Home | History | Annotate | Download | only in collector
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "concurrent_copying.h"
     18 
     19 #include "art_field-inl.h"
     20 #include "barrier.h"
     21 #include "base/enums.h"
     22 #include "base/file_utils.h"
     23 #include "base/histogram-inl.h"
     24 #include "base/quasi_atomic.h"
     25 #include "base/stl_util.h"
     26 #include "base/systrace.h"
     27 #include "class_root.h"
     28 #include "debugger.h"
     29 #include "gc/accounting/atomic_stack.h"
     30 #include "gc/accounting/heap_bitmap-inl.h"
     31 #include "gc/accounting/mod_union_table-inl.h"
     32 #include "gc/accounting/read_barrier_table.h"
     33 #include "gc/accounting/space_bitmap-inl.h"
     34 #include "gc/gc_pause_listener.h"
     35 #include "gc/reference_processor.h"
     36 #include "gc/space/image_space.h"
     37 #include "gc/space/space-inl.h"
     38 #include "gc/verification.h"
     39 #include "image-inl.h"
     40 #include "intern_table.h"
     41 #include "mirror/class-inl.h"
     42 #include "mirror/object-inl.h"
     43 #include "mirror/object-refvisitor-inl.h"
     44 #include "mirror/object_reference.h"
     45 #include "scoped_thread_state_change-inl.h"
     46 #include "thread-inl.h"
     47 #include "thread_list.h"
     48 #include "well_known_classes.h"
     49 
     50 namespace art {
     51 namespace gc {
     52 namespace collector {
     53 
     54 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
     55 // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod
     56 // union table. Disabled since it does not seem to help the pause much.
     57 static constexpr bool kFilterModUnionCards = kIsDebugBuild;
     58 // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any read barrier that
     59 // occur during ConcurrentCopying::Scan in GC thread. May be used to diagnose possibly unnecessary
     60 // read barriers. Only enabled for kIsDebugBuild to avoid performance hit.
     61 static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild;
     62 // Slow path mark stack size, increase this if the stack is getting full and it is causing
     63 // performance problems.
     64 static constexpr size_t kReadBarrierMarkStackSize = 512 * KB;
     65 // Size (in the number of objects) of the sweep array free buffer.
     66 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
     67 // Verify that there are no missing card marks.
     68 static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild;
     69 
     70 ConcurrentCopying::ConcurrentCopying(Heap* heap,
     71                                      bool young_gen,
     72                                      bool use_generational_cc,
     73                                      const std::string& name_prefix,
     74                                      bool measure_read_barrier_slow_path)
     75     : GarbageCollector(heap,
     76                        name_prefix + (name_prefix.empty() ? "" : " ") +
     77                        "concurrent copying"),
     78       region_space_(nullptr),
     79       gc_barrier_(new Barrier(0)),
     80       gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
     81                                                      kDefaultGcMarkStackSize,
     82                                                      kDefaultGcMarkStackSize)),
     83       use_generational_cc_(use_generational_cc),
     84       young_gen_(young_gen),
     85       rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack",
     86                                                          kReadBarrierMarkStackSize,
     87                                                          kReadBarrierMarkStackSize)),
     88       rb_mark_bit_stack_full_(false),
     89       mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
     90       thread_running_gc_(nullptr),
     91       is_marking_(false),
     92       is_using_read_barrier_entrypoints_(false),
     93       is_active_(false),
     94       is_asserting_to_space_invariant_(false),
     95       region_space_bitmap_(nullptr),
     96       heap_mark_bitmap_(nullptr),
     97       live_stack_freeze_size_(0),
     98       from_space_num_objects_at_first_pause_(0),
     99       from_space_num_bytes_at_first_pause_(0),
    100       mark_stack_mode_(kMarkStackModeOff),
    101       weak_ref_access_enabled_(true),
    102       copied_live_bytes_ratio_sum_(0.f),
    103       gc_count_(0),
    104       region_space_inter_region_bitmap_(nullptr),
    105       non_moving_space_inter_region_bitmap_(nullptr),
    106       reclaimed_bytes_ratio_sum_(0.f),
    107       skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
    108       measure_read_barrier_slow_path_(measure_read_barrier_slow_path),
    109       mark_from_read_barrier_measurements_(false),
    110       rb_slow_path_ns_(0),
    111       rb_slow_path_count_(0),
    112       rb_slow_path_count_gc_(0),
    113       rb_slow_path_histogram_lock_("Read barrier histogram lock"),
    114       rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32),
    115       rb_slow_path_count_total_(0),
    116       rb_slow_path_count_gc_total_(0),
    117       rb_table_(heap_->GetReadBarrierTable()),
    118       force_evacuate_all_(false),
    119       gc_grays_immune_objects_(false),
    120       immune_gray_stack_lock_("concurrent copying immune gray stack lock",
    121                               kMarkSweepMarkStackLock),
    122       num_bytes_allocated_before_gc_(0) {
    123   static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
    124                 "The region space size and the read barrier table region size must match");
    125   CHECK(use_generational_cc_ || !young_gen_);
    126   Thread* self = Thread::Current();
    127   {
    128     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
    129     // Cache this so that we won't have to lock heap_bitmap_lock_ in
    130     // Mark() which could cause a nested lock on heap_bitmap_lock_
    131     // when GC causes a RB while doing GC or a lock order violation
    132     // (class_linker_lock_ and heap_bitmap_lock_).
    133     heap_mark_bitmap_ = heap->GetMarkBitmap();
    134   }
    135   {
    136     MutexLock mu(self, mark_stack_lock_);
    137     for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
    138       accounting::AtomicStack<mirror::Object>* mark_stack =
    139           accounting::AtomicStack<mirror::Object>::Create(
    140               "thread local mark stack", kMarkStackSize, kMarkStackSize);
    141       pooled_mark_stacks_.push_back(mark_stack);
    142     }
    143   }
    144   if (use_generational_cc_) {
    145     // Allocate sweep array free buffer.
    146     std::string error_msg;
    147     sweep_array_free_buffer_mem_map_ = MemMap::MapAnonymous(
    148         "concurrent copying sweep array free buffer",
    149         RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
    150         PROT_READ | PROT_WRITE,
    151         /*low_4gb=*/ false,
    152         &error_msg);
    153     CHECK(sweep_array_free_buffer_mem_map_.IsValid())
    154         << "Couldn't allocate sweep array free buffer: " << error_msg;
    155   }
    156 }
    157 
    158 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field,
    159                                           bool do_atomic_update) {
    160   Thread* const self = Thread::Current();
    161   if (UNLIKELY(do_atomic_update)) {
    162     // Used to mark the referent in DelayReferenceReferent in transaction mode.
    163     mirror::Object* from_ref = field->AsMirrorPtr();
    164     if (from_ref == nullptr) {
    165       return;
    166     }
    167     mirror::Object* to_ref = Mark(self, from_ref);
    168     if (from_ref != to_ref) {
    169       do {
    170         if (field->AsMirrorPtr() != from_ref) {
    171           // Concurrently overwritten by a mutator.
    172           break;
    173         }
    174       } while (!field->CasWeakRelaxed(from_ref, to_ref));
    175     }
    176   } else {
    177     // Used for preserving soft references, should be OK to not have a CAS here since there should be
    178     // no other threads which can trigger read barriers on the same referent during reference
    179     // processing.
    180     field->Assign(Mark(self, field->AsMirrorPtr()));
    181   }
    182 }
    183 
    184 ConcurrentCopying::~ConcurrentCopying() {
    185   STLDeleteElements(&pooled_mark_stacks_);
    186 }
    187 
    188 void ConcurrentCopying::RunPhases() {
    189   CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
    190   CHECK(!is_active_);
    191   is_active_ = true;
    192   Thread* self = Thread::Current();
    193   thread_running_gc_ = self;
    194   Locks::mutator_lock_->AssertNotHeld(self);
    195   {
    196     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    197     InitializePhase();
    198     // In case of forced evacuation, all regions are evacuated and hence no
    199     // need to compute live_bytes.
    200     if (use_generational_cc_ && !young_gen_ && !force_evacuate_all_) {
    201       MarkingPhase();
    202     }
    203   }
    204   if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
    205     // Switch to read barrier mark entrypoints before we gray the objects. This is required in case
    206     // a mutator sees a gray bit and dispatches on the entrypoint. (b/37876887).
    207     ActivateReadBarrierEntrypoints();
    208     // Gray dirty immune objects concurrently to reduce GC pause times. We re-process gray cards in
    209     // the pause.
    210     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    211     GrayAllDirtyImmuneObjects();
    212   }
    213   FlipThreadRoots();
    214   {
    215     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    216     CopyingPhase();
    217   }
    218   // Verify no from space refs. This causes a pause.
    219   if (kEnableNoFromSpaceRefsVerification) {
    220     TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
    221     ScopedPause pause(this, false);
    222     CheckEmptyMarkStack();
    223     if (kVerboseMode) {
    224       LOG(INFO) << "Verifying no from-space refs";
    225     }
    226     VerifyNoFromSpaceReferences();
    227     if (kVerboseMode) {
    228       LOG(INFO) << "Done verifying no from-space refs";
    229     }
    230     CheckEmptyMarkStack();
    231   }
    232   {
    233     ReaderMutexLock mu(self, *Locks::mutator_lock_);
    234     ReclaimPhase();
    235   }
    236   FinishPhase();
    237   CHECK(is_active_);
    238   is_active_ = false;
    239   thread_running_gc_ = nullptr;
    240 }
    241 
    242 class ConcurrentCopying::ActivateReadBarrierEntrypointsCheckpoint : public Closure {
    243  public:
    244   explicit ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying* concurrent_copying)
    245       : concurrent_copying_(concurrent_copying) {}
    246 
    247   void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
    248     // Note: self is not necessarily equal to thread since thread may be suspended.
    249     Thread* self = Thread::Current();
    250     DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
    251         << thread->GetState() << " thread " << thread << " self " << self;
    252     // Switch to the read barrier entrypoints.
    253     thread->SetReadBarrierEntrypoints();
    254     // If thread is a running mutator, then act on behalf of the garbage collector.
    255     // See the code in ThreadList::RunCheckpoint.
    256     concurrent_copying_->GetBarrier().Pass(self);
    257   }
    258 
    259  private:
    260   ConcurrentCopying* const concurrent_copying_;
    261 };
    262 
    263 class ConcurrentCopying::ActivateReadBarrierEntrypointsCallback : public Closure {
    264  public:
    265   explicit ActivateReadBarrierEntrypointsCallback(ConcurrentCopying* concurrent_copying)
    266       : concurrent_copying_(concurrent_copying) {}
    267 
    268   void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
    269     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
    270     // to avoid a race with ThreadList::Register().
    271     CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
    272     concurrent_copying_->is_using_read_barrier_entrypoints_ = true;
    273   }
    274 
    275  private:
    276   ConcurrentCopying* const concurrent_copying_;
    277 };
    278 
    279 void ConcurrentCopying::ActivateReadBarrierEntrypoints() {
    280   Thread* const self = Thread::Current();
    281   ActivateReadBarrierEntrypointsCheckpoint checkpoint(this);
    282   ThreadList* thread_list = Runtime::Current()->GetThreadList();
    283   gc_barrier_->Init(self, 0);
    284   ActivateReadBarrierEntrypointsCallback callback(this);
    285   const size_t barrier_count = thread_list->RunCheckpoint(&checkpoint, &callback);
    286   // If there are no threads to wait which implies that all the checkpoint functions are finished,
    287   // then no need to release the mutator lock.
    288   if (barrier_count == 0) {
    289     return;
    290   }
    291   ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
    292   gc_barrier_->Increment(self, barrier_count);
    293 }
    294 
    295 void ConcurrentCopying::CreateInterRegionRefBitmaps() {
    296   DCHECK(use_generational_cc_);
    297   DCHECK(region_space_inter_region_bitmap_ == nullptr);
    298   DCHECK(non_moving_space_inter_region_bitmap_ == nullptr);
    299   DCHECK(region_space_ != nullptr);
    300   DCHECK(heap_->non_moving_space_ != nullptr);
    301   // Region-space
    302   region_space_inter_region_bitmap_.reset(accounting::ContinuousSpaceBitmap::Create(
    303       "region-space inter region ref bitmap",
    304       reinterpret_cast<uint8_t*>(region_space_->Begin()),
    305       region_space_->Limit() - region_space_->Begin()));
    306   CHECK(region_space_inter_region_bitmap_ != nullptr)
    307       << "Couldn't allocate region-space inter region ref bitmap";
    308 
    309   // non-moving-space
    310   non_moving_space_inter_region_bitmap_.reset(accounting::ContinuousSpaceBitmap::Create(
    311       "non-moving-space inter region ref bitmap",
    312       reinterpret_cast<uint8_t*>(heap_->non_moving_space_->Begin()),
    313       heap_->non_moving_space_->Limit() - heap_->non_moving_space_->Begin()));
    314   CHECK(non_moving_space_inter_region_bitmap_ != nullptr)
    315       << "Couldn't allocate non-moving-space inter region ref bitmap";
    316 }
    317 
    318 void ConcurrentCopying::BindBitmaps() {
    319   Thread* self = Thread::Current();
    320   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    321   // Mark all of the spaces we never collect as immune.
    322   for (const auto& space : heap_->GetContinuousSpaces()) {
    323     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
    324         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
    325       CHECK(space->IsZygoteSpace() || space->IsImageSpace());
    326       immune_spaces_.AddSpace(space);
    327     } else {
    328       CHECK(!space->IsZygoteSpace());
    329       CHECK(!space->IsImageSpace());
    330       CHECK(space == region_space_ || space == heap_->non_moving_space_);
    331       if (use_generational_cc_) {
    332         if (space == region_space_) {
    333           region_space_bitmap_ = region_space_->GetMarkBitmap();
    334         } else if (young_gen_ && space->IsContinuousMemMapAllocSpace()) {
    335           DCHECK_EQ(space->GetGcRetentionPolicy(), space::kGcRetentionPolicyAlwaysCollect);
    336           space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
    337         }
    338         if (young_gen_) {
    339           // Age all of the cards for the region space so that we know which evac regions to scan.
    340           heap_->GetCardTable()->ModifyCardsAtomic(space->Begin(),
    341                                                    space->End(),
    342                                                    AgeCardVisitor(),
    343                                                    VoidFunctor());
    344         } else {
    345           // In a full-heap GC cycle, the card-table corresponding to region-space and
    346           // non-moving space can be cleared, because this cycle only needs to
    347           // capture writes during the marking phase of this cycle to catch
    348           // objects that skipped marking due to heap mutation. Furthermore,
    349           // if the next GC is a young-gen cycle, then it only needs writes to
    350           // be captured after the thread-flip of this GC cycle, as that is when
    351           // the young-gen for the next GC cycle starts getting populated.
    352           heap_->GetCardTable()->ClearCardRange(space->Begin(), space->Limit());
    353         }
    354       } else {
    355         if (space == region_space_) {
    356           // It is OK to clear the bitmap with mutators running since the only place it is read is
    357           // VisitObjects which has exclusion with CC.
    358           region_space_bitmap_ = region_space_->GetMarkBitmap();
    359           region_space_bitmap_->Clear();
    360         }
    361       }
    362     }
    363   }
    364   if (use_generational_cc_ && young_gen_) {
    365     for (const auto& space : GetHeap()->GetDiscontinuousSpaces()) {
    366       CHECK(space->IsLargeObjectSpace());
    367       space->AsLargeObjectSpace()->CopyLiveToMarked();
    368     }
    369   }
    370 }
    371 
    372 void ConcurrentCopying::InitializePhase() {
    373   TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
    374   num_bytes_allocated_before_gc_ = static_cast<int64_t>(heap_->GetBytesAllocated());
    375   if (kVerboseMode) {
    376     LOG(INFO) << "GC InitializePhase";
    377     LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
    378               << reinterpret_cast<void*>(region_space_->Limit());
    379   }
    380   CheckEmptyMarkStack();
    381   rb_mark_bit_stack_full_ = false;
    382   mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_;
    383   if (measure_read_barrier_slow_path_) {
    384     rb_slow_path_ns_.store(0, std::memory_order_relaxed);
    385     rb_slow_path_count_.store(0, std::memory_order_relaxed);
    386     rb_slow_path_count_gc_.store(0, std::memory_order_relaxed);
    387   }
    388 
    389   immune_spaces_.Reset();
    390   bytes_moved_.store(0, std::memory_order_relaxed);
    391   objects_moved_.store(0, std::memory_order_relaxed);
    392   bytes_moved_gc_thread_ = 0;
    393   objects_moved_gc_thread_ = 0;
    394   GcCause gc_cause = GetCurrentIteration()->GetGcCause();
    395 
    396   force_evacuate_all_ = false;
    397   if (!use_generational_cc_ || !young_gen_) {
    398     if (gc_cause == kGcCauseExplicit ||
    399         gc_cause == kGcCauseCollectorTransition ||
    400         GetCurrentIteration()->GetClearSoftReferences()) {
    401       force_evacuate_all_ = true;
    402     }
    403   }
    404   if (kUseBakerReadBarrier) {
    405     updated_all_immune_objects_.store(false, std::memory_order_relaxed);
    406     // GC may gray immune objects in the thread flip.
    407     gc_grays_immune_objects_ = true;
    408     if (kIsDebugBuild) {
    409       MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
    410       DCHECK(immune_gray_stack_.empty());
    411     }
    412   }
    413   if (use_generational_cc_) {
    414     done_scanning_.store(false, std::memory_order_release);
    415   }
    416   BindBitmaps();
    417   if (kVerboseMode) {
    418     LOG(INFO) << "young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha;
    419     LOG(INFO) << "force_evacuate_all=" << std::boolalpha << force_evacuate_all_ << std::noboolalpha;
    420     LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
    421               << "-" << immune_spaces_.GetLargestImmuneRegion().End();
    422     for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
    423       LOG(INFO) << "Immune space: " << *space;
    424     }
    425     LOG(INFO) << "GC end of InitializePhase";
    426   }
    427   if (use_generational_cc_ && !young_gen_) {
    428     region_space_bitmap_->Clear();
    429   }
    430   mark_stack_mode_.store(ConcurrentCopying::kMarkStackModeThreadLocal, std::memory_order_relaxed);
    431   // Mark all of the zygote large objects without graying them.
    432   MarkZygoteLargeObjects();
    433 }
    434 
    435 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
    436 class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor {
    437  public:
    438   ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
    439       : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
    440   }
    441 
    442   void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
    443     // Note: self is not necessarily equal to thread since thread may be suspended.
    444     Thread* self = Thread::Current();
    445     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
    446         << thread->GetState() << " thread " << thread << " self " << self;
    447     thread->SetIsGcMarkingAndUpdateEntrypoints(true);
    448     if (use_tlab_ && thread->HasTlab()) {
    449       if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
    450         // This must come before the revoke.
    451         size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
    452         concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
    453         reinterpret_cast<Atomic<size_t>*>(
    454             &concurrent_copying_->from_space_num_objects_at_first_pause_)->
    455                 fetch_add(thread_local_objects, std::memory_order_relaxed);
    456       } else {
    457         concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
    458       }
    459     }
    460     if (kUseThreadLocalAllocationStack) {
    461       thread->RevokeThreadLocalAllocationStack();
    462     }
    463     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
    464     // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
    465     // only.
