getKnownConstant(PredCst, Preference))
    621         Result.push_back(std::make_pair(KC, P));
    622     }
    623 
    624     return !Result.empty();
    625   }
    626 
    627   /// If I is a PHI node, then we know the incoming values for any constants.
    628   if (PHINode *PN = dyn_cast<PHINode>(I)) {
    629     if (DDT->pending())
    630       LVI->disableDT();
    631     else
    632       LVI->enableDT();
    633     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    634       Value *InVal = PN->getIncomingValue(i);
    635       if (Constant *KC = getKnownConstant(InVal, Preference)) {
    636         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
    637       } else {
    638         Constant *CI = LVI->getConstantOnEdge(InVal,
    639                                               PN->getIncomingBlock(i),
    640                                               BB, CxtI);
    641         if (Constant *KC = getKnownConstant(CI, Preference))
    642           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
    643       }
    644     }
    645 
    646     return !Result.empty();
    647   }
    648 
    649   // Handle Cast instructions.  Only see through Cast when the source operand is
    650   // PHI or Cmp to save the compilation time.
    651   if (CastInst *CI = dyn_cast<CastInst>(I)) {
    652     Value *Source = CI->getOperand(0);
    653     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
    654       return false;
    655     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
    656     if (Result.empty())
    657       return false;
    658 
    659     // Convert the known values.
    660     for (auto &R : Result)
    661       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
    662 
    663     return true;
    664   }
    665 
    666   // Handle some boolean conditions.
    667   if (I->getType()->getPrimitiveSizeInBits() == 1) {
    668     assert(Preference == WantInteger && "One-bit non-integer type?");
    669     // X | true -> true
    670     // X & false -> false
    671     if (I->getOpcode() == Instruction::Or ||
    672         I->getOpcode() == Instruction::And) {
    673       PredValueInfoTy LHSVals, RHSVals;
    674 
    675       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
    676                                       WantInteger, CxtI);
    677       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
    678                                       WantInteger, CxtI);
    679 
    680       if (LHSVals.empty() && RHSVals.empty())
    681         return false;
    682 
    683       ConstantInt *InterestingVal;
    684       if (I->getOpcode() == Instruction::Or)
    685         InterestingVal = ConstantInt::getTrue(I->getContext());
    686       else
    687         InterestingVal = ConstantInt::getFalse(I->getContext());
    688 
    689       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
    690 
    691       // Scan for the sentinel.  If we find an undef, force it to the
    692       // interesting value: x|undef -> true and x&undef -> false.
    693       for (const auto &LHSVal : LHSVals)
    694         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
    695           Result.emplace_back(InterestingVal, LHSVal.second);
    696           LHSKnownBBs.insert(LHSVal.second);
    697         }
    698       for (const auto &RHSVal : RHSVals)
    699         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
    700           // If we already inferred a value for this block on the LHS, don't
    701           // re-add it.
    702           if (!LHSKnownBBs.count(RHSVal.second))
    703             Result.emplace_back(InterestingVal, RHSVal.second);
    704         }
    705 
    706       return !Result.empty();
    707     }
    708 
    709     // Handle the NOT form of XOR.
    710     if (I->getOpcode() == Instruction::Xor &&
    711         isa<ConstantInt>(I->getOperand(1)) &&
    712         cast<ConstantInt>(I->getOperand(1))->isOne()) {
    713       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
    714                                       WantInteger, CxtI);
    715       if (Result.empty())
    716         return false;
    717 
    718       // Invert the known values.
    719       for (auto &R : Result)
    720         R.first = ConstantExpr::getNot(R.first);
    721 
    722       return true;
    723     }
    724 
    725   // Try to simplify some other binary operator values.
    726   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    727     assert(Preference != WantBlockAddress
    728             && "A binary operator creating a block address?");
    729     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
    730       PredValueInfoTy LHSVals;
    731       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
    732                                       WantInteger, CxtI);
    733 
    734       // Try to use constant folding to simplify the binary operator.
    735       for (const auto &LHSVal : LHSVals) {
    736         Constant *V = LHSVal.first;
    737         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
    738 
    739         if (Constant *KC = getKnownConstant(Folded, WantInteger))
    740           Result.push_back(std::make_pair(KC, LHSVal.second));
    741       }
    742     }
    743 
    744     return !Result.empty();
    745   }
    746 
    747   // Handle compare with phi operand, where the PHI is defined in this block.
    748   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
    749     assert(Preference == WantInteger && "Compares only produce integers");
    750     Type *CmpType = Cmp->getType();
    751     Value *CmpLHS = Cmp->getOperand(0);
    752     Value *CmpRHS = Cmp->getOperand(1);
    753     CmpInst::Predicate Pred = Cmp->getPredicate();
    754 
    755     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
    756     if (!PN)
    757       PN = dyn_cast<PHINode>(CmpRHS);
    758     if (PN && PN->getParent() == BB) {
    759       const DataLayout &DL = PN->getModule()->getDataLayout();
    760       // We can do this simplification if any comparisons fold to true or false.
    761       // See if any do.
    762       if (DDT->pending())
    763         LVI->disableDT();
    764       else
    765         LVI->enableDT();
    766       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    767         BasicBlock *PredBB = PN->getIncomingBlock(i);
    768         Value *LHS, *RHS;
    769         if (PN == CmpLHS) {
    770           LHS = PN->getIncomingValue(i);
    771           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
    772         } else {
    773           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
    774           RHS = PN->getIncomingValue(i);
    775         }
    776         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
    777         if (!Res) {
    778           if (!isa<Constant>(RHS))
    779             continue;
    780 
    781           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
    782           auto LHSInst = dyn_cast<Instruction>(LHS);
    783           if (LHSInst && LHSInst->getParent() == BB)
    784             continue;
    785 
    786           LazyValueInfo::Tristate
    787             ResT = LVI->getPredicateOnEdge(Pred, LHS,
    788                                            cast<Constant>(RHS), PredBB, BB,
    789                                            CxtI ? CxtI : Cmp);
    790           if (ResT == LazyValueInfo::Unknown)
    791             continue;
    792           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
    793         }
    794 
    795         if (Constant *KC = getKnownConstant(Res, WantInteger))
    796           Result.push_back(std::make_pair(KC, PredBB));
    797       }
    798 
    799       return !Result.empty();
    800     }
    801 
    802     // If comparing a live-in value against a constant, see if we know the
    803     // live-in value on any predecessors.
    804     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
    805       Constant *CmpConst = cast<Constant>(CmpRHS);
    806 
    807       if (!isa<Instruction>(CmpLHS) ||
    808           cast<Instruction>(CmpLHS)->getParent() != BB) {
    809         if (DDT->pending())
    810           LVI->disableDT();
    811         else
    812           LVI->enableDT();
    813         for (BasicBlock *P : predecessors(BB)) {
    814           // If the value is known by LazyValueInfo to be a constant in a
    815           // predecessor, use that information to try to thread this block.
    816           LazyValueInfo::Tristate Res =
    817             LVI->getPredicateOnEdge(Pred, CmpLHS,
    818                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
    819           if (Res == LazyValueInfo::Unknown)
    820             continue;
    821 
    822           Constant *ResC = ConstantInt::get(CmpType, Res);
    823           Result.push_back(std::make_pair(ResC, P));
    824         }
    825 
    826         return !Result.empty();
    827       }
    828 
    829       // InstCombine can fold some forms of constant range checks into
    830       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
    831       // x as a live-in.
    832       {
    833         using namespace PatternMatch;
    834 
    835         Value *AddLHS;
    836         ConstantInt *AddConst;
    837         if (isa<ConstantInt>(CmpConst) &&
    838             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
    839           if (!isa<Instruction>(AddLHS) ||
    840               cast<Instruction>(AddLHS)->getParent() != BB) {
    841             if (DDT->pending())
    842               LVI->disableDT();
    843             else
    844               LVI->enableDT();
    845             for (BasicBlock *P : predecessors(BB)) {
    846               // If the value is known by LazyValueInfo to be a ConstantRange in
    847               // a predecessor, use that information to try to thread this
    848               // block.
    849               ConstantRange CR = LVI->getConstantRangeOnEdge(
    850                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
    851               // Propagate the range through the addition.
    852               CR = CR.add(AddConst->getValue());
    853 
    854               // Get the range where the compare returns true.
    855               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
    856                   Pred, cast<ConstantInt>(CmpConst)->getValue());
    857 
    858               Constant *ResC;
    859               if (CmpRange.contains(CR))
    860                 ResC = ConstantInt::getTrue(CmpType);
    861               else if (CmpRange.inverse().contains(CR))
    862                 ResC = ConstantInt::getFalse(CmpType);
    863               else
    864                 continue;
    865 
    866               Result.push_back(std::make_pair(ResC, P));
    867             }
    868 
    869             return !Result.empty();
    870           }
    871         }
    872       }
    873 
    874       // Try to find a constant value for the LHS of a comparison,
    875       // and evaluate it statically if we can.
    876       PredValueInfoTy LHSVals;
    877       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
    878                                       WantInteger, CxtI);
    879 
    880       for (const auto &LHSVal : LHSVals) {
    881         Constant *V = LHSVal.first;
    882         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
    883         if (Constant *KC = getKnownConstant(Folded, WantInteger))
    884           Result.push_back(std::make_pair(KC, LHSVal.second));
    885       }
    886 
    887       return !Result.empty();
    888     }
    889   }
    890 
    891   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
    892     // Handle select instructions where at least one operand is a known constant
    893     // and we can figure out the condition value for any predecessor block.
    894     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
    895     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
    896     PredValueInfoTy Conds;
    897     if ((TrueVal || FalseVal) &&
    898         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
    899                                         WantInteger, CxtI)) {
    900       for (auto &C : Conds) {
    901         Constant *Cond = C.first;
    902 
    903         // Figure out what value to use for the condition.