    466     thread->VisitRoots(this, kVisitRootFlagAllRoots);
    467     concurrent_copying_->GetBarrier().Pass(self);
    468   }
    469 
    470   void VisitRoots(mirror::Object*** roots,
    471                   size_t count,
    472                   const RootInfo& info ATTRIBUTE_UNUSED) override
    473       REQUIRES_SHARED(Locks::mutator_lock_) {
    474     Thread* self = Thread::Current();
    475     for (size_t i = 0; i < count; ++i) {
    476       mirror::Object** root = roots[i];
    477       mirror::Object* ref = *root;
    478       if (ref != nullptr) {
    479         mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
    480         if (to_ref != ref) {
    481           *root = to_ref;
    482         }
    483       }
    484     }
    485   }
    486 
    487   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
    488                   size_t count,
    489                   const RootInfo& info ATTRIBUTE_UNUSED) override
    490       REQUIRES_SHARED(Locks::mutator_lock_) {
    491     Thread* self = Thread::Current();
    492     for (size_t i = 0; i < count; ++i) {
    493       mirror::CompressedReference<mirror::Object>* const root = roots[i];
    494       if (!root->IsNull()) {
    495         mirror::Object* ref = root->AsMirrorPtr();
    496         mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
    497         if (to_ref != ref) {
    498           root->Assign(to_ref);
    499         }
    500       }
    501     }
    502   }
    503 
    504  private:
    505   ConcurrentCopying* const concurrent_copying_;
    506   const bool use_tlab_;
    507 };
    508 
    509 // Called back from Runtime::FlipThreadRoots() during a pause.
    510 class ConcurrentCopying::FlipCallback : public Closure {
    511  public:
    512   explicit FlipCallback(ConcurrentCopying* concurrent_copying)
    513       : concurrent_copying_(concurrent_copying) {
    514   }
    515 
    516   void Run(Thread* thread) override REQUIRES(Locks::mutator_lock_) {
    517     ConcurrentCopying* cc = concurrent_copying_;
    518     TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
    519     // Note: self is not necessarily equal to thread since thread may be suspended.
    520     Thread* self = Thread::Current();
    521     if (kVerifyNoMissingCardMarks && cc->young_gen_) {
    522       cc->VerifyNoMissingCardMarks();
    523     }
    524     CHECK_EQ(thread, self);
    525     Locks::mutator_lock_->AssertExclusiveHeld(self);
    526     space::RegionSpace::EvacMode evac_mode = space::RegionSpace::kEvacModeLivePercentNewlyAllocated;
    527     if (cc->young_gen_) {
    528       CHECK(!cc->force_evacuate_all_);
    529       evac_mode = space::RegionSpace::kEvacModeNewlyAllocated;
    530     } else if (cc->force_evacuate_all_) {
    531       evac_mode = space::RegionSpace::kEvacModeForceAll;
    532     }
    533     {
    534       TimingLogger::ScopedTiming split2("(Paused)SetFromSpace", cc->GetTimings());
    535       // Only change live bytes for 1-phase full heap CC.
    536       cc->region_space_->SetFromSpace(
    537           cc->rb_table_,
    538           evac_mode,
    539           /*clear_live_bytes=*/ !cc->use_generational_cc_);
    540     }
    541     cc->SwapStacks();
    542     if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
    543       cc->RecordLiveStackFreezeSize(self);
    544       cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
    545       cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
    546     }
    547     cc->is_marking_ = true;
    548     if (kIsDebugBuild && !cc->use_generational_cc_) {
    549       cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared();
    550     }
    551     if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
    552       CHECK(Runtime::Current()->IsAotCompiler());
    553       TimingLogger::ScopedTiming split3("(Paused)VisitTransactionRoots", cc->GetTimings());
    554       Runtime::Current()->VisitTransactionRoots(cc);
    555     }
    556     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
    557       cc->GrayAllNewlyDirtyImmuneObjects();
    558       if (kIsDebugBuild) {
    559         // Check that all non-gray immune objects only reference immune objects.
    560         cc->VerifyGrayImmuneObjects();
    561       }
    562     }
    563     // May be null during runtime creation, in this case leave java_lang_Object null.
    564     // This is safe since single threaded behavior should mean FillDummyObject does not
    565     // happen when java_lang_Object_ is null.
    566     if (WellKnownClasses::java_lang_Object != nullptr) {
    567       cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark(thread,
    568           WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object).Ptr()));
    569     } else {
    570       cc->java_lang_Object_ = nullptr;
    571     }
    572   }
    573 
    574  private:
    575   ConcurrentCopying* const concurrent_copying_;
    576 };
    577 
    578 class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor {
    579  public:
    580   explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector)
    581       : collector_(collector) {}
    582 
    583   void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */)
    584       const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
    585       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
    586     CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset),
    587                    obj, offset);
    588   }
    589 
    590   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
    591       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
    592     CHECK(klass->IsTypeOfReferenceClass());
    593     CheckReference(ref->GetReferent<kWithoutReadBarrier>(),
    594                    ref,
    595                    mirror::Reference::ReferentOffset());
    596   }
    597 
    598   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    599       ALWAYS_INLINE
    600       REQUIRES_SHARED(Locks::mutator_lock_) {
    601     if (!root->IsNull()) {
    602       VisitRoot(root);
    603     }
    604   }
    605 
    606   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    607       ALWAYS_INLINE
    608       REQUIRES_SHARED(Locks::mutator_lock_) {
    609     CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0));
    610   }
    611 
    612  private:
    613   ConcurrentCopying* const collector_;
    614 
    615   void CheckReference(ObjPtr<mirror::Object> ref,
    616                       ObjPtr<mirror::Object> holder,
    617                       MemberOffset offset) const
    618       REQUIRES_SHARED(Locks::mutator_lock_) {
    619     if (ref != nullptr) {
    620       if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) {
    621         // Not immune, must be a zygote large object.
    622         space::LargeObjectSpace* large_object_space =
    623             Runtime::Current()->GetHeap()->GetLargeObjectsSpace();
    624         CHECK(large_object_space->Contains(ref.Ptr()) &&
    625               large_object_space->IsZygoteLargeObject(Thread::Current(), ref.Ptr()))
    626             << "Non gray object references non immune, non zygote large object "<< ref << " "
    627             << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " "
    628             << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value();
    629       } else {
    630         // Make sure the large object class is immune since we will never scan the large object.
    631         CHECK(collector_->immune_spaces_.ContainsObject(
    632             ref->GetClass<kVerifyNone, kWithoutReadBarrier>()));
    633       }
    634     }
    635   }
    636 };
    637 
    638 void ConcurrentCopying::VerifyGrayImmuneObjects() {
    639   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
    640   for (auto& space : immune_spaces_.GetSpaces()) {
    641     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
    642     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
    643     VerifyGrayImmuneObjectsVisitor visitor(this);
    644     live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
    645                                   reinterpret_cast<uintptr_t>(space->Limit()),
    646                                   [&visitor](mirror::Object* obj)
    647         REQUIRES_SHARED(Locks::mutator_lock_) {
    648       // If an object is not gray, it should only have references to things in the immune spaces.
    649       if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) {
    650         obj->VisitReferences</*kVisitNativeRoots=*/true,
    651                              kDefaultVerifyFlags,
    652                              kWithoutReadBarrier>(visitor, visitor);
    653       }
    654     });
    655   }
    656 }
    657 
    658 class ConcurrentCopying::VerifyNoMissingCardMarkVisitor {
    659  public:
    660   VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder)
    661     : cc_(cc),
    662       holder_(holder) {}
    663 
    664   void operator()(ObjPtr<mirror::Object> obj,
    665                   MemberOffset offset,
    666                   bool is_static ATTRIBUTE_UNUSED) const
    667       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
    668     if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
    669      CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(
    670          offset), offset.Uint32Value());
    671     }
    672   }
    673   void operator()(ObjPtr<mirror::Class> klass,
    674                   ObjPtr<mirror::Reference> ref) const
    675       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
    676     CHECK(klass->IsTypeOfReferenceClass());
    677     this->operator()(ref, mirror::Reference::ReferentOffset(), false);
    678   }
    679 
    680   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    681       REQUIRES_SHARED(Locks::mutator_lock_) {
    682     if (!root->IsNull()) {
    683       VisitRoot(root);
    684     }
    685   }
    686 
    687   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    688       REQUIRES_SHARED(Locks::mutator_lock_) {
    689     CheckReference(root->AsMirrorPtr());
    690   }
    691 
    692   void CheckReference(mirror::Object* ref, int32_t offset = -1) const
    693       REQUIRES_SHARED(Locks::mutator_lock_) {
    694     if (ref != nullptr && cc_->region_space_->IsInNewlyAllocatedRegion(ref)) {
    695       LOG(FATAL_WITHOUT_ABORT)
    696         << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object "
    697         << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset;
    698       LOG(FATAL_WITHOUT_ABORT) << "time=" << cc_->region_space_->Time();
    699       constexpr const char* kIndent = "  ";
    700       LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(holder_.Ptr(), "holder_", kIndent);
    701       LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(ref, "ref", kIndent);
    702       LOG(FATAL) << "Unexpected reference to newly allocated region.";
    703     }
    704   }
    705 
    706  private:
    707   ConcurrentCopying* const cc_;
    708   const ObjPtr<mirror::Object> holder_;
    709 };
    710 
    711 void ConcurrentCopying::VerifyNoMissingCardMarks() {
    712   auto visitor = [&](mirror::Object* obj)
    713       REQUIRES(Locks::mutator_lock_)
    714       REQUIRES(!mark_stack_lock_) {
    715     // Objects on clean cards should never have references to newly allocated regions. Note
    716     // that aged cards are also not clean.
    717     if (heap_->GetCardTable()->GetCard(obj) == gc::accounting::CardTable::kCardClean) {
    718       VerifyNoMissingCardMarkVisitor internal_visitor(this, /*holder=*/ obj);
    719       obj->VisitReferences</*kVisitNativeRoots=*/true, kVerifyNone, kWithoutReadBarrier>(
    720           internal_visitor, internal_visitor);
    721     }
    722   };
    723   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
    724   region_space_->Walk(visitor);
    725   {
    726     ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
    727     heap_->GetLiveBitmap()->Visit(visitor);
    728   }
    729 }
    730 
    731 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
    732 void ConcurrentCopying::FlipThreadRoots() {
    733   TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
    734   if (kVerboseMode || heap_->dump_region_info_before_gc_) {
    735     LOG(INFO) << "time=" << region_space_->Time();
    736     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
    737   }
    738   Thread* self = Thread::Current();
    739   Locks::mutator_lock_->AssertNotHeld(self);
    740   gc_barrier_->Init(self, 0);
    741   ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
    742   FlipCallback flip_callback(this);
    743 
    744   size_t barrier_count = Runtime::Current()->GetThreadList()->FlipThreadRoots(
    745       &thread_flip_visitor, &flip_callback, this, GetHeap()->GetGcPauseListener());
    746 
    747   {
    748     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
    749     gc_barrier_->Increment(self, barrier_count);
    750   }
    751   is_asserting_to_space_invariant_ = true;
    752   QuasiAtomic::ThreadFenceForConstructor();
    753   if (kVerboseMode) {
    754     LOG(INFO) << "time=" << region_space_->Time();
    755     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
    756     LOG(INFO) << "GC end of FlipThreadRoots";
    757   }
    758 }
    759 
    760 template <bool kConcurrent>
    761 class ConcurrentCopying::GrayImmuneObjectVisitor {
    762  public:
    763   explicit GrayImmuneObjectVisitor(Thread* self) : self_(self) {}
    764 
    765   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
    766     if (kUseBakerReadBarrier && obj->GetReadBarrierState() == ReadBarrier::NonGrayState()) {
    767       if (kConcurrent) {
    768         Locks::mutator_lock_->AssertSharedHeld(self_);
    769         obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
    770         // Mod union table VisitObjects may visit the same object multiple times so we can't check
    771         // the result of the atomic set.
    772       } else {
    773         Locks::mutator_lock_->AssertExclusiveHeld(self_);
    774         obj->SetReadBarrierState(ReadBarrier::GrayState());
    775       }
    776     }
    777   }
    778 
    779   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
    780     reinterpret_cast<GrayImmuneObjectVisitor<kConcurrent>*>(arg)->operator()(obj);
    781   }
    782 
    783  private:
    784   Thread* const self_;
    785 };
    786 
    787 void ConcurrentCopying::GrayAllDirtyImmuneObjects() {
    788   TimingLogger::ScopedTiming split("GrayAllDirtyImmuneObjects", GetTimings());
    789   accounting::CardTable* const card_table = heap_->GetCardTable();
    790   Thread* const self = Thread::Current();
    791   using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ true>;
    792   VisitorType visitor(self);
    793   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    794   for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
    795     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
    796     accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
    797     // Mark all the objects on dirty cards since these may point to objects in other space.
    798     // Once these are marked, the GC will eventually clear them later.
    799     // Table is non null for boot image and zygote spaces. It is only null for application image
    800     // spaces.
    801     if (table != nullptr) {
    802       table->ProcessCards();
    803       table->VisitObjects(&VisitorType::Callback, &visitor);
    804       // Don't clear cards here since we need to rescan in the pause. If we cleared the cards here,
    805       // there would be races with the mutator marking new cards.
    806     } else {
    807       // Keep cards aged if we don't have a mod-union table since we may need to scan them in future
    808       // GCs. This case is for app images.
    809       card_table->ModifyCardsAtomic(
    810           space->Begin(),
    811           space->End(),
    812           [](uint8_t card) {
    813             return (card != gc::accounting::CardTable::kCardClean)
    814                 ? gc::accounting::CardTable::kCardAged
    815                 : card;
    816           },
    817           /* card modified visitor */ VoidFunctor());
    818       card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
    819                                               space->Begin(),
    820                                               space->End(),
    821                                               visitor,
    822                                               gc::accounting::CardTable::kCardAged);
    823     }
    824   }
    825 }
    826 
    827 void ConcurrentCopying::GrayAllNewlyDirtyImmuneObjects() {
    828   TimingLogger::ScopedTiming split("(Paused)GrayAllNewlyDirtyImmuneObjects", GetTimings());
    829   accounting::CardTable* const card_table = heap_->GetCardTable();
    830   using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ false>;
    831   Thread* const self = Thread::Current();
    832   VisitorType visitor(self);
    833   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    834   for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
    835     DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
    836     accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
    837 
    838     // Don't need to scan aged cards since we did these before the pause. Note that scanning cards
    839     // also handles the mod-union table cards.
    840     card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
    841                                             space->Begin(),
    842                                             space->End(),
    843                                             visitor,
    844                                             gc::accounting::CardTable::kCardDirty);
    845     if (table != nullptr) {
    846       // Add the cards to the mod-union table so that we can clear cards to save RAM.
    847       table->ProcessCards();
    848       TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings());
    849       card_table->ClearCardRange(space->Begin(),
    850                                  AlignDown(space->End(), accounting::CardTable::kCardSize));
    851     }
    852   }
    853   // Since all of the objects that may point to other spaces are gray, we can avoid all the read
    854   // barriers in the immune spaces.
    855   updated_all_immune_objects_.store(true, std::memory_order_relaxed);
    856 }
    857 
    858 void ConcurrentCopying::SwapStacks() {
    859   heap_->SwapStacks();
    860 }
    861 
    862 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
    863   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    864   live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
    865 }
    866 
    867 // Used to visit objects in the immune spaces.
    868 inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) {
    869   DCHECK(obj != nullptr);
    870   DCHECK(immune_spaces_.ContainsObject(obj));
    871   // Update the fields without graying it or pushing it onto the mark stack.
    872   if (use_generational_cc_ && young_gen_) {
    873     // Young GC does not care about references to unevac space. It is safe to not gray these as
    874     // long as scan immune objects happens after scanning the dirty cards.
    875     Scan<true>(obj);
    876   } else {
    877     Scan<false>(obj);
    878   }
    879 }
    880 
    881 class ConcurrentCopying::ImmuneSpaceScanObjVisitor {
    882  public:
    883   explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc)
    884       : collector_(cc) {}
    885 
    886   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
    887     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
    888       // Only need to scan gray objects.
    889       if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
    890         collector_->ScanImmuneObject(obj);
    891         // Done scanning the object, go back to black (non-gray).
    892         bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
    893                                                       ReadBarrier::NonGrayState());
    894         CHECK(success)
    895             << Runtime::Current()->GetHeap()->GetVerification()->DumpObjectInfo(obj, "failed CAS");
    896       }
    897     } else {
    898       collector_->ScanImmuneObject(obj);
    899     }
    900   }
    901 
    902   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
    903     reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
    904   }
    905 
    906  private:
    907   ConcurrentCopying* const collector_;
    908 };
    909 
    910 template <bool kAtomicTestAndSet>
    911 class ConcurrentCopying::CaptureRootsForMarkingVisitor : public RootVisitor {
    912  public:
    913   explicit CaptureRootsForMarkingVisitor(ConcurrentCopying* cc, Thread* self)
    914       : collector_(cc), self_(self) {}
    915 
    916   void VisitRoots(mirror::Object*** roots,
    917                   size_t count,
    918                   const RootInfo& info ATTRIBUTE_UNUSED) override
    919       REQUIRES_SHARED(Locks::mutator_lock_) {
    920     for (size_t i = 0; i < count; ++i) {
    921       mirror::Object** root = roots[i];
    922       mirror::Object* ref = *root;
    923       if (ref != nullptr && !collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
    924         collector_->PushOntoMarkStack(self_, ref);
    925       }
    926     }
    927   }
    928 
    929   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
    930                   size_t count,
    931                   const RootInfo& info ATTRIBUTE_UNUSED) override
    932       REQUIRES_SHARED(Locks::mutator_lock_) {
    933     for (size_t i = 0; i < count; ++i) {
    934       mirror::CompressedReference<mirror::Object>* const root = roots[i];
    935       if (!root->IsNull()) {
    936         mirror::Object* ref = root->AsMirrorPtr();
    937         if (!collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
    938           collector_->PushOntoMarkStack(self_, ref);
    939         }
    940       }
    941     }
    942   }
    943 
    944  private:
    945   ConcurrentCopying* const collector_;
    946   Thread* const self_;
    947 };
    948 
    949 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
    950  public:
    951   RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
    952                                        bool disable_weak_ref_access)
    953       : concurrent_copying_(concurrent_copying),
    954         disable_weak_ref_access_(disable_weak_ref_access) {
    955   }
    956 
    957   void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
    958     // Note: self is not necessarily equal to thread since thread may be suspended.
    959     Thread* const self = Thread::Current();
    960     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
    961         << thread->GetState() << " thread " << thread << " self " << self;
    962     // Revoke thread local mark stacks.
    963     accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
    964     if (tl_mark_stack != nullptr) {
    965       MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
    966       concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
    967       thread->SetThreadLocalMarkStack(nullptr);
    968     }
    969     // Disable weak ref access.
    970     if (disable_weak_ref_access_) {
    971       thread->SetWeakRefAccessEnabled(false);
    972     }
    973     // If thread is a running mutator, then act on behalf of the garbage collector.
    974     // See the code in ThreadList::RunCheckpoint.
    975     concurrent_copying_->GetBarrier().Pass(self);
    976   }
    977 
    978  protected:
    979   ConcurrentCopying* const concurrent_copying_;
    980 
    981  private:
    982   const bool disable_weak_ref_access_;
    983 };
    984 
    985 class ConcurrentCopying::CaptureThreadRootsForMarkingAndCheckpoint :
    986   public RevokeThreadLocalMarkStackCheckpoint {
    987  public:
    988   explicit CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying* cc) :
    989     RevokeThreadLocalMarkStackCheckpoint(cc, /* disable_weak_ref_access */ false) {}
    990 
    991   void Run(Thread* thread) override
    992       REQUIRES_SHARED(Locks::mutator_lock_) {
    993     Thread* const self = Thread::Current();
    994     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
    995     // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
    996     // only.
    997     CaptureRootsForMarkingVisitor</*kAtomicTestAndSet*/ true> visitor(concurrent_copying_, self);
    998     thread->VisitRoots(&visitor, kVisitRootFlagAllRoots);
    999     // Barrier handling is done in the base class' Run() below.
   1000     RevokeThreadLocalMarkStackCheckpoint::Run(thread);
   1001   }
   1002 };
   1003 
   1004 void ConcurrentCopying::CaptureThreadRootsForMarking() {
   1005   TimingLogger::ScopedTiming split("CaptureThreadRootsForMarking", GetTimings());
   1006   if (kVerboseMode) {
   1007     LOG(INFO) << "time=" << region_space_->Time();
   1008     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
   1009   }
   1010   Thread* const self = Thread::Current();
   1011   CaptureThreadRootsForMarkingAndCheckpoint check_point(this);
   1012   ThreadList* thread_list = Runtime::Current()->GetThreadList();
   1013   gc_barrier_->Init(self, 0);
   1014   size_t barrier_count = thread_list->RunCheckpoint(&check_point, /* callback */ nullptr);
   1015   // If there are no threads to wait which implys that all the checkpoint functions are finished,
   1016   // then no need to release the mutator lock.
   1017   if (barrier_count == 0) {
   1018     return;
   1019   }
   1020   Locks::mutator_lock_->SharedUnlock(self);
   1021   {
   1022     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
   1023     gc_barrier_->Increment(self, barrier_count);
   1024   }
   1025   Locks::mutator_lock_->SharedLock(self);
   1026   if (kVerboseMode) {
   1027     LOG(INFO) << "time=" << region_space_->Time();
   1028     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
   1029     LOG(INFO) << "GC end of CaptureThreadRootsForMarking";
   1030   }
   1031 }
   1032 
   1033 // Used to scan ref fields of an object.
   1034 template <bool kHandleInterRegionRefs>
   1035 class ConcurrentCopying::ComputeLiveBytesAndMarkRefFieldsVisitor {
   1036  public:
   1037   explicit ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying* collector,
   1038                                                    size_t obj_region_idx)
   1039       : collector_(collector),
   1040       obj_region_idx_(obj_region_idx),
   1041       contains_inter_region_idx_(false) {}
   1042 
   1043   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
   1044       ALWAYS_INLINE
   1045       REQUIRES_SHARED(Locks::mutator_lock_)
   1046       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
   1047     DCHECK_EQ(collector_->RegionSpace()->RegionIdxForRef(obj), obj_region_idx_);
   1048     DCHECK(kHandleInterRegionRefs || collector_->immune_spaces_.ContainsObject(obj));
   1049     CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset));
   1050   }
   1051 
   1052   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
   1053       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1054     DCHECK(klass->IsTypeOfReferenceClass());
   1055     // If the referent is not null, then we must re-visit the object during
   1056     // copying phase to enqueue it for delayed processing and setting
   1057     // read-barrier state to gray to ensure that call to GetReferent() triggers
   1058     // the read-barrier. We use same data structure that is used to remember
   1059     // objects with inter-region refs for this purpose too.
   1060     if (kHandleInterRegionRefs
   1061         && !contains_inter_region_idx_
   1062         && ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr) {
   1063       contains_inter_region_idx_ = true;
   1064     }
   1065   }
   1066 
   1067   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   1068       ALWAYS_INLINE
   1069       REQUIRES_SHARED(Locks::mutator_lock_) {
   1070     if (!root->IsNull()) {
   1071       VisitRoot(root);
   1072     }
   1073   }
   1074 
   1075   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   1076       ALWAYS_INLINE
   1077       REQUIRES_SHARED(Locks::mutator_lock_) {
   1078     CheckReference(root->AsMirrorPtr());
   1079   }
   1080 
   1081   bool ContainsInterRegionRefs() const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) {
   1082     return contains_inter_region_idx_;
   1083   }
   1084 
   1085  private:
   1086   void CheckReference(mirror::Object* ref) const
   1087       REQUIRES_SHARED(Locks::mutator_lock_) {
   1088     if (ref == nullptr) {
   1089       // Nothing to do.
   1090       return;
   1091     }
   1092     if (!collector_->TestAndSetMarkBitForRef(ref)) {
   1093       collector_->PushOntoLocalMarkStack(ref);
   1094     }
   1095     if (kHandleInterRegionRefs && !contains_inter_region_idx_) {
   1096       size_t ref_region_idx = collector_->RegionSpace()->RegionIdxForRef(ref);
   1097       // If a region-space object refers to an outside object, we will have a
   1098       // mismatch of region idx, but the object need not be re-visited in
   1099       // copying phase.
   1100       if (ref_region_idx != static_cast<size_t>(-1) && obj_region_idx_ != ref_region_idx) {
   1101         contains_inter_region_idx_ = true;
   1102       }
   1103     }
   1104   }
   1105 
   1106   ConcurrentCopying* const collector_;
   1107   const size_t obj_region_idx_;
   1108   mutable bool contains_inter_region_idx_;
   1109 };
   1110 
   1111 void ConcurrentCopying::AddLiveBytesAndScanRef(mirror::Object* ref) {
   1112   DCHECK(ref != nullptr);
   1113   DCHECK(!immune_spaces_.ContainsObject(ref));
   1114   DCHECK(TestMarkBitmapForRef(ref));
   1115   size_t obj_region_idx = static_cast<size_t>(-1);
   1116   if (LIKELY(region_space_->HasAddress(ref))) {
   1117     obj_region_idx = region_space_->RegionIdxForRefUnchecked(ref);
   1118     // Add live bytes to the corresponding region
   1119     if (!region_space_->IsRegionNewlyAllocated(obj_region_idx)) {
   1120       // Newly Allocated regions are always chosen for evacuation. So no need
   1121       // to update live_bytes_.
   1122       size_t obj_size = ref->SizeOf<kDefaultVerifyFlags>();
   1123       size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
   1124       region_space_->AddLiveBytes(ref, alloc_size);
   1125     }
   1126   }
   1127   ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ true>
   1128       visitor(this, obj_region_idx);
   1129   ref->VisitReferences</*kVisitNativeRoots=*/ true, kDefaultVerifyFlags, kWithoutReadBarrier>(
   1130       visitor, visitor);
   1131   // Mark the corresponding card dirty if the object contains any
   1132   // inter-region reference.
   1133   if (visitor.ContainsInterRegionRefs()) {
   1134     if (obj_region_idx == static_cast<size_t>(-1)) {
   1135       // If an inter-region ref has been found in a non-region-space, then it
   1136       // must be non-moving-space. This is because this function cannot be
   1137       // called on a immune-space object, and a large-object-space object has
   1138       // only class object reference, which is either in some immune-space, or
   1139       // in non-moving-space.
   1140       DCHECK(heap_->non_moving_space_->HasAddress(ref));
   1141       non_moving_space_inter_region_bitmap_->Set(ref);
   1142     } else {
   1143       region_space_inter_region_bitmap_->Set(ref);
   1144     }
   1145   }
   1146 }
   1147 
   1148 template <bool kAtomic>
   1149 bool ConcurrentCopying::TestAndSetMarkBitForRef(mirror::Object* ref) {
   1150   accounting::ContinuousSpaceBitmap* bitmap = nullptr;
   1151   accounting::LargeObjectBitmap* los_bitmap = nullptr;
   1152   if (LIKELY(region_space_->HasAddress(ref))) {
   1153     bitmap = region_space_bitmap_;
   1154   } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
   1155     bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
   1156   } else if (immune_spaces_.ContainsObject(ref)) {
   1157     // References to immune space objects are always live.
   1158     DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
   1159     return true;
   1160   } else {
   1161     // Should be a large object. Must be page aligned and the LOS must exist.
   1162     if (kIsDebugBuild
   1163         && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
   1164       // It must be heap corruption. Remove memory protection and dump data.
   1165       region_space_->Unprotect();
   1166       heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
   1167                                                   MemberOffset(0),
   1168                                                   ref,
   1169                                                   /* fatal */ true);
   1170     }
   1171     los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
   1172   }
   1173   if (kAtomic) {
   1174     return (bitmap != nullptr) ? bitmap->AtomicTestAndSet(ref) : los_bitmap->AtomicTestAndSet(ref);
   1175   } else {
   1176     return (bitmap != nullptr) ? bitmap->Set(ref) : los_bitmap->Set(ref);
   1177   }
   1178 }
   1179 
   1180 bool ConcurrentCopying::TestMarkBitmapForRef(mirror::Object* ref) {
   1181   if (LIKELY(region_space_->HasAddress(ref))) {
   1182     return region_space_bitmap_->Test(ref);
   1183   } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
   1184     return heap_->GetNonMovingSpace()->GetMarkBitmap()->Test(ref);
   1185   } else if (immune_spaces_.ContainsObject(ref)) {
   1186     // References to immune space objects are always live.
   1187     DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
   1188     return true;
   1189   } else {
   1190     // Should be a large object. Must be page aligned and the LOS must exist.
   1191     if (kIsDebugBuild
   1192         && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
   1193       // It must be heap corruption. Remove memory protection and dump data.
   1194       region_space_->Unprotect();
   1195       heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
   1196                                                   MemberOffset(0),
   1197                                                   ref,
   1198                                                   /* fatal */ true);
   1199     }
   1200     return heap_->GetLargeObjectsSpace()->GetMarkBitmap()->Test(ref);
   1201   }
   1202 }
   1203 
   1204 void ConcurrentCopying::PushOntoLocalMarkStack(mirror::Object* ref) {
   1205   if (kIsDebugBuild) {
   1206     Thread *self = Thread::Current();
   1207     DCHECK_EQ(thread_running_gc_, self);
   1208     DCHECK(self->GetThreadLocalMarkStack() == nullptr);
   1209   }
   1210   DCHECK_EQ(mark_stack_mode_.load(std::memory_order_relaxed), kMarkStackModeThreadLocal);
   1211   if (UNLIKELY(gc_mark_stack_->IsFull())) {
   1212     ExpandGcMarkStack();
   1213   }
   1214   gc_mark_stack_->PushBack(ref);
   1215 }
   1216 
   1217 void ConcurrentCopying::ProcessMarkStackForMarkingAndComputeLiveBytes() {
   1218   // Process thread-local mark stack containing thread roots
   1219   ProcessThreadLocalMarkStacks(/* disable_weak_ref_access */ false,
   1220                                /* checkpoint_callback */ nullptr,
   1221                                [this] (mirror::Object* ref)
   1222                                    REQUIRES_SHARED(Locks::mutator_lock_) {
   1223                                  AddLiveBytesAndScanRef(ref);
   1224                                });
   1225 
   1226   while (!gc_mark_stack_->IsEmpty()) {
   1227     mirror::Object* ref = gc_mark_stack_->PopBack();
   1228     AddLiveBytesAndScanRef(ref);
   1229   }
   1230 }
   1231 
   1232 class ConcurrentCopying::ImmuneSpaceCaptureRefsVisitor {
   1233  public:
   1234   explicit ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying* cc) : collector_(cc) {}
   1235 
   1236   ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
   1237     ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ false>
   1238         visitor(collector_, /*obj_region_idx*/ static_cast<size_t>(-1));
   1239     obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
   1240         visitor, visitor);
   1241   }
   1242 
   1243   static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
   1244     reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
   1245   }
   1246 
   1247  private:
   1248   ConcurrentCopying* const collector_;
   1249 };
   1250 
   1251 /* Invariants for two-phase CC
   1252  * ===========================
   1253  * A) Definitions
   1254  * ---------------
   1255  * 1) Black: marked in bitmap, rb_state is non-gray, and not in mark stack
   1256  * 2) Black-clean: marked in bitmap, and corresponding card is clean/aged
   1257  * 3) Black-dirty: marked in bitmap, and corresponding card is dirty
   1258  * 4) Gray: marked in bitmap, and exists in mark stack
   1259  * 5) Gray-dirty: marked in bitmap, rb_state is gray, corresponding card is
   1260  *    dirty, and exists in mark stack
   1261  * 6) White: unmarked in bitmap, rb_state is non-gray, and not in mark stack
   1262  *
   1263  * B) Before marking phase
   1264  * -----------------------
   1265  * 1) All objects are white
   1266  * 2) Cards are either clean or aged (cannot be asserted without a STW pause)
   1267  * 3) Mark bitmap is cleared
   1268  * 4) Mark stack is empty
   1269  *
   1270  * C) During marking phase
   1271  * ------------------------
   1272  * 1) If a black object holds an inter-region or white reference, then its
   1273  *    corresponding card is dirty. In other words, it changes from being
   1274  *    black-clean to black-dirty
   1275  * 2) No black-clean object points to a white object
   1276  *
   1277  * D) After marking phase
   1278  * -----------------------
   1279  * 1) There are no gray objects
   1280  * 2) All newly allocated objects are in from space
   1281  * 3) No white object can be reachable, directly or otherwise, from a
   1282  *    black-clean object
   1283  *
   1284  * E) During copying phase
   1285  * ------------------------
   1286  * 1) Mutators cannot observe white and black-dirty objects
   1287  * 2) New allocations are in to-space (newly allocated regions are part of to-space)
   1288  * 3) An object in mark stack must have its rb_state = Gray
   1289  *
   1290  * F) During card table scan
   1291  * --------------------------
   1292  * 1) Referents corresponding to root references are gray or in to-space
   1293  * 2) Every path from an object that is read or written by a mutator during
   1294  *    this period to a dirty black object goes through some gray object.
   1295  *    Mutators preserve this by graying black objects as needed during this
   1296  *    period. Ensures that a mutator never encounters a black dirty object.
   1297  *
   1298  * G) After card table scan
   1299  * ------------------------
   1300  * 1) There are no black-dirty objects
   1301  * 2) Referents corresponding to root references are gray, black-clean or in
   1302  *    to-space
   1303  *
   1304  * H) After copying phase
   1305  * -----------------------
   1306  * 1) Mark stack is empty
   1307  * 2) No references into evacuated from-space
   1308  * 3) No reference to an object which is unmarked and is also not in newly
   1309  *    allocated region. In other words, no reference to white objects.
   1310 */
   1311 
   1312 void ConcurrentCopying::MarkingPhase() {
   1313   TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
   1314   if (kVerboseMode) {
   1315     LOG(INFO) << "GC MarkingPhase";
   1316   }
   1317   accounting::CardTable* const card_table = heap_->GetCardTable();
   1318   Thread* const self = Thread::Current();
   1319   // Clear live_bytes_ of every non-free region, except the ones that are newly
   1320   // allocated.
   1321   region_space_->SetAllRegionLiveBytesZero();
   1322   if (kIsDebugBuild) {
   1323     region_space_->AssertAllRegionLiveBytesZeroOrCleared();
   1324   }
   1325   // Scan immune spaces
   1326   {
   1327     TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
   1328     for (auto& space : immune_spaces_.GetSpaces()) {
   1329       DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
   1330       accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1331       accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
   1332       ImmuneSpaceCaptureRefsVisitor visitor(this);
   1333       if (table != nullptr) {
   1334         table->VisitObjects(ImmuneSpaceCaptureRefsVisitor::Callback, &visitor);
   1335       } else {
   1336         WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1337         card_table->Scan<false>(
   1338             live_bitmap,
   1339             space->Begin(),
   1340             space->Limit(),
   1341             visitor,
   1342             accounting::CardTable::kCardDirty - 1);
   1343       }
   1344     }
   1345   }
   1346   // Scan runtime roots
   1347   {
   1348     TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
   1349     CaptureRootsForMarkingVisitor visitor(this, self);
   1350     Runtime::Current()->VisitConcurrentRoots(&visitor, kVisitRootFlagAllRoots);
   1351   }
   1352   {
   1353     // TODO: don't visit the transaction roots if it's not active.
   1354     TimingLogger::ScopedTiming split2("VisitNonThreadRoots", GetTimings());
   1355     CaptureRootsForMarkingVisitor visitor(this, self);
   1356     Runtime::Current()->VisitNonThreadRoots(&visitor);
   1357   }
   1358   // Capture thread roots
   1359   CaptureThreadRootsForMarking();
   1360   // Process mark stack
   1361   ProcessMarkStackForMarkingAndComputeLiveBytes();
   1362 
   1363   if (kVerboseMode) {
   1364     LOG(INFO) << "GC end of MarkingPhase";
   1365   }
   1366 }
   1367 
   1368 template <bool kNoUnEvac>
   1369 void ConcurrentCopying::ScanDirtyObject(mirror::Object* obj) {
   1370   Scan<kNoUnEvac>(obj);
   1371   // Set the read-barrier state of a reference-type object to gray if its
   1372   // referent is not marked yet. This is to ensure that if GetReferent() is
   1373   // called, it triggers the read-barrier to process the referent before use.
   1374   if (UNLIKELY((obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass()))) {
   1375     mirror::Object* referent =
   1376         obj->AsReference<kVerifyNone, kWithoutReadBarrier>()->GetReferent<kWithoutReadBarrier>();
   1377     if (referent != nullptr && !IsInToSpace(referent)) {
   1378       obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
   1379     }
   1380   }
   1381 }
   1382 
   1383 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
   1384 void ConcurrentCopying::CopyingPhase() {
   1385   TimingLogger::ScopedTiming split("CopyingPhase", GetTimings());
   1386   if (kVerboseMode) {
   1387     LOG(INFO) << "GC CopyingPhase";
   1388   }
   1389   Thread* self = Thread::Current();
   1390   accounting::CardTable* const card_table = heap_->GetCardTable();
   1391   if (kIsDebugBuild) {
   1392     MutexLock mu(self, *Locks::thread_list_lock_);
   1393     CHECK(weak_ref_access_enabled_);
   1394   }
   1395 
   1396   // Scan immune spaces.
   1397   // Update all the fields in the immune spaces first without graying the objects so that we
   1398   // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some
   1399   // of the objects.
   1400   if (kUseBakerReadBarrier) {
   1401     gc_grays_immune_objects_ = false;
   1402   }
   1403   if (use_generational_cc_) {
   1404     if (kVerboseMode) {
   1405       LOG(INFO) << "GC ScanCardsForSpace";
   1406     }
   1407     TimingLogger::ScopedTiming split2("ScanCardsForSpace", GetTimings());
   1408     WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1409     CHECK(!done_scanning_.load(std::memory_order_relaxed));
   1410     if (kIsDebugBuild) {
   1411       // Leave some time for mutators to race ahead to try and find races between the GC card
   1412       // scanning and mutators reading references.
   1413       usleep(10 * 1000);
   1414     }
   1415     for (space::ContinuousSpace* space : GetHeap()->GetContinuousSpaces()) {
   1416       if (space->IsImageSpace() || space->IsZygoteSpace()) {
   1417         // Image and zygote spaces are already handled since we gray the objects in the pause.
   1418         continue;
   1419       }
   1420       // Scan all of the objects on dirty cards in unevac from space, and non moving space. These
   1421       // are from previous GCs (or from marking phase of 2-phase full GC) and may reference things
   1422       // in the from space.
   1423       //
   1424       // Note that we do not need to process the large-object space (the only discontinuous space)
   1425       // as it contains only large string objects and large primitive array objects, that have no
   1426       // reference to other objects, except their class. There is no need to scan these large
   1427       // objects, as the String class and the primitive array classes are expected to never move
   1428       // during a collection:
   1429       // - In the case where we run with a boot image, these classes are part of the image space,
   1430       //   which is an immune space.