    904         bool KnownCond;
    905         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
    906           // A known boolean.
    907           KnownCond = CI->isOne();
    908         } else {
    909           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
    910           // Either operand will do, so be sure to pick the one that's a known
    911           // constant.
    912           // FIXME: Do this more cleverly if both values are known constants?
    913           KnownCond = (TrueVal != nullptr);
    914         }
    915 
    916         // See if the select has a known constant value for this predecessor.
    917         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
    918           Result.push_back(std::make_pair(Val, C.second));
    919       }
    920 
    921       return !Result.empty();
    922     }
    923   }
    924 
    925   // If all else fails, see if LVI can figure out a constant value for us.
    926   if (DDT->pending())
    927     LVI->disableDT();
    928   else
    929     LVI->enableDT();
    930   Constant *CI = LVI->getConstant(V, BB, CxtI);
    931   if (Constant *KC = getKnownConstant(CI, Preference)) {
    932     for (BasicBlock *Pred : predecessors(BB))
    933       Result.push_back(std::make_pair(KC, Pred));
    934   }
    935 
    936   return !Result.empty();
    937 }
    938 
    939 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
    940 /// in an undefined jump, decide which block is best to revector to.
    941 ///
    942 /// Since we can pick an arbitrary destination, we pick the successor with the
    943 /// fewest predecessors.  This should reduce the in-degree of the others.
    944 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
    945   TerminatorInst *BBTerm = BB->getTerminator();
    946   unsigned MinSucc = 0;
    947   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
    948   // Compute the successor with the minimum number of predecessors.
    949   unsigned MinNumPreds = pred_size(TestBB);
    950   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    951     TestBB = BBTerm->getSuccessor(i);
    952     unsigned NumPreds = pred_size(TestBB);
    953     if (NumPreds < MinNumPreds) {
    954       MinSucc = i;
    955       MinNumPreds = NumPreds;
    956     }
    957   }
    958 
    959   return MinSucc;
    960 }
    961 
    962 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
    963   if (!BB->hasAddressTaken()) return false;
    964 
    965   // If the block has its address taken, it may be a tree of dead constants
    966   // hanging off of it.  These shouldn't keep the block alive.
    967   BlockAddress *BA = BlockAddress::get(BB);
    968   BA->removeDeadConstantUsers();
    969   return !BA->use_empty();
    970 }
    971 
    972 /// ProcessBlock - If there are any predecessors whose control can be threaded
    973 /// through to a successor, transform them now.
    974 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
    975   // If the block is trivially dead, just return and let the caller nuke it.
    976   // This simplifies other transformations.
    977   if (DDT->pendingDeletedBB(BB) ||
    978       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
    979     return false;
    980 
    981   // If this block has a single predecessor, and if that pred has a single
    982   // successor, merge the blocks.  This encourages recursive jump threading
    983   // because now the condition in this block can be threaded through
    984   // predecessors of our predecessor block.
    985   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
    986     const TerminatorInst *TI = SinglePred->getTerminator();
    987     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
    988         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
    989       // If SinglePred was a loop header, BB becomes one.
    990       if (LoopHeaders.erase(SinglePred))
    991         LoopHeaders.insert(BB);
    992 
    993       LVI->eraseBlock(SinglePred);
    994       MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT);
    995 
    996       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
    997       // BB code within one basic block `BB`), we need to invalidate the LVI
    998       // information associated with BB, because the LVI information need not be
    999       // true for all of BB after the merge. For example,
   1000       // Before the merge, LVI info and code is as follows:
   1001       // SinglePred: <LVI info1 for %p val>
   1002       // %y = use of %p
   1003       // call @exit() // need not transfer execution to successor.
   1004       // assume(%p) // from this point on %p is true
   1005       // br label %BB
   1006       // BB: <LVI info2 for %p val, i.e. %p is true>
   1007       // %x = use of %p
   1008       // br label exit
   1009       //
   1010       // Note that this LVI info for blocks BB and SinglPred is correct for %p
   1011       // (info2 and info1 respectively). After the merge and the deletion of the
   1012       // LVI info1 for SinglePred. We have the following code:
   1013       // BB: <LVI info2 for %p val>
   1014       // %y = use of %p
   1015       // call @exit()
   1016       // assume(%p)
   1017       // %x = use of %p <-- LVI info2 is correct from here onwards.
   1018       // br label exit
   1019       // LVI info2 for BB is incorrect at the beginning of BB.
   1020 
   1021       // Invalidate LVI information for BB if the LVI is not provably true for
   1022       // all of BB.
   1023       if (!isGuaranteedToTransferExecutionToSuccessor(BB))
   1024         LVI->eraseBlock(BB);
   1025       return true;
   1026     }
   1027   }
   1028 
   1029   if (TryToUnfoldSelectInCurrBB(BB))
   1030     return true;
   1031 
   1032   // Look if we can propagate guards to predecessors.
   1033   if (HasGuards && ProcessGuards(BB))
   1034     return true;
   1035 
   1036   // What kind of constant we're looking for.
   1037   ConstantPreference Preference = WantInteger;
   1038 
   1039   // Look to see if the terminator is a conditional branch, switch or indirect
   1040   // branch, if not we can't thread it.
   1041   Value *Condition;
   1042   Instruction *Terminator = BB->getTerminator();
   1043   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
   1044     // Can't thread an unconditional jump.
   1045     if (BI->isUnconditional()) return false;
   1046     Condition = BI->getCondition();
   1047   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
   1048     Condition = SI->getCondition();
   1049   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
   1050     // Can't thread indirect branch with no successors.
   1051     if (IB->getNumSuccessors() == 0) return false;
   1052     Condition = IB->getAddress()->stripPointerCasts();
   1053     Preference = WantBlockAddress;
   1054   } else {
   1055     return false; // Must be an invoke.
   1056   }
   1057 
   1058   // Run constant folding to see if we can reduce the condition to a simple
   1059   // constant.
   1060   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
   1061     Value *SimpleVal =
   1062         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
   1063     if (SimpleVal) {
   1064       I->replaceAllUsesWith(SimpleVal);
   1065       if (isInstructionTriviallyDead(I, TLI))
   1066         I->eraseFromParent();
   1067       Condition = SimpleVal;
   1068     }
   1069   }
   1070 
   1071   // If the terminator is branching on an undef, we can pick any of the
   1072   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
   1073   if (isa<UndefValue>(Condition)) {
   1074     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
   1075     std::vector<DominatorTree::UpdateType> Updates;
   1076 
   1077     // Fold the branch/switch.
   1078     TerminatorInst *BBTerm = BB->getTerminator();
   1079     Updates.reserve(BBTerm->getNumSuccessors());
   1080     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
   1081       if (i == BestSucc) continue;
   1082       BasicBlock *Succ = BBTerm->getSuccessor(i);
   1083       Succ->removePredecessor(BB, true);
   1084       Updates.push_back({DominatorTree::Delete, BB, Succ});
   1085     }
   1086 
   1087     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
   1088                       << "' folding undef terminator: " << *BBTerm << '\n');
   1089     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
   1090     BBTerm->eraseFromParent();
   1091     DDT->applyUpdates(Updates);
   1092     return true;
   1093   }
   1094 
   1095   // If the terminator of this block is branching on a constant, simplify the
   1096   // terminator to an unconditional branch.  This can occur due to threading in
   1097   // other blocks.
   1098   if (getKnownConstant(Condition, Preference)) {
   1099     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
   1100                       << "' folding terminator: " << *BB->getTerminator()
   1101                       << '\n');
   1102     ++NumFolds;
   1103     ConstantFoldTerminator(BB, true, nullptr, DDT);
   1104     return true;
   1105   }
   1106 
   1107   Instruction *CondInst = dyn_cast<Instruction>(Condition);
   1108 
   1109   // All the rest of our checks depend on the condition being an instruction.
   1110   if (!CondInst) {
   1111     // FIXME: Unify this with code below.
   1112     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
   1113       return true;
   1114     return false;
   1115   }
   1116 
   1117   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
   1118     // If we're branching on a conditional, LVI might be able to determine
   1119     // it's value at the branch instruction.  We only handle comparisons
   1120     // against a constant at this time.
   1121     // TODO: This should be extended to handle switches as well.
   1122     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
   1123     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
   1124     if (CondBr && CondConst) {
   1125       // We should have returned as soon as we turn a conditional branch to
   1126       // unconditional. Because its no longer interesting as far as jump
   1127       // threading is concerned.
   1128       assert(CondBr->isConditional() && "Threading on unconditional terminator");
   1129 
   1130       if (DDT->pending())
   1131         LVI->disableDT();
   1132       else
   1133         LVI->enableDT();
   1134       LazyValueInfo::Tristate Ret =
   1135         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
   1136                             CondConst, CondBr);
   1137       if (Ret != LazyValueInfo::Unknown) {
   1138         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
   1139         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
   1140         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
   1141         ToRemoveSucc->removePredecessor(BB, true);
   1142         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
   1143         CondBr->eraseFromParent();
   1144         if (CondCmp->use_empty())
   1145           CondCmp->eraseFromParent();
   1146         // We can safely replace *some* uses of the CondInst if it has
   1147         // exactly one value as returned by LVI. RAUW is incorrect in the
   1148         // presence of guards and assumes, that have the `Cond` as the use. This
   1149         // is because we use the guards/assume to reason about the `Cond` value
   1150         // at the end of block, but RAUW unconditionally replaces all uses
   1151         // including the guards/assumes themselves and the uses before the
   1152         // guard/assume.
   1153         else if (CondCmp->getParent() == BB) {
   1154           auto *CI = Ret == LazyValueInfo::True ?
   1155             ConstantInt::getTrue(CondCmp->getType()) :
   1156             ConstantInt::getFalse(CondCmp->getType());
   1157           ReplaceFoldableUses(CondCmp, CI);
   1158         }
   1159         DDT->deleteEdge(BB, ToRemoveSucc);
   1160         return true;
   1161       }
   1162 
   1163       // We did not manage to simplify this branch, try to see whether
   1164       // CondCmp depends on a known phi-select pattern.
   1165       if (TryToUnfoldSelect(CondCmp, BB))
   1166         return true;
   1167     }
   1168   }
   1169 
   1170   // Check for some cases that are worth simplifying.  Right now we want to look
   1171   // for loads that are used by a switch or by the condition for the branch.  If
   1172   // we see one, check to see if it's partially redundant.  If so, insert a PHI
   1173   // which can then be used to thread the values.
   1174   Value *SimplifyValue = CondInst;
   1175   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
   1176     if (isa<Constant>(CondCmp->getOperand(1)))
   1177       SimplifyValue = CondCmp->getOperand(0);
   1178 
   1179   // TODO: There are other places where load PRE would be profitable, such as
   1180   // more complex comparisons.
   1181   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
   1182     if (SimplifyPartiallyRedundantLoad(LoadI))
   1183       return true;
   1184 
   1185   // Before threading, try to propagate profile data backwards:
   1186   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
   1187     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
   1188       updatePredecessorProfileMetadata(PN, BB);
   1189 
   1190   // Handle a variety of cases where we are branching on something derived from
   1191   // a PHI node in the current block.  If we can prove that any predecessors
   1192   // compute a predictable value based on a PHI node, thread those predecessors.
   1193   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
   1194     return true;
   1195 
   1196   // If this is an otherwise-unfoldable branch on a phi node in the current
   1197   // block, see if we can simplify.
   1198   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
   1199     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
   1200       return ProcessBranchOnPHI(PN);
   1201 
   1202   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
   1203   if (CondInst->getOpcode() == Instruction::Xor &&
   1204       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
   1205     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
   1206 
   1207   // Search for a stronger dominating condition that can be used to simplify a
   1208   // conditional branch leaving BB.
   1209   if (ProcessImpliedCondition(BB))
   1210     return true;
   1211 
   1212   return false;
   1213 }
   1214 
   1215 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
   1216   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
   1217   if (!BI || !BI->isConditional())
   1218     return false;
   1219 
   1220   Value *Cond = BI->getCondition();
   1221   BasicBlock *CurrentBB = BB;
   1222   BasicBlock *CurrentPred = BB->getSinglePredecessor();
   1223   unsigned Iter = 0;
   1224 
   1225   auto &DL = BB->getModule()->getDataLayout();
   1226 
   1227   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
   1228     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
   1229     if (!PBI || !PBI->isConditional())
   1230       return false;
   1231     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
   1232       return false;
   1233 
   1234     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
   1235     Optional<bool> Implication =
   1236         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
   1237     if (Implication) {
   1238       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
   1239       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
   1240       RemoveSucc->removePredecessor(BB);
   1241       BranchInst::Create(KeepSucc, BI);
   1242       BI->eraseFromParent();
   1243       DDT->deleteEdge(BB, RemoveSucc);
   1244       return true;
   1245     }
   1246     CurrentBB = CurrentPred;
   1247     CurrentPred = CurrentBB->getSinglePredecessor();
   1248   }
   1249 
   1250   return false;
   1251 }
   1252 
   1253 /// Return true if Op is an instruction defined in the given block.
   1254 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
   1255   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
   1256     if (OpInst->getParent() == BB)
   1257       return true;
   1258   return false;
   1259 }
   1260 
   1261 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
   1262 /// redundant load instruction, eliminate it by replacing it with a PHI node.
   1263 /// This is an important optimization that encourages jump threading, and needs
   1264 /// to be run interlaced with other jump threading tasks.
   1265 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
   1266   // Don't hack volatile and ordered loads.
   1267   if (!LoadI->isUnordered()) return false;
   1268 
   1269   // If the load is defined in a block with exactly one predecessor, it can't be
   1270   // partially redundant.
   1271   BasicBlock *LoadBB = LoadI->getParent();
   1272   if (LoadBB->getSinglePredecessor())
   1273     return false;
   1274 
   1275   // If the load is defined in an EH pad, it can't be partially redundant,
   1276   // because the edges between the invoke and the EH pad cannot have other
   1277   // instructions between them.
   1278   if (LoadBB->isEHPad())
   1279     return false;
   1280 
   1281   Value *LoadedPtr = LoadI->getOperand(0);
   1282 
   1283   // If the loaded operand is defined in the LoadBB and its not a phi,
   1284   // it can't be available in predecessors.
   1285   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
   1286     return false;
   1287 
   1288   // Scan a few instructions up from the load, to see if it is obviously live at
   1289   // the entry to its block.
   1290   BasicBlock::iterator BBIt(LoadI);
   1291   bool IsLoadCSE;
   1292   if (Value *AvailableVal = FindAvailableLoadedValue(
   1293           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
   1294     // If the value of the load is locally available within the block, just use
   1295     // it.  This frequently occurs for reg2mem'd allocas.
   1296 
   1297     if (IsLoadCSE) {
   1298       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
   1299       combineMetadataForCSE(NLoadI, LoadI);
   1300     };
   1301 
   1302     // If the returned value is the load itself, replace with an undef. This can
   1303     // only happen in dead loops.
   1304     if (AvailableVal == LoadI)
   1305       AvailableVal = UndefValue::get(LoadI->getType());
   1306     if (AvailableVal->getType() != LoadI->getType())
   1307       AvailableVal = CastInst::CreateBitOrPointerCast(
   1308           AvailableVal, LoadI->getType(), "", LoadI);
   1309     LoadI->replaceAllUsesWith(AvailableVal);
   1310     LoadI->eraseFromParent();
   1311     return true;
   1312   }
   1313 
   1314   // Otherwise, if we scanned the whole block and got to the top of the block,
   1315   // we know the block is locally transparent to the load.  If not, something
   1316   // might clobber its value.
   1317   if (BBIt != LoadBB->begin())
   1318     return false;
   1319 
   1320   // If all of the loads and stores that feed the value have the same AA tags,
   1321   // then we can propagate them onto any newly inserted loads.
   1322   AAMDNodes AATags;
   1323   LoadI->getAAMetadata(AATags);
   1324 
   1325   SmallPtrSet<BasicBlock*, 8> PredsScanned;
   1326 
   1327   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
   1328 
   1329   AvailablePredsTy AvailablePreds;
   1330   BasicBlock *OneUnavailablePred = nullptr;
   1331   SmallVector<LoadInst*, 8> CSELoads;
   1332 
   1333   // If we got here, the loaded value is transparent through to the start of the
   1334   // block.  Check to see if it is available in any of the predecessor blocks.
   1335   for (BasicBlock *PredBB : predecessors(LoadBB)) {
   1336     // If we already scanned this predecessor, skip it.
   1337     if (!PredsScanned.insert(PredBB).second)
   1338       continue;
   1339 
   1340     BBIt = PredBB->end();
   1341     unsigned NumScanedInst = 0;
   1342     Value *PredAvailable = nullptr;
   1343     // NOTE: We don't CSE load that is volatile or anything stronger than
   1344     // unordered, that should have been checked when we entered the function.
   1345     assert(LoadI->isUnordered() &&
   1346            "Attempting to CSE volatile or atomic loads");
   1347     // If this is a load on a phi pointer, phi-translate it and search
   1348     // for available load/store to the pointer in predecessors.
   1349     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
   1350     PredAvailable = FindAvailablePtrLoadStore(
   1351         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
   1352         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
   1353 
   1354     // If PredBB has a single predecessor, continue scanning through the
   1355     // single predecessor.
   1356     BasicBlock *SinglePredBB = PredBB;
   1357     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
   1358            NumScanedInst < DefMaxInstsToScan) {
   1359       SinglePredBB = SinglePredBB->getSinglePredecessor();
   1360       if (SinglePredBB) {
   1361         BBIt = SinglePredBB->end();
   1362         PredAvailable = FindAvailablePtrLoadStore(
   1363             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
   1364             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
   1365             &NumScanedInst);
   1366       }
   1367     }
   1368 
   1369     if (!PredAvailable) {
   1370       OneUnavailablePred = PredBB;
   1371       continue;
   1372     }
   1373 
   1374     if (IsLoadCSE)
   1375       CSELoads.push_back(cast<LoadInst>(PredAvailable));
   1376 
   1377     // If so, this load is partially redundant.  Remember this info so that we
   1378     // can create a PHI node.
   1379     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
   1380   }
   1381 
   1382   // If the loaded value isn't available in any predecessor, it isn't partially
   1383   // redundant.
   1384   if (AvailablePreds.empty()) return false;
   1385 
   1386   // Okay, the loaded value is available in at least one (and maybe all!)
   1387   // predecessors.  If the value is unavailable in more than one unique
   1388   // predecessor, we want to insert a merge block for those common predecessors.
   1389   // This ensures that we only have to insert one reload, thus not increasing
   1390   // code size.
   1391   BasicBlock *UnavailablePred = nullptr;
   1392 
   1393   // If the value is unavailable in one of predecessors, we will end up
   1394   // inserting a new instruction into them. It is only valid if all the
   1395   // instructions before LoadI are guaranteed to pass execution to its
   1396   // successor, or if LoadI is safe to speculate.
   1397   // TODO: If this logic becomes more complex, and we will perform PRE insertion
   1398   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
   1399   // It requires domination tree analysis, so for this simple case it is an
   1400   // overkill.