   1431       // - In the case where we run without a boot image, these classes are allocated in the
   1432       //   non-moving space (see art::ClassLinker::InitWithoutImage).
   1433       card_table->Scan<false>(
   1434           space->GetMarkBitmap(),
   1435           space->Begin(),
   1436           space->End(),
   1437           [this, space](mirror::Object* obj)
   1438               REQUIRES(Locks::heap_bitmap_lock_)
   1439               REQUIRES_SHARED(Locks::mutator_lock_) {
   1440             // TODO: This code may be refactored to avoid scanning object while
   1441             // done_scanning_ is false by setting rb_state to gray, and pushing the
   1442             // object on mark stack. However, it will also require clearing the
   1443             // corresponding mark-bit and, for region space objects,
   1444             // decrementing the object's size from the corresponding region's
   1445             // live_bytes.
   1446             if (young_gen_) {
   1447               // Don't push or gray unevac refs.
   1448               if (kIsDebugBuild && space == region_space_) {
   1449                 // We may get unevac large objects.
   1450                 if (!region_space_->IsInUnevacFromSpace(obj)) {
   1451                   CHECK(region_space_bitmap_->Test(obj));
   1452                   region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
   1453                   LOG(FATAL) << "Scanning " << obj << " not in unevac space";
   1454                 }
   1455               }
   1456               ScanDirtyObject</*kNoUnEvac*/ true>(obj);
   1457             } else if (space != region_space_) {
   1458               DCHECK(space == heap_->non_moving_space_);
   1459               // We need to process un-evac references as they may be unprocessed,
   1460               // if they skipped the marking phase due to heap mutation.
   1461               ScanDirtyObject</*kNoUnEvac*/ false>(obj);
   1462               non_moving_space_inter_region_bitmap_->Clear(obj);
   1463             } else if (region_space_->IsInUnevacFromSpace(obj)) {
   1464               ScanDirtyObject</*kNoUnEvac*/ false>(obj);
   1465               region_space_inter_region_bitmap_->Clear(obj);
   1466             }
   1467           },
   1468           accounting::CardTable::kCardAged);
   1469 
   1470       if (!young_gen_) {
   1471         auto visitor = [this](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
   1472                          // We don't need to process un-evac references as any unprocessed
   1473                          // ones will be taken care of in the card-table scan above.
   1474                          ScanDirtyObject</*kNoUnEvac*/ true>(obj);
   1475                        };
   1476         if (space == region_space_) {
   1477           region_space_->ScanUnevacFromSpace(region_space_inter_region_bitmap_.get(), visitor);
   1478         } else {
   1479           DCHECK(space == heap_->non_moving_space_);
   1480           non_moving_space_inter_region_bitmap_->VisitMarkedRange(
   1481               reinterpret_cast<uintptr_t>(space->Begin()),
   1482               reinterpret_cast<uintptr_t>(space->End()),
   1483               visitor);
   1484         }
   1485       }
   1486     }
   1487     // Done scanning unevac space.
   1488     done_scanning_.store(true, std::memory_order_release);
   1489     // NOTE: inter-region-ref bitmaps can be cleared here to release memory, if needed.
   1490     // Currently we do it in ReclaimPhase().
   1491     if (kVerboseMode) {
   1492       LOG(INFO) << "GC end of ScanCardsForSpace";
   1493     }
   1494   }
   1495   {
   1496     // For a sticky-bit collection, this phase needs to be after the card scanning since the
   1497     // mutator may read an unevac space object out of an image object. If the image object is no
   1498     // longer gray it will trigger a read barrier for the unevac space object.
   1499     TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
   1500     for (auto& space : immune_spaces_.GetSpaces()) {
   1501       DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
   1502       accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1503       accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
   1504       ImmuneSpaceScanObjVisitor visitor(this);
   1505       if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) {
   1506         table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor);
   1507       } else {
   1508         WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1509         card_table->Scan<false>(
   1510             live_bitmap,
   1511             space->Begin(),
   1512             space->Limit(),
   1513             visitor,
   1514             accounting::CardTable::kCardDirty - 1);
   1515       }
   1516     }
   1517   }
   1518   if (kUseBakerReadBarrier) {
   1519     // This release fence makes the field updates in the above loop visible before allowing mutator
   1520     // getting access to immune objects without graying it first.
   1521     updated_all_immune_objects_.store(true, std::memory_order_release);
   1522     // Now "un-gray" (conceptually blacken) immune objects concurrently accessed and grayed by
   1523     // mutators. We can't do this in the above loop because we would incorrectly disable the read
   1524     // barrier by un-graying (conceptually blackening) an object which may point to an unscanned,
   1525     // white object, breaking the to-space invariant (a mutator shall never observe a from-space
   1526     // (white) object).
   1527     //
   1528     // Make sure no mutators are in the middle of marking an immune object before un-graying
   1529     // (blackening) immune objects.
   1530     IssueEmptyCheckpoint();
   1531     MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
   1532     if (kVerboseMode) {
   1533       LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size();
   1534     }
   1535     for (mirror::Object* obj : immune_gray_stack_) {
   1536       DCHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::GrayState());
   1537       bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
   1538                                                     ReadBarrier::NonGrayState());
   1539       DCHECK(success);
   1540     }
   1541     immune_gray_stack_.clear();
   1542   }
   1543 
   1544   {
   1545     TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
   1546     Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
   1547   }
   1548   {
   1549     // TODO: don't visit the transaction roots if it's not active.
   1550     TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
   1551     Runtime::Current()->VisitNonThreadRoots(this);
   1552   }
   1553 
   1554   {
   1555     TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings());
   1556     // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
   1557     // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
   1558     // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
   1559     // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
   1560     // reach the point where we process weak references, we can avoid using a lock when accessing
   1561     // the GC mark stack, which makes mark stack processing more efficient.
   1562 
   1563     // Process the mark stack once in the thread local stack mode. This marks most of the live
   1564     // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
   1565     // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
   1566     // objects and push refs on the mark stack.
   1567     ProcessMarkStack();
   1568     // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
   1569     // for the last time before transitioning to the shared mark stack mode, which would process new
   1570     // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
   1571     // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
   1572     // important to do these together in a single checkpoint so that we can ensure that mutators
   1573     // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
   1574     // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
   1575     // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
   1576     // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
   1577     SwitchToSharedMarkStackMode();
   1578     CHECK(!self->GetWeakRefAccessEnabled());
   1579     // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
   1580     // (which may be non-empty if there were refs found on thread-local mark stacks during the above
   1581     // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
   1582     // (via read barriers) have no way to produce any more refs to process. Marking converges once
   1583     // before we process weak refs below.
   1584     ProcessMarkStack();
   1585     CheckEmptyMarkStack();
   1586     // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
   1587     // lock from this point on.
   1588     SwitchToGcExclusiveMarkStackMode();
   1589     CheckEmptyMarkStack();
   1590     if (kVerboseMode) {
   1591       LOG(INFO) << "ProcessReferences";
   1592     }
   1593     // Process weak references. This may produce new refs to process and have them processed via
   1594     // ProcessMarkStack (in the GC exclusive mark stack mode).
   1595     ProcessReferences(self);
   1596     CheckEmptyMarkStack();
   1597     if (kVerboseMode) {
   1598       LOG(INFO) << "SweepSystemWeaks";
   1599     }
   1600     SweepSystemWeaks(self);
   1601     if (kVerboseMode) {
   1602       LOG(INFO) << "SweepSystemWeaks done";
   1603     }
   1604     // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
   1605     // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
   1606     // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
   1607     ProcessMarkStack();
   1608     CheckEmptyMarkStack();
   1609     // Re-enable weak ref accesses.
   1610     ReenableWeakRefAccess(self);
   1611     // Free data for class loaders that we unloaded.
   1612     Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
   1613     // Marking is done. Disable marking.
   1614     DisableMarking();
   1615     CheckEmptyMarkStack();
   1616   }
   1617 
   1618   if (kIsDebugBuild) {
   1619     MutexLock mu(self, *Locks::thread_list_lock_);
   1620     CHECK(weak_ref_access_enabled_);
   1621   }
   1622   if (kVerboseMode) {
   1623     LOG(INFO) << "GC end of CopyingPhase";
   1624   }
   1625 }
   1626 
   1627 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
   1628   if (kVerboseMode) {
   1629     LOG(INFO) << "ReenableWeakRefAccess";
   1630   }
   1631   // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
   1632   {
   1633     MutexLock mu(self, *Locks::thread_list_lock_);
   1634     weak_ref_access_enabled_ = true;  // This is for new threads.
   1635     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
   1636     for (Thread* thread : thread_list) {
   1637       thread->SetWeakRefAccessEnabled(true);
   1638     }
   1639   }
   1640   // Unblock blocking threads.
   1641   GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
   1642   Runtime::Current()->BroadcastForNewSystemWeaks();
   1643 }
   1644 
   1645 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
   1646  public:
   1647   explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
   1648       : concurrent_copying_(concurrent_copying) {
   1649   }
   1650 
   1651   void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
   1652     // Note: self is not necessarily equal to thread since thread may be suspended.
   1653     Thread* self = Thread::Current();
   1654     DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
   1655         << thread->GetState() << " thread " << thread << " self " << self;
   1656     // Disable the thread-local is_gc_marking flag.
   1657     // Note a thread that has just started right before this checkpoint may have already this flag
   1658     // set to false, which is ok.
   1659     thread->SetIsGcMarkingAndUpdateEntrypoints(false);
   1660     // If thread is a running mutator, then act on behalf of the garbage collector.
   1661     // See the code in ThreadList::RunCheckpoint.
   1662     concurrent_copying_->GetBarrier().Pass(self);
   1663   }
   1664 
   1665  private:
   1666   ConcurrentCopying* const concurrent_copying_;
   1667 };
   1668 
   1669 class ConcurrentCopying::DisableMarkingCallback : public Closure {
   1670  public:
   1671   explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying)
   1672       : concurrent_copying_(concurrent_copying) {
   1673   }
   1674 
   1675   void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
   1676     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
   1677     // to avoid a race with ThreadList::Register().
   1678     CHECK(concurrent_copying_->is_marking_);
   1679     concurrent_copying_->is_marking_ = false;
   1680     if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
   1681       CHECK(concurrent_copying_->is_using_read_barrier_entrypoints_);
   1682       concurrent_copying_->is_using_read_barrier_entrypoints_ = false;
   1683     } else {
   1684       CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
   1685     }
   1686   }
   1687 
   1688  private:
   1689   ConcurrentCopying* const concurrent_copying_;
   1690 };
   1691 
   1692 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
   1693   Thread* self = Thread::Current();
   1694   DisableMarkingCheckpoint check_point(this);
   1695   ThreadList* thread_list = Runtime::Current()->GetThreadList();
   1696   gc_barrier_->Init(self, 0);
   1697   DisableMarkingCallback dmc(this);
   1698   size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc);
   1699   // If there are no threads to wait which implies that all the checkpoint functions are finished,
   1700   // then no need to release the mutator lock.
   1701   if (barrier_count == 0) {
   1702     return;
   1703   }
   1704   // Release locks then wait for all mutator threads to pass the barrier.
   1705   Locks::mutator_lock_->SharedUnlock(self);
   1706   {
   1707     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
   1708     gc_barrier_->Increment(self, barrier_count);
   1709   }
   1710   Locks::mutator_lock_->SharedLock(self);
   1711 }
   1712 
   1713 void ConcurrentCopying::DisableMarking() {
   1714   // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and
   1715   // to ensure no threads are still in the middle of a read barrier which may have a from-space ref
   1716   // cached in a local variable.
   1717   IssueDisableMarkingCheckpoint();
   1718   if (kUseTableLookupReadBarrier) {
   1719     heap_->rb_table_->ClearAll();
   1720     DCHECK(heap_->rb_table_->IsAllCleared());
   1721   }
   1722   is_mark_stack_push_disallowed_.store(1, std::memory_order_seq_cst);
   1723   mark_stack_mode_.store(kMarkStackModeOff, std::memory_order_seq_cst);
   1724 }
   1725 
   1726 void ConcurrentCopying::IssueEmptyCheckpoint() {
   1727   Thread* self = Thread::Current();
   1728   ThreadList* thread_list = Runtime::Current()->GetThreadList();
   1729   // Release locks then wait for all mutator threads to pass the barrier.
   1730   Locks::mutator_lock_->SharedUnlock(self);
   1731   thread_list->RunEmptyCheckpoint();
   1732   Locks::mutator_lock_->SharedLock(self);
   1733 }
   1734 
   1735 void ConcurrentCopying::ExpandGcMarkStack() {
   1736   DCHECK(gc_mark_stack_->IsFull());
   1737   const size_t new_size = gc_mark_stack_->Capacity() * 2;
   1738   std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
   1739                                                    gc_mark_stack_->End());
   1740   gc_mark_stack_->Resize(new_size);
   1741   for (auto& ref : temp) {
   1742     gc_mark_stack_->PushBack(ref.AsMirrorPtr());
   1743   }
   1744   DCHECK(!gc_mark_stack_->IsFull());
   1745 }
   1746 
   1747 void ConcurrentCopying::PushOntoMarkStack(Thread* const self, mirror::Object* to_ref) {
   1748   CHECK_EQ(is_mark_stack_push_disallowed_.load(std::memory_order_relaxed), 0)
   1749       << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref);
   1750   CHECK(thread_running_gc_ != nullptr);
   1751   MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
   1752   if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
   1753     if (LIKELY(self == thread_running_gc_)) {
   1754       // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
   1755       CHECK(self->GetThreadLocalMarkStack() == nullptr);
   1756       if (UNLIKELY(gc_mark_stack_->IsFull())) {
   1757         ExpandGcMarkStack();
   1758       }
   1759       gc_mark_stack_->PushBack(to_ref);
   1760     } else {
   1761       // Otherwise, use a thread-local mark stack.
   1762       accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
   1763       if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
   1764         MutexLock mu(self, mark_stack_lock_);
   1765         // Get a new thread local mark stack.
   1766         accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
   1767         if (!pooled_mark_stacks_.empty()) {
   1768           // Use a pooled mark stack.
   1769           new_tl_mark_stack = pooled_mark_stacks_.back();
   1770           pooled_mark_stacks_.pop_back();
   1771         } else {
   1772           // None pooled. Create a new one.
   1773           new_tl_mark_stack =
   1774               accounting::AtomicStack<mirror::Object>::Create(
   1775                   "thread local mark stack", 4 * KB, 4 * KB);
   1776         }
   1777         DCHECK(new_tl_mark_stack != nullptr);
   1778         DCHECK(new_tl_mark_stack->IsEmpty());
   1779         new_tl_mark_stack->PushBack(to_ref);
   1780         self->SetThreadLocalMarkStack(new_tl_mark_stack);
   1781         if (tl_mark_stack != nullptr) {
   1782           // Store the old full stack into a vector.
   1783           revoked_mark_stacks_.push_back(tl_mark_stack);
   1784         }
   1785       } else {
   1786         tl_mark_stack->PushBack(to_ref);
   1787       }
   1788     }
   1789   } else if (mark_stack_mode == kMarkStackModeShared) {
   1790     // Access the shared GC mark stack with a lock.
   1791     MutexLock mu(self, mark_stack_lock_);
   1792     if (UNLIKELY(gc_mark_stack_->IsFull())) {
   1793       ExpandGcMarkStack();
   1794     }
   1795     gc_mark_stack_->PushBack(to_ref);
   1796   } else {
   1797     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
   1798              static_cast<uint32_t>(kMarkStackModeGcExclusive))
   1799         << "ref=" << to_ref
   1800         << " self->gc_marking=" << self->GetIsGcMarking()
   1801         << " cc->is_marking=" << is_marking_;
   1802     CHECK(self == thread_running_gc_)
   1803         << "Only GC-running thread should access the mark stack "
   1804         << "in the GC exclusive mark stack mode";
   1805     // Access the GC mark stack without a lock.
   1806     if (UNLIKELY(gc_mark_stack_->IsFull())) {
   1807       ExpandGcMarkStack();
   1808     }
   1809     gc_mark_stack_->PushBack(to_ref);
   1810   }
   1811 }
   1812 
   1813 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
   1814   return heap_->allocation_stack_.get();
   1815 }
   1816 
   1817 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
   1818   return heap_->live_stack_.get();
   1819 }
   1820 
   1821 // The following visitors are used to verify that there's no references to the from-space left after
   1822 // marking.
   1823 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
   1824  public:
   1825   explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
   1826       : collector_(collector) {}
   1827 
   1828   void operator()(mirror::Object* ref,
   1829                   MemberOffset offset = MemberOffset(0),
   1830                   mirror::Object* holder = nullptr) const
   1831       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1832     if (ref == nullptr) {
   1833       // OK.
   1834       return;
   1835     }
   1836     collector_->AssertToSpaceInvariant(holder, offset, ref);
   1837     if (kUseBakerReadBarrier) {
   1838       CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState())
   1839           << "Ref " << ref << " " << ref->PrettyTypeOf() << " has gray rb_state";
   1840     }
   1841   }
   1842 
   1843   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
   1844       override REQUIRES_SHARED(Locks::mutator_lock_) {
   1845     DCHECK(root != nullptr);
   1846     operator()(root);
   1847   }
   1848 
   1849  private:
   1850   ConcurrentCopying* const collector_;
   1851 };
   1852 
   1853 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
   1854  public:
   1855   explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
   1856       : collector_(collector) {}
   1857 
   1858   void operator()(ObjPtr<mirror::Object> obj,
   1859                   MemberOffset offset,
   1860                   bool is_static ATTRIBUTE_UNUSED) const
   1861       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1862     mirror::Object* ref =
   1863         obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
   1864     VerifyNoFromSpaceRefsVisitor visitor(collector_);
   1865     visitor(ref, offset, obj.Ptr());
   1866   }
   1867   void operator()(ObjPtr<mirror::Class> klass,
   1868                   ObjPtr<mirror::Reference> ref) const
   1869       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1870     CHECK(klass->IsTypeOfReferenceClass());
   1871     this->operator()(ref, mirror::Reference::ReferentOffset(), false);
   1872   }
   1873 
   1874   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   1875       REQUIRES_SHARED(Locks::mutator_lock_) {
   1876     if (!root->IsNull()) {
   1877       VisitRoot(root);
   1878     }
   1879   }
   1880 
   1881   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   1882       REQUIRES_SHARED(Locks::mutator_lock_) {
   1883     VerifyNoFromSpaceRefsVisitor visitor(collector_);
   1884     visitor(root->AsMirrorPtr());
   1885   }
   1886 
   1887  private:
   1888   ConcurrentCopying* const collector_;
   1889 };
   1890 
   1891 // Verify there's no from-space references left after the marking phase.
   1892 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
   1893   Thread* self = Thread::Current();
   1894   DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
   1895   // Verify all threads have is_gc_marking to be false
   1896   {
   1897     MutexLock mu(self, *Locks::thread_list_lock_);
   1898     std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
   1899     for (Thread* thread : thread_list) {
   1900       CHECK(!thread->GetIsGcMarking());
   1901     }
   1902   }
   1903 
   1904   auto verify_no_from_space_refs_visitor = [&](mirror::Object* obj)
   1905       REQUIRES_SHARED(Locks::mutator_lock_) {
   1906     CHECK(obj != nullptr);
   1907     space::RegionSpace* region_space = RegionSpace();
   1908     CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
   1909     VerifyNoFromSpaceRefsFieldVisitor visitor(this);
   1910     obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
   1911         visitor,
   1912         visitor);
   1913     if (kUseBakerReadBarrier) {
   1914       CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::NonGrayState())
   1915           << "obj=" << obj << " has gray rb_state " << obj->GetReadBarrierState();
   1916     }
   1917   };
   1918   // Roots.