   1401   if (PredsScanned.size() != AvailablePreds.size() &&
   1402       !isSafeToSpeculativelyExecute(LoadI))
   1403     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
   1404       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
   1405         return false;
   1406 
   1407   // If there is exactly one predecessor where the value is unavailable, the
   1408   // already computed 'OneUnavailablePred' block is it.  If it ends in an
   1409   // unconditional branch, we know that it isn't a critical edge.
   1410   if (PredsScanned.size() == AvailablePreds.size()+1 &&
   1411       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
   1412     UnavailablePred = OneUnavailablePred;
   1413   } else if (PredsScanned.size() != AvailablePreds.size()) {
   1414     // Otherwise, we had multiple unavailable predecessors or we had a critical
   1415     // edge from the one.
   1416     SmallVector<BasicBlock*, 8> PredsToSplit;
   1417     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
   1418 
   1419     for (const auto &AvailablePred : AvailablePreds)
   1420       AvailablePredSet.insert(AvailablePred.first);
   1421 
   1422     // Add all the unavailable predecessors to the PredsToSplit list.
   1423     for (BasicBlock *P : predecessors(LoadBB)) {
   1424       // If the predecessor is an indirect goto, we can't split the edge.
   1425       if (isa<IndirectBrInst>(P->getTerminator()))
   1426         return false;
   1427 
   1428       if (!AvailablePredSet.count(P))
   1429         PredsToSplit.push_back(P);
   1430     }
   1431 
   1432     // Split them out to their own block.
   1433     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
   1434   }
   1435 
   1436   // If the value isn't available in all predecessors, then there will be
   1437   // exactly one where it isn't available.  Insert a load on that edge and add
   1438   // it to the AvailablePreds list.
   1439   if (UnavailablePred) {
   1440     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
   1441            "Can't handle critical edge here!");
   1442     LoadInst *NewVal =
   1443         new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
   1444                      LoadI->getName() + ".pr", false, LoadI->getAlignment(),
   1445                      LoadI->getOrdering(), LoadI->getSyncScopeID(),
   1446                      UnavailablePred->getTerminator());
   1447     NewVal->setDebugLoc(LoadI->getDebugLoc());
   1448     if (AATags)
   1449       NewVal->setAAMetadata(AATags);
   1450 
   1451     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
   1452   }
   1453 
   1454   // Now we know that each predecessor of this block has a value in
   1455   // AvailablePreds, sort them for efficient access as we're walking the preds.
   1456   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
   1457 
   1458   // Create a PHI node at the start of the block for the PRE'd load value.
   1459   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
   1460   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
   1461                                 &LoadBB->front());
   1462   PN->takeName(LoadI);
   1463   PN->setDebugLoc(LoadI->getDebugLoc());
   1464 
   1465   // Insert new entries into the PHI for each predecessor.  A single block may
   1466   // have multiple entries here.
   1467   for (pred_iterator PI = PB; PI != PE; ++PI) {
   1468     BasicBlock *P = *PI;
   1469     AvailablePredsTy::iterator I =
   1470       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
   1471                        std::make_pair(P, (Value*)nullptr));
   1472 
   1473     assert(I != AvailablePreds.end() && I->first == P &&
   1474            "Didn't find entry for predecessor!");
   1475 
   1476     // If we have an available predecessor but it requires casting, insert the
   1477     // cast in the predecessor and use the cast. Note that we have to update the
   1478     // AvailablePreds vector as we go so that all of the PHI entries for this
   1479     // predecessor use the same bitcast.
   1480     Value *&PredV = I->second;
   1481     if (PredV->getType() != LoadI->getType())
   1482       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
   1483                                                P->getTerminator());
   1484 
   1485     PN->addIncoming(PredV, I->first);
   1486   }
   1487 
   1488   for (LoadInst *PredLoadI : CSELoads) {
   1489     combineMetadataForCSE(PredLoadI, LoadI);
   1490   }
   1491 
   1492   LoadI->replaceAllUsesWith(PN);
   1493   LoadI->eraseFromParent();
   1494 
   1495   return true;
   1496 }
   1497 
   1498 /// FindMostPopularDest - The specified list contains multiple possible
   1499 /// threadable destinations.  Pick the one that occurs the most frequently in
   1500 /// the list.
   1501 static BasicBlock *
   1502 FindMostPopularDest(BasicBlock *BB,
   1503                     const SmallVectorImpl<std::pair<BasicBlock *,
   1504                                           BasicBlock *>> &PredToDestList) {
   1505   assert(!PredToDestList.empty());
   1506 
   1507   // Determine popularity.  If there are multiple possible destinations, we
   1508   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
   1509   // blocks with known and real destinations to threading undef.  We'll handle
   1510   // them later if interesting.
   1511   DenseMap<BasicBlock*, unsigned> DestPopularity;
   1512   for (const auto &PredToDest : PredToDestList)
   1513     if (PredToDest.second)
   1514       DestPopularity[PredToDest.second]++;
   1515 
   1516   if (DestPopularity.empty())
   1517     return nullptr;
   1518 
   1519   // Find the most popular dest.
   1520   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
   1521   BasicBlock *MostPopularDest = DPI->first;
   1522   unsigned Popularity = DPI->second;
   1523   SmallVector<BasicBlock*, 4> SamePopularity;
   1524 
   1525   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
   1526     // If the popularity of this entry isn't higher than the popularity we've
   1527     // seen so far, ignore it.
   1528     if (DPI->second < Popularity)
   1529       ; // ignore.
   1530     else if (DPI->second == Popularity) {
   1531       // If it is the same as what we've seen so far, keep track of it.
   1532       SamePopularity.push_back(DPI->first);
   1533     } else {
   1534       // If it is more popular, remember it.
   1535       SamePopularity.clear();
   1536       MostPopularDest = DPI->first;
   1537       Popularity = DPI->second;
   1538     }
   1539   }
   1540 
   1541   // Okay, now we know the most popular destination.  If there is more than one
   1542   // destination, we need to determine one.  This is arbitrary, but we need
   1543   // to make a deterministic decision.  Pick the first one that appears in the
   1544   // successor list.
   1545   if (!SamePopularity.empty()) {
   1546     SamePopularity.push_back(MostPopularDest);
   1547     TerminatorInst *TI = BB->getTerminator();
   1548     for (unsigned i = 0; ; ++i) {
   1549       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
   1550 
   1551       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
   1552         continue;
   1553 
   1554       MostPopularDest = TI->getSuccessor(i);
   1555       break;
   1556     }
   1557   }
   1558 
   1559   // Okay, we have finally picked the most popular destination.
   1560   return MostPopularDest;
   1561 }
   1562 
   1563 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
   1564                                                ConstantPreference Preference,
   1565                                                Instruction *CxtI) {
   1566   // If threading this would thread across a loop header, don't even try to
   1567   // thread the edge.
   1568   if (LoopHeaders.count(BB))
   1569     return false;
   1570 
   1571   PredValueInfoTy PredValues;
   1572   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
   1573     return false;
   1574 
   1575   assert(!PredValues.empty() &&
   1576          "ComputeValueKnownInPredecessors returned true with no values");
   1577 
   1578   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
   1579              for (const auto &PredValue : PredValues) {
   1580                dbgs() << "  BB '" << BB->getName()
   1581                       << "': FOUND condition = " << *PredValue.first
   1582                       << " for pred '" << PredValue.second->getName() << "'.\n";
   1583   });
   1584 
   1585   // Decide what we want to thread through.  Convert our list of known values to
   1586   // a list of known destinations for each pred.  This also discards duplicate
   1587   // predecessors and keeps track of the undefined inputs (which are represented
   1588   // as a null dest in the PredToDestList).
   1589   SmallPtrSet<BasicBlock*, 16> SeenPreds;
   1590   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
   1591 
   1592   BasicBlock *OnlyDest = nullptr;
   1593   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
   1594   Constant *OnlyVal = nullptr;
   1595   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
   1596 
   1597   unsigned PredWithKnownDest = 0;
   1598   for (const auto &PredValue : PredValues) {
   1599     BasicBlock *Pred = PredValue.second;
   1600     if (!SeenPreds.insert(Pred).second)
   1601       continue;  // Duplicate predecessor entry.
   1602 
   1603     Constant *Val = PredValue.first;
   1604 
   1605     BasicBlock *DestBB;
   1606     if (isa<UndefValue>(Val))
   1607       DestBB = nullptr;
   1608     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
   1609       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
   1610       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
   1611     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   1612       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
   1613       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
   1614     } else {
   1615       assert(isa<IndirectBrInst>(BB->getTerminator())
   1616               && "Unexpected terminator");
   1617       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
   1618       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
   1619     }
   1620 
   1621     // If we have exactly one destination, remember it for efficiency below.
   1622     if (PredToDestList.empty()) {
   1623       OnlyDest = DestBB;
   1624       OnlyVal = Val;
   1625     } else {
   1626       if (OnlyDest != DestBB)
   1627         OnlyDest = MultipleDestSentinel;
   1628       // It possible we have same destination, but different value, e.g. default
   1629       // case in switchinst.
   1630       if (Val != OnlyVal)
   1631         OnlyVal = MultipleVal;
   1632     }
   1633 
   1634     // We know where this predecessor is going.
   1635     ++PredWithKnownDest;
   1636 
   1637     // If the predecessor ends with an indirect goto, we can't change its
   1638     // destination.
   1639     if (isa<IndirectBrInst>(Pred->getTerminator()))
   1640       continue;
   1641 
   1642     PredToDestList.push_back(std::make_pair(Pred, DestBB));
   1643   }
   1644 
   1645   // If all edges were unthreadable, we fail.
   1646   if (PredToDestList.empty())
   1647     return false;
   1648 
   1649   // If all the predecessors go to a single known successor, we want to fold,
   1650   // not thread. By doing so, we do not need to duplicate the current block and
   1651   // also miss potential opportunities in case we dont/cant duplicate.