   1919   {
   1920     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1921     VerifyNoFromSpaceRefsVisitor ref_visitor(this);
   1922     Runtime::Current()->VisitRoots(&ref_visitor);
   1923   }
   1924   // The to-space.
   1925   region_space_->WalkToSpace(verify_no_from_space_refs_visitor);
   1926   // Non-moving spaces.
   1927   {
   1928     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1929     heap_->GetMarkBitmap()->Visit(verify_no_from_space_refs_visitor);
   1930   }
   1931   // The alloc stack.
   1932   {
   1933     VerifyNoFromSpaceRefsVisitor ref_visitor(this);
   1934     for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
   1935         it < end; ++it) {
   1936       mirror::Object* const obj = it->AsMirrorPtr();
   1937       if (obj != nullptr && obj->GetClass() != nullptr) {
   1938         // TODO: need to call this only if obj is alive?
   1939         ref_visitor(obj);
   1940         verify_no_from_space_refs_visitor(obj);
   1941       }
   1942     }
   1943   }
   1944   // TODO: LOS. But only refs in LOS are classes.
   1945 }
   1946 
   1947 // The following visitors are used to assert the to-space invariant.
   1948 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
   1949  public:
   1950   explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
   1951       : collector_(collector) {}
   1952 
   1953   void operator()(ObjPtr<mirror::Object> obj,
   1954                   MemberOffset offset,
   1955                   bool is_static ATTRIBUTE_UNUSED) const
   1956       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1957     mirror::Object* ref =
   1958         obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
   1959     collector_->AssertToSpaceInvariant(obj.Ptr(), offset, ref);
   1960   }
   1961   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
   1962       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   1963     CHECK(klass->IsTypeOfReferenceClass());
   1964   }
   1965 
   1966   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   1967       REQUIRES_SHARED(Locks::mutator_lock_) {
   1968     if (!root->IsNull()) {
   1969       VisitRoot(root);
   1970     }
   1971   }
   1972 
   1973   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   1974       REQUIRES_SHARED(Locks::mutator_lock_) {
   1975     mirror::Object* ref = root->AsMirrorPtr();
   1976     collector_->AssertToSpaceInvariant(/* obj */ nullptr, MemberOffset(0), ref);
   1977   }
   1978 
   1979  private:
   1980   ConcurrentCopying* const collector_;
   1981 };
   1982 
   1983 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,
   1984                                                     Closure* checkpoint_callback) {
   1985   Thread* self = Thread::Current();
   1986   RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
   1987   ThreadList* thread_list = Runtime::Current()->GetThreadList();
   1988   gc_barrier_->Init(self, 0);
   1989   size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback);
   1990   // If there are no threads to wait which implys that all the checkpoint functions are finished,
   1991   // then no need to release the mutator lock.
   1992   if (barrier_count == 0) {
   1993     return;
   1994   }
   1995   Locks::mutator_lock_->SharedUnlock(self);
   1996   {
   1997     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
   1998     gc_barrier_->Increment(self, barrier_count);
   1999   }
   2000   Locks::mutator_lock_->SharedLock(self);
   2001 }
   2002 
   2003 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
   2004   Thread* self = Thread::Current();
   2005   CHECK_EQ(self, thread);
   2006   accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
   2007   if (tl_mark_stack != nullptr) {
   2008     CHECK(is_marking_);
   2009     MutexLock mu(self, mark_stack_lock_);
   2010     revoked_mark_stacks_.push_back(tl_mark_stack);
   2011     thread->SetThreadLocalMarkStack(nullptr);
   2012   }
   2013 }
   2014 
   2015 void ConcurrentCopying::ProcessMarkStack() {
   2016   if (kVerboseMode) {
   2017     LOG(INFO) << "ProcessMarkStack. ";
   2018   }
   2019   bool empty_prev = false;
   2020   while (true) {
   2021     bool empty = ProcessMarkStackOnce();
   2022     if (empty_prev && empty) {
   2023       // Saw empty mark stack for a second time, done.
   2024       break;
   2025     }
   2026     empty_prev = empty;
   2027   }
   2028 }
   2029 
   2030 bool ConcurrentCopying::ProcessMarkStackOnce() {
   2031   DCHECK(thread_running_gc_ != nullptr);
   2032   Thread* const self = Thread::Current();
   2033   DCHECK(self == thread_running_gc_);
   2034   DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
   2035   size_t count = 0;
   2036   MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
   2037   if (mark_stack_mode == kMarkStackModeThreadLocal) {
   2038     // Process the thread-local mark stacks and the GC mark stack.
   2039     count += ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ false,
   2040                                           /* checkpoint_callback= */ nullptr,
   2041                                           [this] (mirror::Object* ref)
   2042                                               REQUIRES_SHARED(Locks::mutator_lock_) {
   2043                                             ProcessMarkStackRef(ref);
   2044                                           });
   2045     while (!gc_mark_stack_->IsEmpty()) {
   2046       mirror::Object* to_ref = gc_mark_stack_->PopBack();
   2047       ProcessMarkStackRef(to_ref);
   2048       ++count;
   2049     }
   2050     gc_mark_stack_->Reset();
   2051   } else if (mark_stack_mode == kMarkStackModeShared) {
   2052     // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read
   2053     // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is
   2054     // disabled at this point.
   2055     IssueEmptyCheckpoint();
   2056     // Process the shared GC mark stack with a lock.
   2057     {
   2058       MutexLock mu(thread_running_gc_, mark_stack_lock_);
   2059       CHECK(revoked_mark_stacks_.empty());
   2060     }
   2061     while (true) {
   2062       std::vector<mirror::Object*> refs;
   2063       {
   2064         // Copy refs with lock. Note the number of refs should be small.
   2065         MutexLock mu(thread_running_gc_, mark_stack_lock_);
   2066         if (gc_mark_stack_->IsEmpty()) {
   2067           break;
   2068         }
   2069         for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
   2070              p != gc_mark_stack_->End(); ++p) {
   2071           refs.push_back(p->AsMirrorPtr());
   2072         }
   2073         gc_mark_stack_->Reset();
   2074       }
   2075       for (mirror::Object* ref : refs) {
   2076         ProcessMarkStackRef(ref);
   2077         ++count;
   2078       }
   2079     }
   2080   } else {
   2081     CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
   2082              static_cast<uint32_t>(kMarkStackModeGcExclusive));
   2083     {
   2084       MutexLock mu(thread_running_gc_, mark_stack_lock_);
   2085       CHECK(revoked_mark_stacks_.empty());
   2086     }
   2087     // Process the GC mark stack in the exclusive mode. No need to take the lock.
   2088     while (!gc_mark_stack_->IsEmpty()) {
   2089       mirror::Object* to_ref = gc_mark_stack_->PopBack();
   2090       ProcessMarkStackRef(to_ref);
   2091       ++count;
   2092     }
   2093     gc_mark_stack_->Reset();
   2094   }
   2095 
   2096   // Return true if the stack was empty.
   2097   return count == 0;
   2098 }
   2099 
   2100 template <typename Processor>
   2101 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,
   2102                                                        Closure* checkpoint_callback,
   2103                                                        const Processor& processor) {
   2104   // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
   2105   RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback);
   2106   size_t count = 0;
   2107   std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
   2108   {
   2109     MutexLock mu(thread_running_gc_, mark_stack_lock_);
   2110     // Make a copy of the mark stack vector.
   2111     mark_stacks = revoked_mark_stacks_;
   2112     revoked_mark_stacks_.clear();
   2113   }
   2114   for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
   2115     for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
   2116       mirror::Object* to_ref = p->AsMirrorPtr();
   2117       processor(to_ref);
   2118       ++count;
   2119     }
   2120     {
   2121       MutexLock mu(thread_running_gc_, mark_stack_lock_);
   2122       if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
   2123         // The pool has enough. Delete it.
   2124         delete mark_stack;
   2125       } else {
   2126         // Otherwise, put it into the pool for later reuse.
   2127         mark_stack->Reset();
   2128         pooled_mark_stacks_.push_back(mark_stack);
   2129       }
   2130     }
   2131   }
   2132   return count;
   2133 }
   2134 
   2135 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
   2136   DCHECK(!region_space_->IsInFromSpace(to_ref));
   2137   space::RegionSpace::RegionType rtype = region_space_->GetRegionType(to_ref);
   2138   if (kUseBakerReadBarrier) {
   2139     DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
   2140         << " to_ref=" << to_ref
   2141         << " rb_state=" << to_ref->GetReadBarrierState()
   2142         << " is_marked=" << IsMarked(to_ref)
   2143         << " type=" << to_ref->PrettyTypeOf()
   2144         << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
   2145         << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
   2146         << " region_type=" << rtype
   2147         // TODO: Temporary; remove this when this is no longer needed (b/116087961).
   2148         << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
   2149   }
   2150   bool add_to_live_bytes = false;
   2151   // Invariant: There should be no object from a newly-allocated
   2152   // region (either large or non-large) on the mark stack.
   2153   DCHECK(!region_space_->IsInNewlyAllocatedRegion(to_ref)) << to_ref;
   2154   bool perform_scan = false;
   2155   switch (rtype) {
   2156     case space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace:
   2157       // Mark the bitmap only in the GC thread here so that we don't need a CAS.
   2158       if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) {
   2159         // It may be already marked if we accidentally pushed the same object twice due to the racy
   2160         // bitmap read in MarkUnevacFromSpaceRegion.
   2161         if (use_generational_cc_ && young_gen_) {
   2162           CHECK(region_space_->IsLargeObject(to_ref));
   2163           region_space_->ZeroLiveBytesForLargeObject(to_ref);
   2164         }
   2165         perform_scan = true;
   2166         // Only add to the live bytes if the object was not already marked and we are not the young
   2167         // GC.
   2168         // Why add live bytes even after 2-phase GC?
   2169         // We need to ensure that if there is a unevac region with any live
   2170         // objects, then its live_bytes must be non-zero. Otherwise,
   2171         // ClearFromSpace() will clear the region. Considering, that we may skip
   2172         // live objects during marking phase of 2-phase GC, we have to take care
   2173         // of such objects here.
   2174         add_to_live_bytes = true;
   2175       }
   2176       break;
   2177     case space::RegionSpace::RegionType::kRegionTypeToSpace:
   2178       if (use_generational_cc_) {
   2179         // Copied to to-space, set the bit so that the next GC can scan objects.
   2180         region_space_bitmap_->Set(to_ref);
   2181       }
   2182       perform_scan = true;
   2183       break;
   2184     default:
   2185       DCHECK(!region_space_->HasAddress(to_ref)) << to_ref;
   2186       DCHECK(!immune_spaces_.ContainsObject(to_ref));
   2187       // Non-moving or large-object space.
   2188       if (kUseBakerReadBarrier) {
   2189         accounting::ContinuousSpaceBitmap* mark_bitmap =
   2190             heap_->GetNonMovingSpace()->GetMarkBitmap();
   2191         const bool is_los = !mark_bitmap->HasAddress(to_ref);
   2192         if (is_los) {
   2193           if (!IsAligned<kPageSize>(to_ref)) {
   2194             // Ref is a large object that is not aligned, it must be heap
   2195             // corruption. Remove memory protection and dump data before
   2196             // AtomicSetReadBarrierState since it will fault if the address is not
   2197             // valid.
   2198             region_space_->Unprotect();
   2199             heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
   2200                                                         MemberOffset(0),
   2201                                                         to_ref,
   2202                                                         /* fatal */ true);
   2203           }
   2204           DCHECK(heap_->GetLargeObjectsSpace())
   2205               << "ref=" << to_ref
   2206               << " doesn't belong to non-moving space and large object space doesn't exist";
   2207           accounting::LargeObjectBitmap* los_bitmap =
   2208               heap_->GetLargeObjectsSpace()->GetMarkBitmap();
   2209           DCHECK(los_bitmap->HasAddress(to_ref));
   2210           // Only the GC thread could be setting the LOS bit map hence doesn't
   2211           // need to be atomically done.
   2212           perform_scan = !los_bitmap->Set(to_ref);
   2213         } else {
   2214           // Only the GC thread could be setting the non-moving space bit map
   2215           // hence doesn't need to be atomically done.
   2216           perform_scan = !mark_bitmap->Set(to_ref);
   2217         }
   2218       } else {
   2219         perform_scan = true;
   2220       }
   2221   }
   2222   if (perform_scan) {
   2223     if (use_generational_cc_ && young_gen_) {
   2224       Scan<true>(to_ref);
   2225     } else {
   2226       Scan<false>(to_ref);
   2227     }
   2228   }
   2229   if (kUseBakerReadBarrier) {
   2230     DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
   2231         << " to_ref=" << to_ref
   2232         << " rb_state=" << to_ref->GetReadBarrierState()
   2233         << " is_marked=" << IsMarked(to_ref)
   2234         << " type=" << to_ref->PrettyTypeOf()
   2235         << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
   2236         << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
   2237         << " region_type=" << rtype
   2238         // TODO: Temporary; remove this when this is no longer needed (b/116087961).
   2239         << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
   2240   }
   2241 #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
   2242   mirror::Object* referent = nullptr;
   2243   if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
   2244                 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr &&
   2245                 !IsInToSpace(referent)))) {
   2246     // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We
   2247     // will change it to non-gray later in ReferenceQueue::DisableReadBarrierForReference.
   2248     DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr)
   2249         << "Left unenqueued ref gray " << to_ref;
   2250   } else {
   2251     // We may occasionally leave a reference non-gray in the queue if its referent happens to be
   2252     // concurrently marked after the Scan() call above has enqueued the Reference, in which case the
   2253     // above IsInToSpace() evaluates to true and we change the color from gray to non-gray here in
   2254     // this else block.
   2255     if (kUseBakerReadBarrier) {
   2256       bool success = to_ref->AtomicSetReadBarrierState<std::memory_order_release>(
   2257           ReadBarrier::GrayState(),
   2258           ReadBarrier::NonGrayState());
   2259       DCHECK(success) << "Must succeed as we won the race.";
   2260     }
   2261   }
   2262 #else
   2263   DCHECK(!kUseBakerReadBarrier);
   2264 #endif
   2265 
   2266   if (add_to_live_bytes) {
   2267     // Add to the live bytes per unevacuated from-space. Note this code is always run by the
   2268     // GC-running thread (no synchronization required).
   2269     DCHECK(region_space_bitmap_->Test(to_ref));
   2270     size_t obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
   2271     size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
   2272     region_space_->AddLiveBytes(to_ref, alloc_size);
   2273   }
   2274   if (ReadBarrier::kEnableToSpaceInvariantChecks) {
   2275     CHECK(to_ref != nullptr);
   2276     space::RegionSpace* region_space = RegionSpace();
   2277     CHECK(!region_space->IsInFromSpace(to_ref)) << "Scanning object " << to_ref << " in from space";
   2278     AssertToSpaceInvariant(nullptr, MemberOffset(0), to_ref);
   2279     AssertToSpaceInvariantFieldVisitor visitor(this);
   2280     to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
   2281         visitor,
   2282         visitor);
   2283   }
   2284 }
   2285 
   2286 class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure {
   2287  public:
   2288   explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying)
   2289       : concurrent_copying_(concurrent_copying) {
   2290   }
   2291 
   2292   void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
   2293     // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
   2294     // to avoid a deadlock b/31500969.
   2295     CHECK(concurrent_copying_->weak_ref_access_enabled_);
   2296     concurrent_copying_->weak_ref_access_enabled_ = false;
   2297   }
   2298 
   2299  private:
   2300   ConcurrentCopying* const concurrent_copying_;
   2301 };
   2302 
   2303 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
   2304   Thread* self = Thread::Current();
   2305   DCHECK(thread_running_gc_ != nullptr);
   2306   DCHECK(self == thread_running_gc_);
   2307   DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
   2308   MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
   2309   CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
   2310            static_cast<uint32_t>(kMarkStackModeThreadLocal));
   2311   mark_stack_mode_.store(kMarkStackModeShared, std::memory_order_relaxed);
   2312   DisableWeakRefAccessCallback dwrac(this);
   2313   // Process the thread local mark stacks one last time after switching to the shared mark stack
   2314   // mode and disable weak ref accesses.
   2315   ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ true,
   2316                                &dwrac,
   2317                                [this] (mirror::Object* ref)
   2318                                    REQUIRES_SHARED(Locks::mutator_lock_) {
   2319                                  ProcessMarkStackRef(ref);
   2320                                });
   2321   if (kVerboseMode) {
   2322     LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
   2323   }
   2324 }
   2325 
   2326 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
   2327   Thread* self = Thread::Current();
   2328   DCHECK(thread_running_gc_ != nullptr);
   2329   DCHECK(self == thread_running_gc_);
   2330   DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
   2331   MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
   2332   CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
   2333            static_cast<uint32_t>(kMarkStackModeShared));
   2334   mark_stack_mode_.store(kMarkStackModeGcExclusive, std::memory_order_relaxed);
   2335   QuasiAtomic::ThreadFenceForConstructor();
   2336   if (kVerboseMode) {
   2337     LOG(INFO) << "Switched to GC exclusive mark stack mode";
   2338   }
   2339 }
   2340 
   2341 void ConcurrentCopying::CheckEmptyMarkStack() {
   2342   Thread* self = Thread::Current();
   2343   DCHECK(thread_running_gc_ != nullptr);
   2344   DCHECK(self == thread_running_gc_);
   2345   DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
   2346   MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
   2347   if (mark_stack_mode == kMarkStackModeThreadLocal) {
   2348     // Thread-local mark stack mode.
   2349     RevokeThreadLocalMarkStacks(false, nullptr);
   2350     MutexLock mu(thread_running_gc_, mark_stack_lock_);
   2351     if (!revoked_mark_stacks_.empty()) {
   2352       for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
   2353         while (!mark_stack->IsEmpty()) {
   2354           mirror::Object* obj = mark_stack->PopBack();
   2355           if (kUseBakerReadBarrier) {
   2356             uint32_t rb_state = obj->GetReadBarrierState();
   2357             LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state="
   2358                       << rb_state << " is_marked=" << IsMarked(obj);
   2359           } else {
   2360             LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf()
   2361                       << " is_marked=" << IsMarked(obj);
   2362           }
   2363         }
   2364       }
   2365       LOG(FATAL) << "mark stack is not empty";
   2366     }
   2367   } else {
   2368     // Shared, GC-exclusive, or off.
   2369     MutexLock mu(thread_running_gc_, mark_stack_lock_);
   2370     CHECK(gc_mark_stack_->IsEmpty());
   2371     CHECK(revoked_mark_stacks_.empty());
   2372   }
   2373 }
   2374 
   2375 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
   2376   TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
   2377   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   2378   Runtime::Current()->SweepSystemWeaks(this);
   2379 }
   2380 
   2381 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
   2382   if (use_generational_cc_ && young_gen_) {
   2383     // Only sweep objects on the live stack.
   2384     SweepArray(heap_->GetLiveStack(), /* swap_bitmaps= */ false);
   2385   } else {
   2386     {
   2387       TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
   2388       accounting::ObjectStack* live_stack = heap_->GetLiveStack();
   2389       if (kEnableFromSpaceAccountingCheck) {
   2390         // Ensure that nobody inserted items in the live stack after we swapped the stacks.
   2391         CHECK_GE(live_stack_freeze_size_, live_stack->Size());
   2392       }
   2393       heap_->MarkAllocStackAsLive(live_stack);
   2394       live_stack->Reset();
   2395     }
   2396     CheckEmptyMarkStack();
   2397     TimingLogger::ScopedTiming split("Sweep", GetTimings());
   2398     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
   2399       if (space->IsContinuousMemMapAllocSpace() && space != region_space_
   2400           && !immune_spaces_.ContainsSpace(space)) {
   2401         space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
   2402         TimingLogger::ScopedTiming split2(
   2403             alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
   2404         RecordFree(alloc_space->Sweep(swap_bitmaps));
   2405       }
   2406     }
   2407     SweepLargeObjects(swap_bitmaps);
   2408   }
   2409 }
   2410 
   2411 // Copied and adapted from MarkSweep::SweepArray.
   2412 void ConcurrentCopying::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
   2413   // This method is only used when Generational CC collection is enabled.
   2414   DCHECK(use_generational_cc_);
   2415   CheckEmptyMarkStack();
   2416   TimingLogger::ScopedTiming t("SweepArray", GetTimings());
   2417   Thread* self = Thread::Current();
   2418   mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
   2419       sweep_array_free_buffer_mem_map_.BaseBegin());
   2420   size_t chunk_free_pos = 0;
   2421   ObjectBytePair freed;
   2422   ObjectBytePair freed_los;
   2423   // How many objects are left in the array, modified after each space is swept.
   2424   StackReference<mirror::Object>* objects = allocations->Begin();
   2425   size_t count = allocations->Size();
   2426   // Start by sweeping the continuous spaces.
   2427   for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
   2428     if (!space->IsAllocSpace() ||
   2429         space == region_space_ ||
   2430         immune_spaces_.ContainsSpace(space) ||
   2431         space->GetLiveBitmap() == nullptr) {
   2432       continue;
   2433     }
   2434     space::AllocSpace* alloc_space = space->AsAllocSpace();
   2435     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
   2436     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   2437     if (swap_bitmaps) {
   2438       std::swap(live_bitmap, mark_bitmap);
   2439     }
   2440     StackReference<mirror::Object>* out = objects;
   2441     for (size_t i = 0; i < count; ++i) {
   2442       mirror::Object* const obj = objects[i].AsMirrorPtr();
   2443       if (kUseThreadLocalAllocationStack && obj == nullptr) {
   2444         continue;
   2445       }
   2446       if (space->HasAddress(obj)) {
   2447         // This object is in the space, remove it from the array and add it to the sweep buffer
   2448         // if needed.
   2449         if (!mark_bitmap->Test(obj)) {
   2450           if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
   2451             TimingLogger::ScopedTiming t2("FreeList", GetTimings());
   2452             freed.objects += chunk_free_pos;
   2453             freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
   2454             chunk_free_pos = 0;
   2455           }
   2456           chunk_free_buffer[chunk_free_pos++] = obj;
   2457         }
   2458       } else {
   2459         (out++)->Assign(obj);
   2460       }
   2461     }
   2462     if (chunk_free_pos > 0) {
   2463       TimingLogger::ScopedTiming t2("FreeList", GetTimings());
   2464       freed.objects += chunk_free_pos;
   2465       freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
   2466       chunk_free_pos = 0;
   2467     }
   2468     // All of the references which space contained are no longer in the allocation stack, update
   2469     // the count.
   2470     count = out - objects;
   2471   }
   2472   // Handle the large object space.
   2473   space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
   2474   if (large_object_space != nullptr) {
   2475     accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
   2476     accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
   2477     if (swap_bitmaps) {
   2478       std::swap(large_live_objects, large_mark_objects);
   2479     }
   2480     for (size_t i = 0; i < count; ++i) {
   2481       mirror::Object* const obj = objects[i].AsMirrorPtr();
   2482       // Handle large objects.
   2483       if (kUseThreadLocalAllocationStack && obj == nullptr) {
   2484         continue;
   2485       }
   2486       if (!large_mark_objects->Test(obj)) {
   2487         ++freed_los.objects;
   2488         freed_los.bytes += large_object_space->Free(self, obj);
   2489       }
   2490     }
   2491   }
   2492   {
   2493     TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
   2494     RecordFree(freed);
   2495     RecordFreeLOS(freed_los);
   2496     t2.NewTiming("ResetStack");
   2497     allocations->Reset();
   2498   }
   2499   sweep_array_free_buffer_mem_map_.MadviseDontNeedAndZero();
   2500 }
   2501 
   2502 void ConcurrentCopying::MarkZygoteLargeObjects() {
   2503   TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
   2504   Thread* const self = Thread::Current();
   2505   WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_);
   2506   space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace();
   2507   if (los != nullptr) {
   2508     // Pick the current live bitmap (mark bitmap if swapped).
   2509     accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap();
   2510     accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap();
   2511     // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept.
   2512     std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
   2513     live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
   2514                                   reinterpret_cast<uintptr_t>(range.second),
   2515                                   [mark_bitmap, los, self](mirror::Object* obj)
   2516         REQUIRES(Locks::heap_bitmap_lock_)
   2517         REQUIRES_SHARED(Locks::mutator_lock_) {
   2518       if (los->IsZygoteLargeObject(self, obj)) {
   2519         mark_bitmap->Set(obj);
   2520       }
   2521     });
   2522   }
   2523 }
   2524 
   2525 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
   2526   TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
   2527   if (heap_->GetLargeObjectsSpace() != nullptr) {
   2528     RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
   2529   }
   2530 }
   2531 
   2532 void ConcurrentCopying::CaptureRssAtPeak() {
   2533   using range_t = std::pair<void*, void*>;
   2534   // This operation is expensive as several calls to mincore() are performed.
   2535   // Also, this must be called before clearing regions in ReclaimPhase().
   2536   // Therefore, we make it conditional on the flag that enables dumping GC
   2537   // performance info on shutdown.
   2538   if (Runtime::Current()->GetDumpGCPerformanceOnShutdown()) {
   2539     std::list<range_t> gc_ranges;
   2540     auto add_gc_range = [&gc_ranges](void* start, size_t size) {
   2541       void* end = static_cast<char*>(start) + RoundUp(size, kPageSize);
   2542       gc_ranges.emplace_back(range_t(start, end));
   2543     };
   2544 
   2545     // region space
   2546     DCHECK(IsAligned<kPageSize>(region_space_->Limit()));
   2547     gc_ranges.emplace_back(range_t(region_space_->Begin(), region_space_->Limit()));
   2548     // mark bitmap
   2549     add_gc_range(region_space_bitmap_->Begin(), region_space_bitmap_->Size());
   2550 
   2551     // non-moving space
   2552     {
   2553       DCHECK(IsAligned<kPageSize>(heap_->non_moving_space_->Limit()));
   2554       gc_ranges.emplace_back(range_t(heap_->non_moving_space_->Begin(),
   2555                                      heap_->non_moving_space_->Limit()));
   2556       // mark bitmap
   2557       accounting::ContinuousSpaceBitmap *bitmap = heap_->non_moving_space_->GetMarkBitmap();
   2558       add_gc_range(bitmap->Begin(), bitmap->Size());
   2559       // live bitmap. Deal with bound bitmaps.
   2560       ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   2561       if (heap_->non_moving_space_->HasBoundBitmaps()) {
   2562         DCHECK_EQ(bitmap, heap_->non_moving_space_->GetLiveBitmap());
   2563         bitmap = heap_->non_moving_space_->GetTempBitmap();
   2564       } else {
   2565         bitmap = heap_->non_moving_space_->GetLiveBitmap();
   2566       }
   2567       add_gc_range(bitmap->Begin(), bitmap->Size());
   2568     }
   2569     // large-object space
   2570     if (heap_->GetLargeObjectsSpace()) {
   2571       heap_->GetLargeObjectsSpace()->ForEachMemMap([&add_gc_range](const MemMap& map) {
   2572         DCHECK(IsAligned<kPageSize>(map.BaseSize()));
   2573         add_gc_range(map.BaseBegin(), map.BaseSize());
   2574       });
   2575       // mark bitmap
   2576       accounting::LargeObjectBitmap* bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
   2577       add_gc_range(bitmap->Begin(), bitmap->Size());
   2578       // live bitmap
   2579       bitmap = heap_->GetLargeObjectsSpace()->GetLiveBitmap();
   2580       add_gc_range(bitmap->Begin(), bitmap->Size());
   2581     }
   2582     // card table
   2583     add_gc_range(heap_->GetCardTable()->MemMapBegin(), heap_->GetCardTable()->MemMapSize());
   2584     // inter-region refs
   2585     if (use_generational_cc_ && !young_gen_) {
   2586       // region space
   2587       add_gc_range(region_space_inter_region_bitmap_->Begin(),
   2588                    region_space_inter_region_bitmap_->Size());
   2589       // non-moving space
   2590       add_gc_range(non_moving_space_inter_region_bitmap_->Begin(),
   2591                    non_moving_space_inter_region_bitmap_->Size());
   2592     }
   2593     // Extract RSS using mincore(). Updates the cummulative RSS counter.
   2594     ExtractRssFromMincore(&gc_ranges);
   2595   }
   2596 }
   2597 
   2598 void ConcurrentCopying::ReclaimPhase() {
   2599   TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
   2600   if (kVerboseMode) {
   2601     LOG(INFO) << "GC ReclaimPhase";
   2602   }
   2603   Thread* self = Thread::Current();
   2604 
   2605   {
   2606     // Double-check that the mark stack is empty.
   2607     // Note: need to set this after VerifyNoFromSpaceRef().
   2608     is_asserting_to_space_invariant_ = false;
   2609     QuasiAtomic::ThreadFenceForConstructor();
   2610     if (kVerboseMode) {
   2611       LOG(INFO) << "Issue an empty check point. ";
   2612     }
   2613     IssueEmptyCheckpoint();
   2614     // Disable the check.
   2615     is_mark_stack_push_disallowed_.store(0, std::memory_order_seq_cst);
   2616     if (kUseBakerReadBarrier) {
   2617       updated_all_immune_objects_.store(false, std::memory_order_seq_cst);
   2618     }
   2619     CheckEmptyMarkStack();
   2620   }
   2621 
   2622   // Capture RSS at the time when memory usage is at its peak. All GC related
   2623   // memory ranges like java heap, card table, bitmap etc. are taken into
   2624   // account.
   2625   // TODO: We can fetch resident memory for region space directly by going
   2626   // through list of allocated regions. This way we can avoid calling mincore on
   2627   // the biggest memory range, thereby reducing the cost of this function.
   2628   CaptureRssAtPeak();
   2629 
   2630   {
   2631     // Record freed objects.
   2632     TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
   2633     // Don't include thread-locals that are in the to-space.
   2634     const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
   2635     const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
   2636     const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
   2637     const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
   2638     uint64_t to_bytes = bytes_moved_.load(std::memory_order_relaxed) + bytes_moved_gc_thread_;
   2639     cumulative_bytes_moved_.fetch_add(to_bytes, std::memory_order_relaxed);
   2640     uint64_t to_objects = objects_moved_.load(std::memory_order_relaxed) + objects_moved_gc_thread_;
   2641     cumulative_objects_moved_.fetch_add(to_objects, std::memory_order_relaxed);
   2642     if (kEnableFromSpaceAccountingCheck) {
   2643       CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
   2644       CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
   2645     }
   2646     CHECK_LE(to_objects, from_objects);
   2647     // to_bytes <= from_bytes is only approximately true, because objects expand a little when
   2648     // copying to non-moving space in near-OOM situations.
   2649     if (from_bytes > 0) {
   2650       copied_live_bytes_ratio_sum_ += static_cast<float>(to_bytes) / from_bytes;
   2651       gc_count_++;
   2652     }
   2653 
   2654     // Cleared bytes and objects, populated by the call to RegionSpace::ClearFromSpace below.
   2655     uint64_t cleared_bytes;
   2656     uint64_t cleared_objects;
   2657     {
   2658       TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
   2659       region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects, /*clear_bitmap*/ !young_gen_);
   2660       // `cleared_bytes` and `cleared_objects` may be greater than the from space equivalents since
   2661       // RegionSpace::ClearFromSpace may clear empty unevac regions.
   2662       CHECK_GE(cleared_bytes, from_bytes);
   2663       CHECK_GE(cleared_objects, from_objects);
   2664     }
   2665     // freed_bytes could conceivably be negative if we fall back to nonmoving space and have to
   2666     // pad to a larger size.
   2667     int64_t freed_bytes = (int64_t)cleared_bytes - (int64_t)to_bytes;
   2668     uint64_t freed_objects = cleared_objects - to_objects;
   2669     if (kVerboseMode) {
   2670       LOG(INFO) << "RecordFree:"
   2671                 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
   2672                 << " unevac_from_bytes=" << unevac_from_bytes
   2673                 << " unevac_from_objects=" << unevac_from_objects
   2674                 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
   2675                 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
   2676                 << " from_space size=" << region_space_->FromSpaceSize()
   2677                 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
   2678                 << " to_space size=" << region_space_->ToSpaceSize();
   2679       LOG(INFO) << "(before) num_bytes_allocated="
   2680                 << heap_->num_bytes_allocated_.load();
   2681     }
   2682     RecordFree(ObjectBytePair(freed_objects, freed_bytes));
   2683     if (kVerboseMode) {
   2684       LOG(INFO) << "(after) num_bytes_allocated="
   2685                 << heap_->num_bytes_allocated_.load();
   2686     }
   2687 
   2688     float reclaimed_bytes_ratio = static_cast<float>(freed_bytes) / num_bytes_allocated_before_gc_;
   2689     reclaimed_bytes_ratio_sum_ += reclaimed_bytes_ratio;
   2690   }
   2691 
   2692   {
   2693     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   2694     Sweep(/* swap_bitmaps= */ false);
   2695     SwapBitmaps();
   2696     heap_->UnBindBitmaps();
   2697 
   2698     // The bitmap was cleared at the start of the GC, there is nothing we need to do here.
   2699     DCHECK(region_space_bitmap_ != nullptr);
   2700     region_space_bitmap_ = nullptr;
   2701   }
   2702 
   2703   CheckEmptyMarkStack();
   2704 
   2705   if (heap_->dump_region_info_after_gc_) {
   2706     LOG(INFO) << "time=" << region_space_->Time();
   2707     region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
   2708   }
   2709 
   2710   if (kVerboseMode) {
   2711     LOG(INFO) << "GC end of ReclaimPhase";
   2712   }
   2713 }
   2714 
   2715 std::string ConcurrentCopying::DumpReferenceInfo(mirror::Object* ref,
   2716                                                  const char* ref_name,
   2717                                                  const char* indent) {
   2718   std::ostringstream oss;
   2719   oss << indent << heap_->GetVerification()->DumpObjectInfo(ref, ref_name) << '\n';
   2720   if (ref != nullptr) {
   2721     if (kUseBakerReadBarrier) {
   2722       oss << indent << ref_name << "->GetMarkBit()=" << ref->GetMarkBit() << '\n';
   2723       oss << indent << ref_name << "->GetReadBarrierState()=" << ref->GetReadBarrierState() << '\n';
   2724     }
   2725   }
   2726   if (region_space_->HasAddress(ref)) {
   2727     oss << indent << "Region containing " << ref_name << ":" << '\n';
   2728     region_space_->DumpRegionForObject(oss, ref);
   2729     if (region_space_bitmap_ != nullptr) {
   2730       oss << indent << "region_space_bitmap_->Test(" << ref_name << ")="
   2731           << std::boolalpha << region_space_bitmap_->Test(ref) << std::noboolalpha;
   2732     }
   2733   }
   2734   return oss.str();
   2735 }
   2736 
   2737 std::string ConcurrentCopying::DumpHeapReference(mirror::Object* obj,
   2738                                                  MemberOffset offset,
   2739                                                  mirror::Object* ref) {
   2740   std::ostringstream oss;
   2741   constexpr const char* kIndent = "  ";
   2742   oss << kIndent << "Invalid reference: ref=" << ref
   2743       << " referenced from: object=" << obj << " offset= " << offset << '\n';
   2744   // Information about `obj`.
   2745   oss << DumpReferenceInfo(obj, "obj", kIndent) << '\n';
   2746   // Information about `ref`.
   2747   oss << DumpReferenceInfo(ref, "ref", kIndent);
   2748   return oss.str();
   2749 }
   2750 
   2751 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj,
   2752                                                MemberOffset offset,
   2753                                                mirror::Object* ref) {
   2754   CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
   2755   if (is_asserting_to_space_invariant_) {
   2756     if (ref == nullptr) {
   2757       // OK.
   2758       return;
   2759     } else if (region_space_->HasAddress(ref)) {
   2760       // Check to-space invariant in region space (moving space).
   2761       using RegionType = space::RegionSpace::RegionType;
   2762       space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
   2763       if (type == RegionType::kRegionTypeToSpace) {
   2764         // OK.
   2765         return;
   2766       } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
   2767         if (!IsMarkedInUnevacFromSpace(ref)) {
   2768           LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
   2769           // Remove memory protection from the region space and log debugging information.
   2770           region_space_->Unprotect();
   2771           LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
   2772           Thread::Current()->DumpJavaStack(LOG_STREAM(FATAL_WITHOUT_ABORT));
   2773         }
   2774         CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
   2775      } else {
   2776         // Not OK: either a from-space ref or a reference in an unused region.
   2777         if (type == RegionType::kRegionTypeFromSpace) {
   2778           LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
   2779         } else {
   2780           LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
   2781         }
   2782         // Remove memory protection from the region space and log debugging information.
   2783         region_space_->Unprotect();
   2784         LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
   2785         if (obj != nullptr) {
   2786           LogFromSpaceRefHolder(obj, offset);
   2787           LOG(FATAL_WITHOUT_ABORT) << "UNEVAC " << region_space_->IsInUnevacFromSpace(obj) << " "
   2788                                    << obj << " " << obj->GetMarkBit();
   2789           if (region_space_->HasAddress(obj)) {
   2790             region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
   2791           }
   2792           LOG(FATAL_WITHOUT_ABORT) << "CARD " << static_cast<size_t>(
   2793               *Runtime::Current()->GetHeap()->GetCardTable()->CardFromAddr(
   2794                   reinterpret_cast<uint8_t*>(obj)));
   2795           if (region_space_->HasAddress(obj)) {
   2796             LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << region_space_bitmap_->Test(obj);
   2797           } else {
   2798             accounting::ContinuousSpaceBitmap* mark_bitmap =
   2799                 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
   2800             if (mark_bitmap != nullptr) {
   2801               LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << mark_bitmap->Test(obj);
   2802             } else {
   2803               accounting::LargeObjectBitmap* los_bitmap =
   2804                   heap_mark_bitmap_->GetLargeObjectBitmap(obj);
   2805               LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << los_bitmap->Test(obj);
   2806             }
   2807           }
   2808         }
   2809         ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
   2810         LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
   2811         region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
   2812         PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
   2813         MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
   2814         LOG(FATAL) << "Invalid reference " << ref
   2815                    << " referenced from object " << obj << " at offset " << offset;
   2816       }
   2817     } else {
   2818       // Check to-space invariant in non-moving space.