   1652   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
   1653     if (PredWithKnownDest == (size_t)pred_size(BB)) {
   1654       bool SeenFirstBranchToOnlyDest = false;
   1655       std::vector <DominatorTree::UpdateType> Updates;
   1656       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
   1657       for (BasicBlock *SuccBB : successors(BB)) {
   1658         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
   1659           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
   1660         } else {
   1661           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
   1662           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
   1663         }
   1664       }
   1665 
   1666       // Finally update the terminator.
   1667       TerminatorInst *Term = BB->getTerminator();
   1668       BranchInst::Create(OnlyDest, Term);
   1669       Term->eraseFromParent();
   1670       DDT->applyUpdates(Updates);
   1671 
   1672       // If the condition is now dead due to the removal of the old terminator,
   1673       // erase it.
   1674       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
   1675         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
   1676           CondInst->eraseFromParent();
   1677         // We can safely replace *some* uses of the CondInst if it has
   1678         // exactly one value as returned by LVI. RAUW is incorrect in the
   1679         // presence of guards and assumes, that have the `Cond` as the use. This
   1680         // is because we use the guards/assume to reason about the `Cond` value
   1681         // at the end of block, but RAUW unconditionally replaces all uses
   1682         // including the guards/assumes themselves and the uses before the
   1683         // guard/assume.
   1684         else if (OnlyVal && OnlyVal != MultipleVal &&
   1685                  CondInst->getParent() == BB)
   1686           ReplaceFoldableUses(CondInst, OnlyVal);
   1687       }
   1688       return true;
   1689     }
   1690   }
   1691 
   1692   // Determine which is the most common successor.  If we have many inputs and
   1693   // this block is a switch, we want to start by threading the batch that goes
   1694   // to the most popular destination first.  If we only know about one
   1695   // threadable destination (the common case) we can avoid this.
   1696   BasicBlock *MostPopularDest = OnlyDest;
   1697 
   1698   if (MostPopularDest == MultipleDestSentinel) {
   1699     // Remove any loop headers from the Dest list, ThreadEdge conservatively
   1700     // won't process them, but we might have other destination that are eligible
   1701     // and we still want to process.
   1702     erase_if(PredToDestList,
   1703              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
   1704                return LoopHeaders.count(PredToDest.second) != 0;
   1705              });
   1706 
   1707     if (PredToDestList.empty())
   1708       return false;
   1709 
   1710     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
   1711   }
   1712 
   1713   // Now that we know what the most popular destination is, factor all
   1714   // predecessors that will jump to it into a single predecessor.
   1715   SmallVector<BasicBlock*, 16> PredsToFactor;
   1716   for (const auto &PredToDest : PredToDestList)
   1717     if (PredToDest.second == MostPopularDest) {
   1718       BasicBlock *Pred = PredToDest.first;
   1719 
   1720       // This predecessor may be a switch or something else that has multiple
   1721       // edges to the block.  Factor each of these edges by listing them
   1722       // according to # occurrences in PredsToFactor.
   1723       for (BasicBlock *Succ : successors(Pred))
   1724         if (Succ == BB)
   1725           PredsToFactor.push_back(Pred);
   1726     }
   1727 
   1728   // If the threadable edges are branching on an undefined value, we get to pick
   1729   // the destination that these predecessors should get to.
   1730   if (!MostPopularDest)
   1731     MostPopularDest = BB->getTerminator()->
   1732                             getSuccessor(GetBestDestForJumpOnUndef(BB));
   1733 
   1734   // Ok, try to thread it!
   1735   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
   1736 }
   1737 
   1738 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
   1739 /// a PHI node in the current block.  See if there are any simplifications we
   1740 /// can do based on inputs to the phi node.
   1741 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
   1742   BasicBlock *BB = PN->getParent();
   1743 
   1744   // TODO: We could make use of this to do it once for blocks with common PHI
   1745   // values.
   1746   SmallVector<BasicBlock*, 1> PredBBs;
   1747   PredBBs.resize(1);
   1748 
   1749   // If any of the predecessor blocks end in an unconditional branch, we can
   1750   // *duplicate* the conditional branch into that block in order to further
   1751   // encourage jump threading and to eliminate cases where we have branch on a
   1752   // phi of an icmp (branch on icmp is much better).
   1753   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1754     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1755     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
   1756       if (PredBr->isUnconditional()) {
   1757         PredBBs[0] = PredBB;
   1758         // Try to duplicate BB into PredBB.
   1759         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
   1760           return true;
   1761       }
   1762   }
   1763 
   1764   return false;
   1765 }
   1766 
   1767 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
   1768 /// a xor instruction in the current block.  See if there are any
   1769 /// simplifications we can do based on inputs to the xor.
   1770 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
   1771   BasicBlock *BB = BO->getParent();
   1772 
   1773   // If either the LHS or RHS of the xor is a constant, don't do this
   1774   // optimization.
   1775   if (isa<ConstantInt>(BO->getOperand(0)) ||
   1776       isa<ConstantInt>(BO->getOperand(1)))
   1777     return false;
   1778 
   1779   // If the first instruction in BB isn't a phi, we won't be able to infer
   1780   // anything special about any particular predecessor.
   1781   if (!isa<PHINode>(BB->front()))
   1782     return false;
   1783 
   1784   // If this BB is a landing pad, we won't be able to split the edge into it.
   1785   if (BB->isEHPad())
   1786     return false;
   1787 
   1788   // If we have a xor as the branch input to this block, and we know that the
   1789   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
   1790   // the condition into the predecessor and fix that value to true, saving some
   1791   // logical ops on that path and encouraging other paths to simplify.
   1792   //
   1793   // This copies something like this:
   1794   //
   1795   //  BB:
   1796   //    %X = phi i1 [1],  [%X']
   1797   //    %Y = icmp eq i32 %A, %B
   1798   //    %Z = xor i1 %X, %Y
   1799   //    br i1 %Z, ...
   1800   //
   1801   // Into:
   1802   //  BB':
   1803   //    %Y = icmp ne i32 %A, %B
   1804   //    br i1 %Y, ...
   1805 
   1806   PredValueInfoTy XorOpValues;
   1807   bool isLHS = true;
   1808   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
   1809                                        WantInteger, BO)) {
   1810     assert(XorOpValues.empty());
   1811     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
   1812                                          WantInteger, BO))
   1813       return false;
   1814     isLHS = false;
   1815   }
   1816 
   1817   assert(!XorOpValues.empty() &&
   1818          "ComputeValueKnownInPredecessors returned true with no values");
   1819 
   1820   // Scan the information to see which is most popular: true or false.  The
   1821   // predecessors can be of the set true, false, or undef.
   1822   unsigned NumTrue = 0, NumFalse = 0;
   1823   for (const auto &XorOpValue : XorOpValues) {
   1824     if (isa<UndefValue>(XorOpValue.first))
   1825       // Ignore undefs for the count.
   1826       continue;
   1827     if (cast<ConstantInt>(XorOpValue.first)->isZero())
   1828       ++NumFalse;
   1829     else
   1830       ++NumTrue;
   1831   }
   1832 
   1833   // Determine which value to split on, true, false, or undef if neither.
   1834   ConstantInt *SplitVal = nullptr;
   1835   if (NumTrue > NumFalse)
   1836     SplitVal = ConstantInt::getTrue(BB->getContext());
   1837   else if (NumTrue != 0 || NumFalse != 0)
   1838     SplitVal = ConstantInt::getFalse(BB->getContext());
   1839 
   1840   // Collect all of the blocks that this can be folded into so that we can
   1841   // factor this once and clone it once.
   1842   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
   1843   for (const auto &XorOpValue : XorOpValues) {
   1844     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
   1845       continue;
   1846 
   1847     BlocksToFoldInto.push_back(XorOpValue.second);
   1848   }
   1849 
   1850   // If we inferred a value for all of the predecessors, then duplication won't
   1851   // help us.  However, we can just replace the LHS or RHS with the constant.
   1852   if (BlocksToFoldInto.size() ==
   1853       cast<PHINode>(BB->front()).getNumIncomingValues()) {
   1854     if (!SplitVal) {
   1855       // If all preds provide undef, just nuke the xor, because it is undef too.
   1856       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
   1857       BO->eraseFromParent();
   1858     } else if (SplitVal->isZero()) {
   1859       // If all preds provide 0, replace the xor with the other input.
   1860       BO->replaceAllUsesWith(BO->getOperand(isLHS));
   1861       BO->eraseFromParent();
   1862     } else {
   1863       // If all preds provide 1, set the computed value to 1.
   1864       BO->setOperand(!isLHS, SplitVal);
   1865     }
   1866 
   1867     return true;
   1868   }
   1869 
   1870   // Try to duplicate BB into PredBB.
   1871   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
   1872 }
   1873 
   1874 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
   1875 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
   1876 /// NewPred using the entries from OldPred (suitably mapped).
   1877 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
   1878                                             BasicBlock *OldPred,
   1879                                             BasicBlock *NewPred,
   1880                                      DenseMap<Instruction*, Value*> &ValueMap) {
   1881   for (PHINode &PN : PHIBB->phis()) {
   1882     // Ok, we have a PHI node.  Figure out what the incoming value was for the
   1883     // DestBlock.
   1884     Value *IV = PN.getIncomingValueForBlock(OldPred);
   1885 
   1886     // Remap the value if necessary.
   1887     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
   1888       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
   1889       if (I != ValueMap.end())
   1890         IV = I->second;
   1891     }
   1892 
   1893     PN.addIncoming(IV, NewPred);
   1894   }
   1895 }
   1896 
   1897 /// ThreadEdge - We have decided that it is safe and profitable to factor the
   1898 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
   1899 /// across BB.  Transform the IR to reflect this change.
   1900 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
   1901                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
   1902                                    BasicBlock *SuccBB) {
   1903   // If threading to the same block as we come from, we would infinite loop.