   2819       AssertToSpaceInvariantInNonMovingSpace(obj, ref);
   2820     }
   2821   }
   2822 }
   2823 
   2824 class RootPrinter {
   2825  public:
   2826   RootPrinter() { }
   2827 
   2828   template <class MirrorType>
   2829   ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
   2830       REQUIRES_SHARED(Locks::mutator_lock_) {
   2831     if (!root->IsNull()) {
   2832       VisitRoot(root);
   2833     }
   2834   }
   2835 
   2836   template <class MirrorType>
   2837   void VisitRoot(mirror::Object** root)
   2838       REQUIRES_SHARED(Locks::mutator_lock_) {
   2839     LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root;
   2840   }
   2841 
   2842   template <class MirrorType>
   2843   void VisitRoot(mirror::CompressedReference<MirrorType>* root)
   2844       REQUIRES_SHARED(Locks::mutator_lock_) {
   2845     LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr();
   2846   }
   2847 };
   2848 
   2849 std::string ConcurrentCopying::DumpGcRoot(mirror::Object* ref) {
   2850   std::ostringstream oss;
   2851   constexpr const char* kIndent = "  ";
   2852   oss << kIndent << "Invalid GC root: ref=" << ref << '\n';
   2853   // Information about `ref`.
   2854   oss << DumpReferenceInfo(ref, "ref", kIndent);
   2855   return oss.str();
   2856 }
   2857 
   2858 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
   2859                                                mirror::Object* ref) {
   2860   CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
   2861   if (is_asserting_to_space_invariant_) {
   2862     if (ref == nullptr) {
   2863       // OK.
   2864       return;
   2865     } else if (region_space_->HasAddress(ref)) {
   2866       // Check to-space invariant in region space (moving space).
   2867       using RegionType = space::RegionSpace::RegionType;
   2868       space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
   2869       if (type == RegionType::kRegionTypeToSpace) {
   2870         // OK.
   2871         return;
   2872       } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
   2873         if (!IsMarkedInUnevacFromSpace(ref)) {
   2874           LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
   2875           // Remove memory protection from the region space and log debugging information.
   2876           region_space_->Unprotect();
   2877           LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
   2878         }
   2879         CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
   2880       } else {
   2881         // Not OK: either a from-space ref or a reference in an unused region.
   2882         if (type == RegionType::kRegionTypeFromSpace) {
   2883           LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
   2884         } else {
   2885           LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
   2886         }
   2887         // Remove memory protection from the region space and log debugging information.
   2888         region_space_->Unprotect();
   2889         LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
   2890         if (gc_root_source == nullptr) {
   2891           // No info.
   2892         } else if (gc_root_source->HasArtField()) {
   2893           ArtField* field = gc_root_source->GetArtField();
   2894           LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " "
   2895                                    << ArtField::PrettyField(field);
   2896           RootPrinter root_printer;
   2897           field->VisitRoots(root_printer);
   2898         } else if (gc_root_source->HasArtMethod()) {
   2899           ArtMethod* method = gc_root_source->GetArtMethod();
   2900           LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " "
   2901                                    << ArtMethod::PrettyMethod(method);
   2902           RootPrinter root_printer;
   2903           method->VisitRoots(root_printer, kRuntimePointerSize);
   2904         }
   2905         ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
   2906         LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
   2907         region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
   2908         PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
   2909         MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
   2910         LOG(FATAL) << "Invalid reference " << ref;
   2911       }
   2912     } else {
   2913       // Check to-space invariant in non-moving space.
   2914       AssertToSpaceInvariantInNonMovingSpace(/* obj= */ nullptr, ref);
   2915     }
   2916   }
   2917 }
   2918 
   2919 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
   2920   if (kUseBakerReadBarrier) {
   2921     LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf()
   2922               << " holder rb_state=" << obj->GetReadBarrierState();
   2923   } else {
   2924     LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf();
   2925   }
   2926   if (region_space_->IsInFromSpace(obj)) {
   2927     LOG(INFO) << "holder is in the from-space.";
   2928   } else if (region_space_->IsInToSpace(obj)) {
   2929     LOG(INFO) << "holder is in the to-space.";
   2930   } else if (region_space_->IsInUnevacFromSpace(obj)) {
   2931     LOG(INFO) << "holder is in the unevac from-space.";
   2932     if (IsMarkedInUnevacFromSpace(obj)) {
   2933       LOG(INFO) << "holder is marked in the region space bitmap.";
   2934     } else {
   2935       LOG(INFO) << "holder is not marked in the region space bitmap.";
   2936     }
   2937   } else {
   2938     // In a non-moving space.
   2939     if (immune_spaces_.ContainsObject(obj)) {
   2940       LOG(INFO) << "holder is in an immune image or the zygote space.";
   2941     } else {
   2942       LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
   2943       accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
   2944       accounting::LargeObjectBitmap* los_bitmap = nullptr;
   2945       const bool is_los = !mark_bitmap->HasAddress(obj);
   2946       if (is_los) {
   2947         DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(obj))
   2948             << "obj=" << obj
   2949             << " LOS bit map covers the entire lower 4GB address range";
   2950         los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
   2951       }
   2952       if (!is_los && mark_bitmap->Test(obj)) {
   2953         LOG(INFO) << "holder is marked in the non-moving space mark bit map.";
   2954       } else if (is_los && los_bitmap->Test(obj)) {
   2955         LOG(INFO) << "holder is marked in the los bit map.";
   2956       } else {
   2957         // If ref is on the allocation stack, then it is considered
   2958         // mark/alive (but not necessarily on the live stack.)
   2959         if (IsOnAllocStack(obj)) {
   2960           LOG(INFO) << "holder is on the alloc stack.";
   2961         } else {
   2962           LOG(INFO) << "holder is not marked or on the alloc stack.";
   2963         }
   2964       }
   2965     }
   2966   }
   2967   LOG(INFO) << "offset=" << offset.SizeValue();
   2968 }
   2969 
   2970 bool ConcurrentCopying::IsMarkedInNonMovingSpace(mirror::Object* from_ref) {
   2971   DCHECK(!region_space_->HasAddress(from_ref)) << "ref=" << from_ref;
   2972   DCHECK(!immune_spaces_.ContainsObject(from_ref)) << "ref=" << from_ref;
   2973   if (kUseBakerReadBarrier && from_ref->GetReadBarrierStateAcquire() == ReadBarrier::GrayState()) {
   2974     return true;
   2975   } else if (!use_generational_cc_ || done_scanning_.load(std::memory_order_acquire)) {
   2976     // Read the comment in IsMarkedInUnevacFromSpace()
   2977     accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
   2978     accounting::LargeObjectBitmap* los_bitmap = nullptr;
   2979     const bool is_los = !mark_bitmap->HasAddress(from_ref);
   2980     if (is_los) {
   2981       DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(from_ref))
   2982           << "ref=" << from_ref
   2983           << " doesn't belong to non-moving space and large object space doesn't exist";
   2984       los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
   2985     }
   2986     if (is_los ? los_bitmap->Test(from_ref) : mark_bitmap->Test(from_ref)) {
   2987       return true;
   2988     }
   2989   }
   2990   return IsOnAllocStack(from_ref);
   2991 }
   2992 
   2993 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
   2994                                                                mirror::Object* ref) {
   2995   CHECK(ref != nullptr);
   2996   CHECK(!region_space_->HasAddress(ref)) << "obj=" << obj << " ref=" << ref;
   2997   // In a non-moving space. Check that the ref is marked.
   2998   if (immune_spaces_.ContainsObject(ref)) {
   2999     // Immune space case.
   3000     if (kUseBakerReadBarrier) {
   3001       // Immune object may not be gray if called from the GC.
   3002       if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) {
   3003         return;
   3004       }
   3005       bool updated_all_immune_objects = updated_all_immune_objects_.load(std::memory_order_seq_cst);
   3006       CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState())
   3007           << "Unmarked immune space ref. obj=" << obj << " rb_state="
   3008           << (obj != nullptr ? obj->GetReadBarrierState() : 0U)
   3009           << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState()
   3010           << " updated_all_immune_objects=" << updated_all_immune_objects;
   3011     }
   3012   } else {
   3013     // Non-moving space and large-object space (LOS) cases.
   3014     // If `ref` is on the allocation stack, then it may not be
   3015     // marked live, but considered marked/alive (but not
   3016     // necessarily on the live stack).
   3017     CHECK(IsMarkedInNonMovingSpace(ref))
   3018         << "Unmarked ref that's not on the allocation stack."
   3019         << " obj=" << obj
   3020         << " ref=" << ref
   3021         << " rb_state=" << ref->GetReadBarrierState()
   3022         << " is_marking=" << std::boolalpha << is_marking_ << std::noboolalpha
   3023         << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
   3024         << " done_scanning="
   3025         << std::boolalpha << done_scanning_.load(std::memory_order_acquire) << std::noboolalpha
   3026         << " self=" << Thread::Current();
   3027   }
   3028 }
   3029 
   3030 // Used to scan ref fields of an object.
   3031 template <bool kNoUnEvac>
   3032 class ConcurrentCopying::RefFieldsVisitor {
   3033  public:
   3034   explicit RefFieldsVisitor(ConcurrentCopying* collector, Thread* const thread)
   3035       : collector_(collector), thread_(thread) {
   3036     // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
   3037     DCHECK(!kNoUnEvac || collector_->use_generational_cc_);
   3038   }
   3039 
   3040   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
   3041       const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
   3042       REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
   3043     collector_->Process<kNoUnEvac>(obj, offset);
   3044   }
   3045 
   3046   void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
   3047       REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
   3048     CHECK(klass->IsTypeOfReferenceClass());
   3049     collector_->DelayReferenceReferent(klass, ref);
   3050   }
   3051 
   3052   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   3053       ALWAYS_INLINE
   3054       REQUIRES_SHARED(Locks::mutator_lock_) {
   3055     if (!root->IsNull()) {
   3056       VisitRoot(root);
   3057     }
   3058   }
   3059 
   3060   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   3061       ALWAYS_INLINE
   3062       REQUIRES_SHARED(Locks::mutator_lock_) {
   3063     collector_->MarkRoot</*kGrayImmuneObject=*/false>(thread_, root);
   3064   }
   3065 
   3066  private:
   3067   ConcurrentCopying* const collector_;
   3068   Thread* const thread_;
   3069 };
   3070 
   3071 template <bool kNoUnEvac>
   3072 inline void ConcurrentCopying::Scan(mirror::Object* to_ref) {
   3073   // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
   3074   DCHECK(!kNoUnEvac || use_generational_cc_);
   3075   if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
   3076     // Avoid all read barriers during visit references to help performance.
   3077     // Don't do this in transaction mode because we may read the old value of an field which may
   3078     // trigger read barriers.
   3079     Thread::Current()->ModifyDebugDisallowReadBarrier(1);
   3080   }
   3081   DCHECK(!region_space_->IsInFromSpace(to_ref));
   3082   DCHECK_EQ(Thread::Current(), thread_running_gc_);
   3083   RefFieldsVisitor<kNoUnEvac> visitor(this, thread_running_gc_);
   3084   // Disable the read barrier for a performance reason.
   3085   to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
   3086       visitor, visitor);
   3087   if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
   3088     thread_running_gc_->ModifyDebugDisallowReadBarrier(-1);
   3089   }
   3090 }
   3091 
   3092 template <bool kNoUnEvac>
   3093 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
   3094   // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
   3095   DCHECK(!kNoUnEvac || use_generational_cc_);
   3096   DCHECK_EQ(Thread::Current(), thread_running_gc_);
   3097   mirror::Object* ref = obj->GetFieldObject<
   3098       mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
   3099   mirror::Object* to_ref = Mark</*kGrayImmuneObject=*/false, kNoUnEvac, /*kFromGCThread=*/true>(
   3100       thread_running_gc_,
   3101       ref,
   3102       /*holder=*/ obj,
   3103       offset);
   3104   if (to_ref == ref) {
   3105     return;
   3106   }
   3107   // This may fail if the mutator writes to the field at the same time. But it's ok.
   3108   mirror::Object* expected_ref = ref;
   3109   mirror::Object* new_ref = to_ref;
   3110   do {
   3111     if (expected_ref !=
   3112         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
   3113       // It was updated by the mutator.
   3114       break;
   3115     }
   3116     // Use release CAS to make sure threads reading the reference see contents of copied objects.
   3117   } while (!obj->CasFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>(
   3118       offset,
   3119       expected_ref,
   3120       new_ref,
   3121       CASMode::kWeak,
   3122       std::memory_order_release));
   3123 }
   3124 
   3125 // Process some roots.
   3126 inline void ConcurrentCopying::VisitRoots(
   3127     mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
   3128   Thread* const self = Thread::Current();
   3129   for (size_t i = 0; i < count; ++i) {
   3130     mirror::Object** root = roots[i];
   3131     mirror::Object* ref = *root;
   3132     mirror::Object* to_ref = Mark(self, ref);
   3133     if (to_ref == ref) {
   3134       continue;
   3135     }
   3136     Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
   3137     mirror::Object* expected_ref = ref;
   3138     mirror::Object* new_ref = to_ref;
   3139     do {
   3140       if (expected_ref != addr->load(std::memory_order_relaxed)) {
   3141         // It was updated by the mutator.
   3142         break;
   3143       }
   3144     } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
   3145   }
   3146 }
   3147 
   3148 template<bool kGrayImmuneObject>
   3149 inline void ConcurrentCopying::MarkRoot(Thread* const self,
   3150                                         mirror::CompressedReference<mirror::Object>* root) {
   3151   DCHECK(!root->IsNull());
   3152   mirror::Object* const ref = root->AsMirrorPtr();
   3153   mirror::Object* to_ref = Mark<kGrayImmuneObject>(self, ref);
   3154   if (to_ref != ref) {
   3155     auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
   3156     auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
   3157     auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
   3158     // If the cas fails, then it was updated by the mutator.
   3159     do {
   3160       if (ref != addr->load(std::memory_order_relaxed).AsMirrorPtr()) {
   3161         // It was updated by the mutator.
   3162         break;
   3163       }
   3164     } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
   3165   }
   3166 }
   3167 
   3168 inline void ConcurrentCopying::VisitRoots(
   3169     mirror::CompressedReference<mirror::Object>** roots, size_t count,
   3170     const RootInfo& info ATTRIBUTE_UNUSED) {
   3171   Thread* const self = Thread::Current();
   3172   for (size_t i = 0; i < count; ++i) {
   3173     mirror::CompressedReference<mirror::Object>* const root = roots[i];
   3174     if (!root->IsNull()) {
   3175       // kGrayImmuneObject is true because this is used for the thread flip.
   3176       MarkRoot</*kGrayImmuneObject=*/true>(self, root);
   3177     }
   3178   }
   3179 }
   3180 
   3181 // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC.
   3182 class ConcurrentCopying::ScopedGcGraysImmuneObjects {
   3183  public:
   3184   explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector)
   3185       : collector_(collector), enabled_(false) {
   3186     if (kUseBakerReadBarrier &&
   3187         collector_->thread_running_gc_ == Thread::Current() &&
   3188         !collector_->gc_grays_immune_objects_) {
   3189       collector_->gc_grays_immune_objects_ = true;
   3190       enabled_ = true;
   3191     }
   3192   }
   3193 
   3194   ~ScopedGcGraysImmuneObjects() {
   3195     if (kUseBakerReadBarrier &&
   3196         collector_->thread_running_gc_ == Thread::Current() &&
   3197         enabled_) {
   3198       DCHECK(collector_->gc_grays_immune_objects_);
   3199       collector_->gc_grays_immune_objects_ = false;
   3200     }
   3201   }
   3202 
   3203  private:
   3204   ConcurrentCopying* const collector_;
   3205   bool enabled_;
   3206 };
   3207 
   3208 // Fill the given memory block with a dummy object. Used to fill in a
   3209 // copy of objects that was lost in race.
   3210 void ConcurrentCopying::FillWithDummyObject(Thread* const self,
   3211                                             mirror::Object* dummy_obj,
   3212                                             size_t byte_size) {
   3213   // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read
   3214   // barriers here because we need the updated reference to the int array class, etc. Temporary set
   3215   // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace().
   3216   ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this);
   3217   CHECK_ALIGNED(byte_size, kObjectAlignment);
   3218   memset(dummy_obj, 0, byte_size);
   3219   // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled.
   3220   // Explicitly mark to make sure to get an object in the to-space.
   3221   mirror::Class* int_array_class = down_cast<mirror::Class*>(
   3222       Mark(self, GetClassRoot<mirror::IntArray, kWithoutReadBarrier>().Ptr()));
   3223   CHECK(int_array_class != nullptr);
   3224   if (ReadBarrier::kEnableToSpaceInvariantChecks) {
   3225     AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
   3226   }
   3227   size_t component_size = int_array_class->GetComponentSize();
   3228   CHECK_EQ(component_size, sizeof(int32_t));
   3229   size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
   3230   if (data_offset > byte_size) {
   3231     // An int array is too big. Use java.lang.Object.
   3232     CHECK(java_lang_Object_ != nullptr);
   3233     if (ReadBarrier::kEnableToSpaceInvariantChecks) {
   3234       AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_);
   3235     }
   3236     CHECK_EQ(byte_size, java_lang_Object_->GetObjectSize<kVerifyNone>());
   3237     dummy_obj->SetClass(java_lang_Object_);
   3238     CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>()));
   3239   } else {
   3240     // Use an int array.
   3241     dummy_obj->SetClass(int_array_class);
   3242     CHECK(dummy_obj->IsArrayInstance<kVerifyNone>());
   3243     int32_t length = (byte_size - data_offset) / component_size;
   3244     ObjPtr<mirror::Array> dummy_arr = dummy_obj->AsArray<kVerifyNone>();
   3245     dummy_arr->SetLength(length);
   3246     CHECK_EQ(dummy_arr->GetLength(), length)
   3247         << "byte_size=" << byte_size << " length=" << length
   3248         << " component_size=" << component_size << " data_offset=" << data_offset;
   3249     CHECK_EQ(byte_size, (dummy_obj->SizeOf<kVerifyNone>()))
   3250         << "byte_size=" << byte_size << " length=" << length
   3251         << " component_size=" << component_size << " data_offset=" << data_offset;
   3252   }
   3253 }
   3254 
   3255 // Reuse the memory blocks that were copy of objects that were lost in race.
   3256 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(Thread* const self, size_t alloc_size) {
   3257   // Try to reuse the blocks that were unused due to CAS failures.
   3258   CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
   3259   size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
   3260   size_t byte_size;
   3261   uint8_t* addr;
   3262   {
   3263     MutexLock mu(self, skipped_blocks_lock_);
   3264     auto it = skipped_blocks_map_.lower_bound(alloc_size);
   3265     if (it == skipped_blocks_map_.end()) {
   3266       // Not found.
   3267       return nullptr;
   3268     }
   3269     byte_size = it->first;
   3270     CHECK_GE(byte_size, alloc_size);
   3271     if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
   3272       // If remainder would be too small for a dummy object, retry with a larger request size.
   3273       it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
   3274       if (it == skipped_blocks_map_.end()) {
   3275         // Not found.
   3276         return nullptr;
   3277       }
   3278       CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
   3279       CHECK_GE(it->first - alloc_size, min_object_size)
   3280           << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
   3281     }
   3282     // Found a block.
   3283     CHECK(it != skipped_blocks_map_.end());
   3284     byte_size = it->first;
   3285     addr = it->second;
   3286     CHECK_GE(byte_size, alloc_size);
   3287     CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
   3288     CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
   3289     if (kVerboseMode) {
   3290       LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
   3291     }
   3292     skipped_blocks_map_.erase(it);
   3293   }
   3294   memset(addr, 0, byte_size);
   3295   if (byte_size > alloc_size) {
   3296     // Return the remainder to the map.