   1904   if (SuccBB == BB) {
   1905     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
   1906                       << "' - would thread to self!\n");
   1907     return false;
   1908   }
   1909 
   1910   // If threading this would thread across a loop header, don't thread the edge.
   1911   // See the comments above FindLoopHeaders for justifications and caveats.
   1912   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
   1913     LLVM_DEBUG({
   1914       bool BBIsHeader = LoopHeaders.count(BB);
   1915       bool SuccIsHeader = LoopHeaders.count(SuccBB);
   1916       dbgs() << "  Not threading across "
   1917           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
   1918           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
   1919           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
   1920     });
   1921     return false;
   1922   }
   1923 
   1924   unsigned JumpThreadCost =
   1925       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
   1926   if (JumpThreadCost > BBDupThreshold) {
   1927     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
   1928                       << "' - Cost is too high: " << JumpThreadCost << "\n");
   1929     return false;
   1930   }
   1931 
   1932   // And finally, do it!  Start by factoring the predecessors if needed.
   1933   BasicBlock *PredBB;
   1934   if (PredBBs.size() == 1)
   1935     PredBB = PredBBs[0];
   1936   else {
   1937     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
   1938                       << " common predecessors.\n");
   1939     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
   1940   }
   1941 
   1942   // And finally, do it!
   1943   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
   1944                     << "' to '" << SuccBB->getName()
   1945                     << "' with cost: " << JumpThreadCost
   1946                     << ", across block:\n    " << *BB << "\n");
   1947 
   1948   if (DDT->pending())
   1949     LVI->disableDT();
   1950   else
   1951     LVI->enableDT();
   1952   LVI->threadEdge(PredBB, BB, SuccBB);
   1953 
   1954   // We are going to have to map operands from the original BB block to the new
   1955   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
   1956   // account for entry from PredBB.
   1957   DenseMap<Instruction*, Value*> ValueMapping;
   1958 
   1959   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
   1960                                          BB->getName()+".thread",
   1961                                          BB->getParent(), BB);
   1962   NewBB->moveAfter(PredBB);
   1963 
   1964   // Set the block frequency of NewBB.
   1965   if (HasProfileData) {
   1966     auto NewBBFreq =
   1967         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
   1968     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
   1969   }
   1970 
   1971   BasicBlock::iterator BI = BB->begin();
   1972   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
   1973     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
   1974 
   1975   // Clone the non-phi instructions of BB into NewBB, keeping track of the
   1976   // mapping and using it to remap operands in the cloned instructions.
   1977   for (; !isa<TerminatorInst>(BI); ++BI) {
   1978     Instruction *New = BI->clone();
   1979     New->setName(BI->getName());
   1980     NewBB->getInstList().push_back(New);
   1981     ValueMapping[&*BI] = New;
   1982 
   1983     // Remap operands to patch up intra-block references.
   1984     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
   1985       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
   1986         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
   1987         if (I != ValueMapping.end())
   1988           New->setOperand(i, I->second);
   1989       }
   1990   }
   1991 
   1992   // We didn't copy the terminator from BB over to NewBB, because there is now
   1993   // an unconditional jump to SuccBB.  Insert the unconditional jump.
   1994   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
   1995   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
   1996 
   1997   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
   1998   // PHI nodes for NewBB now.
   1999   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
   2000 
   2001   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
   2002   // eliminates predecessors from BB, which requires us to simplify any PHI
   2003   // nodes in BB.
   2004   TerminatorInst *PredTerm = PredBB->getTerminator();
   2005   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
   2006     if (PredTerm->getSuccessor(i) == BB) {
   2007       BB->removePredecessor(PredBB, true);
   2008       PredTerm->setSuccessor(i, NewBB);
   2009     }
   2010 
   2011   // Enqueue required DT updates.
   2012   DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
   2013                      {DominatorTree::Insert, PredBB, NewBB},
   2014                      {DominatorTree::Delete, PredBB, BB}});
   2015 
   2016   // If there were values defined in BB that are used outside the block, then we
   2017   // now have to update all uses of the value to use either the original value,
   2018   // the cloned value, or some PHI derived value.  This can require arbitrary
   2019   // PHI insertion, of which we are prepared to do, clean these up now.
   2020   SSAUpdater SSAUpdate;
   2021   SmallVector<Use*, 16> UsesToRename;
   2022 
   2023   for (Instruction &I : *BB) {
   2024     // Scan all uses of this instruction to see if their uses are no longer
   2025     // dominated by the previous def and if so, record them in UsesToRename.
   2026     // Also, skip phi operands from PredBB - we'll remove them anyway.
   2027     for (Use &U : I.uses()) {
   2028       Instruction *User = cast<Instruction>(U.getUser());
   2029       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
   2030         if (UserPN->getIncomingBlock(U) == BB)
   2031           continue;
   2032       } else if (User->getParent() == BB)
   2033         continue;
   2034 
   2035       UsesToRename.push_back(&U);
   2036     }
   2037 
   2038     // If there are no uses outside the block, we're done with this instruction.
   2039     if (UsesToRename.empty())
   2040       continue;
   2041     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
   2042 
   2043     // We found a use of I outside of BB.  Rename all uses of I that are outside
   2044     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
   2045     // with the two values we know.
   2046     SSAUpdate.Initialize(I.getType(), I.getName());
   2047     SSAUpdate.AddAvailableValue(BB, &I);
   2048     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
   2049 
   2050     while (!UsesToRename.empty())
   2051       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
   2052     LLVM_DEBUG(dbgs() << "\n");
   2053   }
   2054 
   2055   // At this point, the IR is fully up to date and consistent.  Do a quick scan
   2056   // over the new instructions and zap any that are constants or dead.  This
   2057   // frequently happens because of phi translation.
   2058   SimplifyInstructionsInBlock(NewBB, TLI);
   2059 
   2060   // Update the edge weight from BB to SuccBB, which should be less than before.
   2061   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
   2062 
   2063   // Threaded an edge!
   2064   ++NumThreads;
   2065   return true;
   2066 }
   2067 
   2068 /// Create a new basic block that will be the predecessor of BB and successor of
   2069 /// all blocks in Preds. When profile data is available, update the frequency of
   2070 /// this new block.
   2071 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
   2072                                                ArrayRef<BasicBlock *> Preds,
   2073                                                const char *Suffix) {
   2074   SmallVector<BasicBlock *, 2> NewBBs;
   2075 
   2076   // Collect the frequencies of all predecessors of BB, which will be used to
   2077   // update the edge weight of the result of splitting predecessors.
   2078   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
   2079   if (HasProfileData)
   2080     for (auto Pred : Preds)
   2081       FreqMap.insert(std::make_pair(
   2082           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
   2083 
   2084   // In the case when BB is a LandingPad block we create 2 new predecessors
   2085   // instead of just one.
   2086   if (BB->isLandingPad()) {
   2087     std::string NewName = std::string(Suffix) + ".split-lp";
   2088     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
   2089   } else {
   2090     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
   2091   }
   2092 
   2093   std::vector<DominatorTree::UpdateType> Updates;
   2094   Updates.reserve((2 * Preds.size()) + NewBBs.size());
   2095   for (auto NewBB : NewBBs) {
   2096     BlockFrequency NewBBFreq(0);
   2097     Updates.push_back({DominatorTree::Insert, NewBB, BB});
   2098     for (auto Pred : predecessors(NewBB)) {
   2099       Updates.push_back({DominatorTree::Delete, Pred, BB});
   2100       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
   2101       if (HasProfileData) // Update frequencies between Pred -> NewBB.
   2102         NewBBFreq += FreqMap.lookup(Pred);
   2103     }
   2104     if (HasProfileData) // Apply the summed frequency to NewBB.
   2105       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
   2106   }
   2107 
   2108   DDT->applyUpdates(Updates);
   2109   return NewBBs[0];
   2110 }
   2111 
   2112 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
   2113   const TerminatorInst *TI = BB->getTerminator();
   2114   assert(TI->getNumSuccessors() > 1 && "not a split");
   2115 
   2116   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
   2117   if (!WeightsNode)
   2118     return false;
   2119 
   2120   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
   2121   if (MDName->getString() != "branch_weights")
   2122     return false;
   2123 
   2124   // Ensure there are weights for all of the successors. Note that the first
   2125   // operand to the metadata node is a name, not a weight.
   2126   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
   2127 }
   2128 
   2129 /// Update the block frequency of BB and branch weight and the metadata on the
   2130 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
   2131 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
   2132 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
   2133                                                      BasicBlock *BB,
   2134                                                      BasicBlock *NewBB,
   2135                                                      BasicBlock *SuccBB) {
   2136   if (!HasProfileData)
   2137     return;
   2138 
   2139   assert(BFI && BPI && "BFI & BPI should have been created here");
   2140 
   2141   // As the edge from PredBB to BB is deleted, we have to update the block
   2142   // frequency of BB.
   2143   auto BBOrigFreq = BFI->getBlockFreq(BB);
   2144   auto NewBBFreq = BFI->getBlockFreq(NewBB);
   2145   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
   2146   auto BBNewFreq = BBOrigFreq - NewBBFreq;
   2147   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
   2148 
   2149   // Collect updated outgoing edges' frequencies from BB and use them to update
   2150   // edge probabilities.
   2151   SmallVector<uint64_t, 4> BBSuccFreq;
   2152   for (BasicBlock *Succ : successors(BB)) {
   2153     auto SuccFreq = (Succ == SuccBB)
   2154                         ? BB2SuccBBFreq - NewBBFreq
   2155                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
   2156     BBSuccFreq.push_back(SuccFreq.getFrequency());
   2157   }
   2158 
   2159   uint64_t MaxBBSuccFreq =
   2160       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
   2161 
   2162   SmallVector<BranchProbability, 4> BBSuccProbs;
   2163   if (MaxBBSuccFreq == 0)
   2164     BBSuccProbs.assign(BBSuccFreq.size(),
   2165                        {1, static_cast<unsigned>(BBSuccFreq.size())});
   2166   else {
   2167     for (uint64_t Freq : BBSuccFreq)
   2168       BBSuccProbs.push_back(
   2169           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
   2170     // Normalize edge probabilities so that they sum up to one.
   2171     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
   2172                                               BBSuccProbs.end());
   2173   }
   2174 
   2175   // Update edge probabilities in BPI.
   2176   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
   2177     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
   2178 
   2179   // Update the profile metadata as well.
   2180   //
   2181   // Don't do this if the profile of the transformed blocks was statically
   2182   // estimated.  (This could occur despite the function having an entry
   2183   // frequency in completely cold parts of the CFG.)
   2184   //
   2185   // In this case we don't want to suggest to subsequent passes that the
   2186   // calculated weights are fully consistent.  Consider this graph:
   2187   //
   2188   //                 check_1
   2189   //             50% /  |
   2190   //             eq_1   | 50%
   2191   //                 \  |
   2192   //                 check_2
   2193   //             50% /  |
   2194   //             eq_2   | 50%
   2195   //                 \  |
   2196   //                 check_3
   2197   //             50% /  |
   2198   //             eq_3   | 50%
   2199   //                 \  |
   2200   //
   2201   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
   2202   // the overall probabilities are inconsistent; the total probability that the
   2203   // value is either 1, 2 or 3 is 150%.
   2204   //
   2205   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
   2206   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
   2207   // the loop exit edge.  Then based solely on static estimation we would assume
   2208   // the loop was extremely hot.
   2209   //
   2210   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
   2211   // shouldn't make edges extremely likely or unlikely based solely on static
   2212   // estimation.
   2213   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
   2214     SmallVector<uint32_t, 4> Weights;
   2215     for (auto Prob : BBSuccProbs)
   2216       Weights.push_back(Prob.getNumerator());
   2217 
   2218     auto TI = BB->getTerminator();
   2219     TI->setMetadata(
   2220         LLVMContext::MD_prof,
   2221         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
   2222   }
   2223 }
   2224 
   2225 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
   2226 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
   2227 /// If we can duplicate the contents of BB up into PredBB do so now, this
   2228 /// improves the odds that the branch will be on an analyzable instruction like
   2229 /// a compare.
   2230 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
   2231     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
   2232   assert(!PredBBs.empty() && "Can't handle an empty set");
   2233 
   2234   // If BB is a loop header, then duplicating this block outside the loop would
   2235   // cause us to transform this into an irreducible loop, don't do this.
   2236   // See the comments above FindLoopHeaders for justifications and caveats.
   2237   if (LoopHeaders.count(BB)) {
   2238     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
   2239                       << "' into predecessor block '" << PredBBs[0]->getName()
   2240                       << "' - it might create an irreducible loop!\n");
   2241     return false;
   2242   }
   2243 
   2244   unsigned DuplicationCost =
   2245       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
   2246   if (DuplicationCost > BBDupThreshold) {
   2247     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
   2248                       << "' - Cost is too high: " << DuplicationCost << "\n");
   2249     return false;
   2250   }
   2251 
   2252   // And finally, do it!  Start by factoring the predecessors if needed.
   2253   std::vector<DominatorTree::UpdateType> Updates;
   2254   BasicBlock *PredBB;
   2255   if (PredBBs.size() == 1)
   2256     PredBB = PredBBs[0];
   2257   else {
   2258     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
   2259                       << " common predecessors.\n");
   2260     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
   2261   }
   2262   Updates.push_back({DominatorTree::Delete, PredBB, BB});
   2263 
   2264   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
   2265   // of PredBB.
   2266   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
   2267                     << "' into end of '" << PredBB->getName()
   2268                     << "' to eliminate branch on phi.  Cost: "
   2269                     << DuplicationCost << " block is:" << *BB << "\n");
   2270 
   2271   // Unless PredBB ends with an unconditional branch, split the edge so that we
   2272   // can just clone the bits from BB into the end of the new PredBB.
   2273   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
   2274 
   2275   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
   2276     BasicBlock *OldPredBB = PredBB;
   2277     PredBB = SplitEdge(OldPredBB, BB);
   2278     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
   2279     Updates.push_back({DominatorTree::Insert, PredBB, BB});
   2280     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
   2281     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
   2282   }
   2283 
   2284   // We are going to have to map operands from the original BB block into the
   2285   // PredBB block.  Evaluate PHI nodes in BB.
   2286   DenseMap<Instruction*, Value*> ValueMapping;
   2287 
   2288   BasicBlock::iterator BI = BB->begin();
   2289   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
   2290     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
   2291   // Clone the non-phi instructions of BB into PredBB, keeping track of the
   2292   // mapping and using it to remap operands in the cloned instructions.
   2293   for (; BI != BB->end(); ++BI) {
   2294     Instruction *New = BI->clone();
   2295 
   2296     // Remap operands to patch up intra-block references.
   2297     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
   2298       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
   2299         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
   2300         if (I != ValueMapping.end())
   2301           New->setOperand(i, I->second);
   2302       }
   2303 
   2304     // If this instruction can be simplified after the operands are updated,
   2305     // just use the simplified value instead.  This frequently happens due to
   2306     // phi translation.
   2307     if (Value *IV = SimplifyInstruction(
   2308             New,
   2309             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
   2310       ValueMapping[&*BI] = IV;
   2311       if (!New->mayHaveSideEffects()) {
   2312         New->deleteValue();
   2313         New = nullptr;
   2314       }
   2315     } else {
   2316       ValueMapping[&*BI] = New;
   2317     }
   2318     if (New) {
   2319       // Otherwise, insert the new instruction into the block.
   2320       New->setName(BI->getName());
   2321       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
   2322       // Update Dominance from simplified New instruction operands.
   2323       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
   2324         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
   2325           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
   2326     }
   2327   }
   2328 
   2329   // Check to see if the targets of the branch had PHI nodes. If so, we need to
   2330   // add entries to the PHI nodes for branch from PredBB now.
   2331   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
   2332   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
   2333                                   ValueMapping);
   2334   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
   2335                                   ValueMapping);
   2336 
   2337   // If there were values defined in BB that are used outside the block, then we
   2338   // now have to update all uses of the value to use either the original value,
   2339   // the cloned value, or some PHI derived value.  This can require arbitrary
   2340   // PHI insertion, of which we are prepared to do, clean these up now.
   2341   SSAUpdater SSAUpdate;
   2342   SmallVector<Use*, 16> UsesToRename;
   2343   for (Instruction &I : *BB) {
   2344     // Scan all uses of this instruction to see if it is used outside of its
   2345     // block, and if so, record them in UsesToRename.
   2346     for (Use &U : I.uses()) {
   2347       Instruction *User = cast<Instruction>(U.getUser());
   2348       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
   2349         if (UserPN->getIncomingBlock(U) == BB)
   2350           continue;
   2351       } else if (User->getParent() == BB)
   2352         continue;
   2353 
   2354       UsesToRename.push_back(&U);
   2355     }
   2356 
   2357     // If there are no uses outside the block, we're done with this instruction.
   2358     if (UsesToRename.empty())
   2359       continue;
   2360 
   2361     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
   2362 
   2363     // We found a use of I outside of BB.  Rename all uses of I that are outside
   2364     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
   2365     // with the two values we know.
   2366     SSAUpdate.Initialize(I.getType(), I.getName());
   2367     SSAUpdate.AddAvailableValue(BB, &I);
   2368     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
   2369 
   2370     while (!UsesToRename.empty())
   2371       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
   2372     LLVM_DEBUG(dbgs() << "\n");
   2373   }
   2374 
   2375   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
   2376   // that we nuked.
   2377   BB->removePredecessor(PredBB, true);
   2378 
   2379   // Remove the unconditional branch at the end of the PredBB block.
   2380   OldPredBranch->eraseFromParent();
   2381   DDT->applyUpdates(Updates);
   2382 
   2383   ++NumDupes;
   2384   return true;
   2385 }
   2386 
   2387 /// TryToUnfoldSelect - Look for blocks of the form
   2388 /// bb1:
   2389 ///   %a = select
   2390 ///   br bb2
   2391 ///
   2392 /// bb2:
   2393 ///   %p = phi [%a, %bb1] ...
   2394 ///   %c = icmp %p
   2395 ///   br i1 %c
   2396 ///
   2397 /// And expand the select into a branch structure if one of its arms allows %c
   2398 /// to be folded. This later enables threading from bb1 over bb2.
   2399 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
   2400   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
   2401   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
   2402   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
   2403 
   2404   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
   2405       CondLHS->getParent() != BB)
   2406     return false;
   2407 
   2408   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
   2409     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
   2410     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
   2411 
   2412     // Look if one of the incoming values is a select in the corresponding
   2413     // predecessor.
   2414     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
   2415       continue;
   2416 
   2417     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
   2418     if (!PredTerm || !PredTerm->isUnconditional())
   2419       continue;
   2420 
   2421     // Now check if one of the select values would allow us to constant fold the
   2422     // terminator in BB. We don't do the transform if both sides fold, those
   2423     // cases will be threaded in any case.
   2424     if (DDT->pending())
   2425       LVI->disableDT();
   2426     else
   2427       LVI->enableDT();
   2428     LazyValueInfo::Tristate LHSFolds =
   2429         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
   2430                                 CondRHS, Pred, BB, CondCmp);
   2431     LazyValueInfo::Tristate RHSFolds =
   2432         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
   2433                                 CondRHS, Pred, BB, CondCmp);
   2434     if ((LHSFolds != LazyValueInfo::Unknown ||
   2435          RHSFolds != LazyValueInfo::Unknown) &&
   2436         LHSFolds != RHSFolds) {
   2437       // Expand the select.
   2438       //
   2439       // Pred --
   2440       //  |    v
   2441       //  |  NewBB
   2442       //  |    |
   2443       //  |-----
   2444       //  v
   2445       // BB
   2446       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
   2447                                              BB->getParent(), BB);
   2448       // Move the unconditional branch to NewBB.
   2449       PredTerm->removeFromParent();
   2450       NewBB->getInstList().insert(NewBB->end(), PredTerm);
   2451       // Create a conditional branch and update PHI nodes.
   2452       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
   2453       CondLHS->setIncomingValue(I, SI->getFalseValue());
   2454       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
   2455       // The select is now dead.
   2456       SI->eraseFromParent();
   2457 
   2458       DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB},
   2459                          {DominatorTree::Insert, Pred, NewBB}});
   2460       // Update any other PHI nodes in BB.
   2461       for (BasicBlock::iterator BI = BB->begin();
   2462            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
   2463         if (Phi != CondLHS)
   2464           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
   2465       return true;
   2466     }
   2467   }
   2468   return false;
   2469 }
   2470 
   2471 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
   2472 /// same BB in the form
   2473 /// bb:
   2474 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
   2475 ///   %s = select %p, trueval, falseval
   2476 ///
   2477 /// or
   2478 ///
   2479 /// bb:
   2480 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
   2481 ///   %c = cmp %p, 0
   2482 ///   %s = select %c, trueval, falseval
   2483 ///
   2484 /// And expand the select into a branch structure. This later enables
   2485 /// jump-threading over bb in this pass.
   2486 ///
   2487 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
   2488 /// select if the associated PHI has at least one constant.  If the unfolded
   2489 /// select is not jump-threaded, it will be folded again in the later
   2490 /// optimizations.
   2491 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
   2492   // If threading this would thread across a loop header, don't thread the edge.
   2493   // See the comments above FindLoopHeaders for justifications and caveats.
   2494   if (LoopHeaders.count(BB))
   2495     return false;
   2496 
   2497   for (BasicBlock::iterator BI = BB->begin();
   2498        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
   2499     // Look for a Phi having at least one constant incoming value.
   2500     if (llvm::all_of(PN->incoming_values(),
   2501                      [](Value *V) { return !isa<ConstantInt>(V); }))
   2502       continue;
   2503 
   2504     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
   2505       // Check if SI is in BB and use V as condition.
   2506       if (SI->getParent() != BB)
   2507         return false;
   2508       Value *Cond = SI->getCondition();
   2509       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
   2510     };
   2511 
   2512     SelectInst *SI = nullptr;
   2513     for (Use &U : PN->uses()) {
   2514       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
   2515         // Look for a ICmp in BB that compares PN with a constant and is the
   2516         // condition of a Select.
   2517         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
   2518             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
   2519           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
   2520             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
   2521               SI = SelectI;
   2522               break;
   2523             }
   2524       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
   2525         // Look for a Select in BB that uses PN as condition.
   2526         if (isUnfoldCandidate(SelectI, U.get())) {
   2527           SI = SelectI;
   2528           break;
   2529         }
   2530       }
   2531     }
   2532 
   2533     if (!SI)
   2534       continue;
   2535     // Expand the select.
   2536     TerminatorInst *Term =
   2537         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
   2538     BasicBlock *SplitBB = SI->getParent();
   2539     BasicBlock *NewBB = Term->getParent();
   2540     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
   2541     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
   2542     NewPN->addIncoming(SI->getFalseValue(), BB);
   2543     SI->replaceAllUsesWith(NewPN);
   2544     SI->eraseFromParent();
   2545     // NewBB and SplitBB are newly created blocks which require insertion.
   2546     std::vector<DominatorTree::UpdateType> Updates;
   2547     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
   2548     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
   2549     Updates.push_back({DominatorTree::Insert, BB, NewBB});
   2550     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
   2551     // BB's successors were moved to SplitBB, update DDT accordingly.
   2552     for (auto *Succ : successors(SplitBB)) {
   2553       Updates.push_back({DominatorTree::Delete, BB, Succ});
   2554       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
   2555     }
   2556     DDT->applyUpdates(Updates);
   2557     return true;
   2558   }
   2559   return false;
   2560 }
   2561 
   2562 /// Try to propagate a guard from the current BB into one of its predecessors
   2563 /// in case if another branch of execution implies that the condition of this
   2564 /// guard is always true. Currently we only process the simplest case that
   2565 /// looks like:
   2566 ///
   2567 /// Start:
   2568 ///   %cond = ...
   2569 ///   br i1 %cond, label %T1, label %F1
   2570 /// T1:
   2571 ///   br label %Merge
   2572 /// F1:
   2573 ///   br label %Merge
   2574 /// Merge:
   2575 ///   %condGuard = ...
   2576 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
   2577 ///
   2578 /// And cond either implies condGuard or !condGuard. In this case all the
   2579 /// instructions before the guard can be duplicated in both branches, and the
   2580 /// guard is then threaded to one of them.
   2581 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
   2582   using namespace PatternMatch;
   2583 
   2584   // We only want to deal with two predecessors.
   2585   BasicBlock *Pred1, *Pred2;
   2586   auto PI = pred_begin(BB), PE = pred_end(BB);
   2587   if (PI == PE)
   2588     return false;
   2589   Pred1 = *PI++;
   2590   if (PI == PE)
   2591     return false;
   2592   Pred2 = *PI++;
   2593   if (PI != PE)
   2594     return false;
   2595   if (Pred1 == Pred2)
   2596     return false;
   2597 
   2598   // Try to thread one of the guards of the block.
   2599   // TODO: Look up deeper than to immediate predecessor?
   2600   auto *Parent = Pred1->getSinglePredecessor();
   2601   if (!Parent || Parent != Pred2->getSinglePredecessor())
   2602     return false;
   2603 
   2604   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
   2605     for (auto &I : *BB)
   2606       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
   2607         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
   2608           return true;
   2609 
   2610   return false;
   2611 }
   2612 
   2613 /// Try to propagate the guard from BB which is the lower block of a diamond
   2614 /// to one of its branches, in case if diamond's condition implies guard's
   2615 /// condition.
   2616 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
   2617                                     BranchInst *BI) {
   2618   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
   2619   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
   2620   Value *GuardCond = Guard->getArgOperand(0);
   2621   Value *BranchCond = BI->getCondition();
   2622   BasicBlock *TrueDest = BI->getSuccessor(0);
   2623   BasicBlock *FalseDest = BI->getSuccessor(1);
   2624 
   2625   auto &DL = BB->getModule()->getDataLayout();
   2626   bool TrueDestIsSafe = false;
   2627   bool FalseDestIsSafe = false;
   2628 
   2629   // True dest is safe if BranchCond => GuardCond.
   2630   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
   2631   if (Impl && *Impl)
   2632     TrueDestIsSafe = true;
   2633   else {
   2634     // False dest is safe if !BranchCond => GuardCond.
   2635     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
   2636     if (Impl && *Impl)
   2637       FalseDestIsSafe = true;
   2638   }
   2639 
   2640   if (!TrueDestIsSafe && !FalseDestIsSafe)
   2641     return false;
   2642 
   2643   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
   2644   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
   2645 
   2646   ValueToValueMapTy UnguardedMapping, GuardedMapping;
   2647   Instruction *AfterGuard = Guard->getNextNode();
   2648   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
   2649   if (Cost > BBDupThreshold)
   2650     return false;
   2651   // Duplicate all instructions before the guard and the guard itself to the
   2652   // branch where implication is not proved.
   2653   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
   2654       BB, PredGuardedBlock, AfterGuard, GuardedMapping);
   2655   assert(GuardedBlock && "Could not create the guarded block?");
   2656   // Duplicate all instructions before the guard in the unguarded branch.
   2657   // Since we have successfully duplicated the guarded block and this block
   2658   // has fewer instructions, we expect it to succeed.
   2659   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
   2660       BB, PredUnguardedBlock, Guard, UnguardedMapping);
   2661   assert(UnguardedBlock && "Could not create the unguarded block?");
   2662   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
   2663                     << GuardedBlock->getName() << "\n");
   2664   // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between
   2665   // PredBB and BB. We need to perform two inserts and one delete for each of
   2666   // the above calls to update Dominators.
   2667   DDT->applyUpdates(
   2668       {// Guarded block split.
   2669        {DominatorTree::Delete, PredGuardedBlock, BB},
   2670        {DominatorTree::Insert, PredGuardedBlock, GuardedBlock},
   2671        {DominatorTree::Insert, GuardedBlock, BB},
   2672        // Unguarded block split.
   2673        {DominatorTree::Delete, PredUnguardedBlock, BB},
   2674        {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock},
   2675        {DominatorTree::Insert, UnguardedBlock, BB}});
   2676   // Some instructions before the guard may still have uses. For them, we need
   2677   // to create Phi nodes merging their copies in both guarded and unguarded
   2678   // branches. Those instructions that have no uses can be just removed.
   2679   SmallVector<Instruction *, 4> ToRemove;
   2680   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
   2681     if (!isa<PHINode>(&*BI))
   2682       ToRemove.push_back(&*BI);
   2683 
   2684   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
   2685   assert(InsertionPoint && "Empty block?");
   2686   // Substitute with Phis & remove.
   2687   for (auto *Inst : reverse(ToRemove)) {
   2688     if (!Inst->use_empty()) {
   2689       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
   2690       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
   2691       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
   2692       NewPN->insertBefore(InsertionPoint);
   2693       Inst->replaceAllUsesWith(NewPN);
   2694     }
   2695     Inst->eraseFromParent();
   2696   }
   2697   return true;
   2698 }
   2699