   3297     CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
   3298     CHECK_GE(byte_size - alloc_size, min_object_size);
   3299     // FillWithDummyObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock
   3300     // violation and possible deadlock. The deadlock case is a recursive case:
   3301     // FillWithDummyObject -> Mark(IntArray.class) -> Copy -> AllocateInSkippedBlock.
   3302     FillWithDummyObject(self,
   3303                         reinterpret_cast<mirror::Object*>(addr + alloc_size),
   3304                         byte_size - alloc_size);
   3305     CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
   3306     {
   3307       MutexLock mu(self, skipped_blocks_lock_);
   3308       skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
   3309     }
   3310   }
   3311   return reinterpret_cast<mirror::Object*>(addr);
   3312 }
   3313 
   3314 mirror::Object* ConcurrentCopying::Copy(Thread* const self,
   3315                                         mirror::Object* from_ref,
   3316                                         mirror::Object* holder,
   3317                                         MemberOffset offset) {
   3318   DCHECK(region_space_->IsInFromSpace(from_ref));
   3319   // If the class pointer is null, the object is invalid. This could occur for a dangling pointer
   3320   // from a previous GC that is either inside or outside the allocated region.
   3321   mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
   3322   if (UNLIKELY(klass == nullptr)) {
   3323     // Remove memory protection from the region space and log debugging information.
   3324     region_space_->Unprotect();
   3325     heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal= */ true);
   3326   }
   3327   // There must not be a read barrier to avoid nested RB that might violate the to-space invariant.
   3328   // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta
   3329   // objects, but it's ok and necessary.
   3330   size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>();
   3331   size_t region_space_alloc_size = (obj_size <= space::RegionSpace::kRegionSize)
   3332       ? RoundUp(obj_size, space::RegionSpace::kAlignment)
   3333       : RoundUp(obj_size, space::RegionSpace::kRegionSize);
   3334   size_t region_space_bytes_allocated = 0U;
   3335   size_t non_moving_space_bytes_allocated = 0U;
   3336   size_t bytes_allocated = 0U;
   3337   size_t dummy;
   3338   bool fall_back_to_non_moving = false;
   3339   mirror::Object* to_ref = region_space_->AllocNonvirtual</*kForEvac=*/ true>(
   3340       region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
   3341   bytes_allocated = region_space_bytes_allocated;
   3342   if (LIKELY(to_ref != nullptr)) {
   3343     DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
   3344   } else {
   3345     // Failed to allocate in the region space. Try the skipped blocks.
   3346     to_ref = AllocateInSkippedBlock(self, region_space_alloc_size);
   3347     if (to_ref != nullptr) {
   3348       // Succeeded to allocate in a skipped block.
   3349       if (heap_->use_tlab_) {
   3350         // This is necessary for the tlab case as it's not accounted in the space.
   3351         region_space_->RecordAlloc(to_ref);
   3352       }
   3353       bytes_allocated = region_space_alloc_size;
   3354       heap_->num_bytes_allocated_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
   3355       to_space_bytes_skipped_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
   3356       to_space_objects_skipped_.fetch_sub(1, std::memory_order_relaxed);
   3357     } else {
   3358       // Fall back to the non-moving space.
   3359       fall_back_to_non_moving = true;
   3360       if (kVerboseMode) {
   3361         LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
   3362                   << to_space_bytes_skipped_.load(std::memory_order_relaxed)
   3363                   << " skipped_objects="
   3364                   << to_space_objects_skipped_.load(std::memory_order_relaxed);
   3365       }
   3366       to_ref = heap_->non_moving_space_->Alloc(self, obj_size,
   3367                                                &non_moving_space_bytes_allocated, nullptr, &dummy);
   3368       if (UNLIKELY(to_ref == nullptr)) {
   3369         LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a "
   3370                                  << obj_size << " byte object in region type "
   3371                                  << region_space_->GetRegionType(from_ref);
   3372         LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf();
   3373       }
   3374       bytes_allocated = non_moving_space_bytes_allocated;
   3375     }
   3376   }
   3377   DCHECK(to_ref != nullptr);
   3378 
   3379   // Copy the object excluding the lock word since that is handled in the loop.
   3380   to_ref->SetClass(klass);
   3381   const size_t kObjectHeaderSize = sizeof(mirror::Object);
   3382   DCHECK_GE(obj_size, kObjectHeaderSize);
   3383   static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) +
   3384                     sizeof(LockWord),
   3385                 "Object header size does not match");
   3386   // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the
   3387   // object in the from space is immutable other than the lock word. b/31423258
   3388   memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize,
   3389          reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize,
   3390          obj_size - kObjectHeaderSize);
   3391 
   3392   // Attempt to install the forward pointer. This is in a loop as the
   3393   // lock word atomic write can fail.
   3394   while (true) {
   3395     LockWord old_lock_word = from_ref->GetLockWord(false);
   3396 
   3397     if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
   3398       // Lost the race. Another thread (either GC or mutator) stored
   3399       // the forwarding pointer first. Make the lost copy (to_ref)
   3400       // look like a valid but dead (dummy) object and keep it for
   3401       // future reuse.
   3402       FillWithDummyObject(self, to_ref, bytes_allocated);
   3403       if (!fall_back_to_non_moving) {
   3404         DCHECK(region_space_->IsInToSpace(to_ref));
   3405         if (bytes_allocated > space::RegionSpace::kRegionSize) {
   3406           // Free the large alloc.
   3407           region_space_->FreeLarge</*kForEvac=*/ true>(to_ref, bytes_allocated);
   3408         } else {
   3409           // Record the lost copy for later reuse.
   3410           heap_->num_bytes_allocated_.fetch_add(bytes_allocated, std::memory_order_relaxed);
   3411           to_space_bytes_skipped_.fetch_add(bytes_allocated, std::memory_order_relaxed);
   3412           to_space_objects_skipped_.fetch_add(1, std::memory_order_relaxed);
   3413           MutexLock mu(self, skipped_blocks_lock_);
   3414           skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
   3415                                                     reinterpret_cast<uint8_t*>(to_ref)));
   3416         }
   3417       } else {
   3418         DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
   3419         DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
   3420         // Free the non-moving-space chunk.
   3421         heap_->non_moving_space_->Free(self, to_ref);
   3422       }
   3423 
   3424       // Get the winner's forward ptr.
   3425       mirror::Object* lost_fwd_ptr = to_ref;
   3426       to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
   3427       CHECK(to_ref != nullptr);
   3428       CHECK_NE(to_ref, lost_fwd_ptr);
   3429       CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
   3430           << "to_ref=" << to_ref << " " << heap_->DumpSpaces();
   3431       CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
   3432       return to_ref;
   3433     }
   3434 
   3435     // Copy the old lock word over since we did not copy it yet.
   3436     to_ref->SetLockWord(old_lock_word, false);
   3437     // Set the gray ptr.
   3438     if (kUseBakerReadBarrier) {
   3439       to_ref->SetReadBarrierState(ReadBarrier::GrayState());
   3440     }
   3441 
   3442     // Do a fence to prevent the field CAS in ConcurrentCopying::Process from possibly reordering
   3443     // before the object copy.
   3444     std::atomic_thread_fence(std::memory_order_release);
   3445 
   3446     LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
   3447 
   3448     // Try to atomically write the fwd ptr.
   3449     bool success = from_ref->CasLockWord(old_lock_word,
   3450                                          new_lock_word,
   3451                                          CASMode::kWeak,
   3452                                          std::memory_order_relaxed);
   3453     if (LIKELY(success)) {
   3454       // The CAS succeeded.
   3455       DCHECK(thread_running_gc_ != nullptr);
   3456       if (LIKELY(self == thread_running_gc_)) {
   3457         objects_moved_gc_thread_ += 1;
   3458         bytes_moved_gc_thread_ += bytes_allocated;
   3459       } else {
   3460         objects_moved_.fetch_add(1, std::memory_order_relaxed);
   3461         bytes_moved_.fetch_add(bytes_allocated, std::memory_order_relaxed);
   3462       }
   3463 
   3464       if (LIKELY(!fall_back_to_non_moving)) {
   3465         DCHECK(region_space_->IsInToSpace(to_ref));
   3466       } else {
   3467         DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
   3468         DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
   3469         if (!use_generational_cc_ || !young_gen_) {
   3470           // Mark it in the live bitmap.
   3471           CHECK(!heap_->non_moving_space_->GetLiveBitmap()->AtomicTestAndSet(to_ref));
   3472         }
   3473         if (!kUseBakerReadBarrier) {
   3474           // Mark it in the mark bitmap.
   3475           CHECK(!heap_->non_moving_space_->GetMarkBitmap()->AtomicTestAndSet(to_ref));
   3476         }
   3477       }
   3478       if (kUseBakerReadBarrier) {
   3479         DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState());
   3480       }
   3481       DCHECK(GetFwdPtr(from_ref) == to_ref);
   3482       CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
   3483       PushOntoMarkStack(self, to_ref);
   3484       return to_ref;
   3485     } else {
   3486       // The CAS failed. It may have lost the race or may have failed
   3487       // due to monitor/hashcode ops. Either way, retry.
   3488     }
   3489   }
   3490 }
   3491 
   3492 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
   3493   DCHECK(from_ref != nullptr);
   3494   space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
   3495   if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
   3496     // It's already marked.
   3497     return from_ref;
   3498   }
   3499   mirror::Object* to_ref;
   3500   if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
   3501     to_ref = GetFwdPtr(from_ref);
   3502     DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
   3503            heap_->non_moving_space_->HasAddress(to_ref))
   3504         << "from_ref=" << from_ref << " to_ref=" << to_ref;
   3505   } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
   3506     if (IsMarkedInUnevacFromSpace(from_ref)) {
   3507       to_ref = from_ref;
   3508     } else {
   3509       to_ref = nullptr;
   3510     }
   3511   } else {
   3512     // At this point, `from_ref` should not be in the region space
   3513     // (i.e. within an "unused" region).
   3514     DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
   3515     // from_ref is in a non-moving space.
   3516     if (immune_spaces_.ContainsObject(from_ref)) {
   3517       // An immune object is alive.
   3518       to_ref = from_ref;
   3519     } else {
   3520       // Non-immune non-moving space. Use the mark bitmap.
   3521       if (IsMarkedInNonMovingSpace(from_ref)) {
   3522         // Already marked.
   3523         to_ref = from_ref;
   3524       } else {
   3525         to_ref = nullptr;
   3526       }
   3527     }
   3528   }
   3529   return to_ref;
   3530 }
   3531 
   3532 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
   3533   // TODO: Explain why this is here. What release operation does it pair with?
   3534   std::atomic_thread_fence(std::memory_order_acquire);
   3535   accounting::ObjectStack* alloc_stack = GetAllocationStack();
   3536   return alloc_stack->Contains(ref);
   3537 }
   3538 
   3539 mirror::Object* ConcurrentCopying::MarkNonMoving(Thread* const self,
   3540                                                  mirror::Object* ref,
   3541                                                  mirror::Object* holder,
   3542                                                  MemberOffset offset) {
   3543   // ref is in a non-moving space (from_ref == to_ref).
   3544   DCHECK(!region_space_->HasAddress(ref)) << ref;
   3545   DCHECK(!immune_spaces_.ContainsObject(ref));
   3546   // Use the mark bitmap.
   3547   accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
   3548   accounting::LargeObjectBitmap* los_bitmap = nullptr;
   3549   const bool is_los = !mark_bitmap->HasAddress(ref);
   3550   if (is_los) {
   3551     if (!IsAligned<kPageSize>(ref)) {
   3552       // Ref is a large object that is not aligned, it must be heap
   3553       // corruption. Remove memory protection and dump data before
   3554       // AtomicSetReadBarrierState since it will fault if the address is not
   3555       // valid.
   3556       region_space_->Unprotect();
   3557       heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal= */ true);
   3558     }
   3559     DCHECK(heap_->GetLargeObjectsSpace())
   3560         << "ref=" << ref
   3561         << " doesn't belong to non-moving space and large object space doesn't exist";
   3562     los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
   3563     DCHECK(los_bitmap->HasAddress(ref));
   3564   }
   3565   if (use_generational_cc_) {
   3566     // The sticky-bit CC collector is only compatible with Baker-style read barriers.
   3567     DCHECK(kUseBakerReadBarrier);
   3568     // Not done scanning, use AtomicSetReadBarrierPointer.
   3569     if (!done_scanning_.load(std::memory_order_acquire)) {
   3570       // Since the mark bitmap is still filled in from last GC, we can not use that or else the
   3571       // mutator may see references to the from space. Instead, use the Baker pointer itself as
   3572       // the mark bit.
   3573       //
   3574       // We need to avoid marking objects that are on allocation stack as that will lead to a
   3575       // situation (after this GC cycle is finished) where some object(s) are on both allocation
   3576       // stack and live bitmap. This leads to visiting the same object(s) twice during a heapdump
   3577       // (b/117426281).
   3578       if (!IsOnAllocStack(ref) &&
   3579           ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState())) {
   3580         // TODO: We don't actually need to scan this object later, we just need to clear the gray
   3581         // bit.
   3582         // We don't need to mark newly allocated objects (those in allocation stack) as they can
   3583         // only point to to-space objects. Also, they are considered live till the next GC cycle.
   3584         PushOntoMarkStack(self, ref);
   3585       }
   3586       return ref;
   3587     }
   3588   }
   3589   if (!is_los && mark_bitmap->Test(ref)) {
   3590     // Already marked.
   3591   } else if (is_los && los_bitmap->Test(ref)) {
   3592     // Already marked in LOS.
   3593   } else if (IsOnAllocStack(ref)) {
   3594     // If it's on the allocation stack, it's considered marked. Keep it white (non-gray).
   3595     // Objects on the allocation stack need not be marked.
   3596     if (!is_los) {
   3597       DCHECK(!mark_bitmap->Test(ref));
   3598     } else {
   3599       DCHECK(!los_bitmap->Test(ref));
   3600     }
   3601     if (kUseBakerReadBarrier) {
   3602       DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState());
   3603     }
   3604   } else {
   3605     // Not marked nor on the allocation stack. Try to mark it.
   3606     // This may or may not succeed, which is ok.
   3607     bool success = false;
   3608     if (kUseBakerReadBarrier) {
   3609       success = ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(),
   3610                                                ReadBarrier::GrayState());
   3611     } else {
   3612       success = is_los ?
   3613           !los_bitmap->AtomicTestAndSet(ref) :
   3614           !mark_bitmap->AtomicTestAndSet(ref);
   3615     }
   3616     if (success) {
   3617       if (kUseBakerReadBarrier) {
   3618         DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
   3619       }
   3620       PushOntoMarkStack(self, ref);
   3621     }
   3622   }
   3623   return ref;
   3624 }
   3625 
   3626 void ConcurrentCopying::FinishPhase() {
   3627   Thread* const self = Thread::Current();
   3628   {
   3629     MutexLock mu(self, mark_stack_lock_);
   3630     CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
   3631   }
   3632   // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false
   3633   // positives.
   3634   if (!kVerifyNoMissingCardMarks && !use_generational_cc_) {
   3635     TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings());
   3636     // We do not currently use the region space cards at all, madvise them away to save ram.
   3637     heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit());
   3638   } else if (use_generational_cc_ && !young_gen_) {
   3639     region_space_inter_region_bitmap_->Clear();
   3640     non_moving_space_inter_region_bitmap_->Clear();
   3641   }
   3642   {
   3643     MutexLock mu(self, skipped_blocks_lock_);
   3644     skipped_blocks_map_.clear();
   3645   }
   3646   {
   3647     ReaderMutexLock mu(self, *Locks::mutator_lock_);
   3648     {
   3649       WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
   3650       heap_->ClearMarkedObjects();
   3651     }
   3652     if (kUseBakerReadBarrier && kFilterModUnionCards) {
   3653       TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings());
   3654       ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
   3655       for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
   3656         DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
   3657         accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
   3658         // Filter out cards that don't need to be set.
   3659         if (table != nullptr) {
   3660           table->FilterCards();
   3661         }
   3662       }
   3663     }
   3664     if (kUseBakerReadBarrier) {
   3665       TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings());
   3666       DCHECK(rb_mark_bit_stack_ != nullptr);
   3667       const auto* limit = rb_mark_bit_stack_->End();
   3668       for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) {
   3669         CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0))
   3670             << "rb_mark_bit_stack_->Begin()" << rb_mark_bit_stack_->Begin() << '\n'
   3671             << "rb_mark_bit_stack_->End()" << rb_mark_bit_stack_->End() << '\n'
   3672             << "rb_mark_bit_stack_->IsFull()"
   3673             << std::boolalpha << rb_mark_bit_stack_->IsFull() << std::noboolalpha << '\n'
   3674             << DumpReferenceInfo(it->AsMirrorPtr(), "*it");
   3675       }
   3676       rb_mark_bit_stack_->Reset();
   3677     }
   3678   }
   3679   if (measure_read_barrier_slow_path_) {
   3680     MutexLock mu(self, rb_slow_path_histogram_lock_);
   3681     rb_slow_path_time_histogram_.AdjustAndAddValue(
   3682         rb_slow_path_ns_.load(std::memory_order_relaxed));
   3683     rb_slow_path_count_total_ += rb_slow_path_count_.load(std::memory_order_relaxed);
   3684     rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.load(std::memory_order_relaxed);
   3685   }
   3686 }
   3687 
   3688 bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field,
   3689                                                     bool do_atomic_update) {
   3690   mirror::Object* from_ref = field->AsMirrorPtr();
   3691   if (from_ref == nullptr) {
   3692     return true;
   3693   }
   3694   mirror::Object* to_ref = IsMarked(from_ref);
   3695   if (to_ref == nullptr) {
   3696     return false;
   3697   }
   3698   if (from_ref != to_ref) {
   3699     if (do_atomic_update) {
   3700       do {
   3701         if (field->AsMirrorPtr() != from_ref) {
   3702           // Concurrently overwritten by a mutator.
   3703           break;
   3704         }
   3705       } while (!field->CasWeakRelaxed(from_ref, to_ref));
   3706     } else {
   3707       // TODO: Why is this seq_cst when the above is relaxed? Document memory ordering.
   3708       field->Assign</* kIsVolatile= */ true>(to_ref);
   3709     }
   3710   }
   3711   return true;
   3712 }
   3713 
   3714 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
   3715   return Mark(Thread::Current(), from_ref);
   3716 }
   3717 
   3718 void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
   3719                                                ObjPtr<mirror::Reference> reference) {
   3720   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
   3721 }
   3722 
   3723 void ConcurrentCopying::ProcessReferences(Thread* self) {
   3724   TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
   3725   // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
   3726   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3727   GetHeap()->GetReferenceProcessor()->ProcessReferences(
   3728       /*concurrent=*/ true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
   3729 }
   3730 
   3731 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
   3732   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
   3733   region_space_->RevokeAllThreadLocalBuffers();
   3734 }
   3735 
   3736 mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(Thread* const self,
   3737                                                                        mirror::Object* from_ref) {
   3738   if (self != thread_running_gc_) {
   3739     rb_slow_path_count_.fetch_add(1u, std::memory_order_relaxed);
   3740   } else {
   3741     rb_slow_path_count_gc_.fetch_add(1u, std::memory_order_relaxed);
   3742   }
   3743   ScopedTrace tr(__FUNCTION__);
   3744   const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u;
   3745   mirror::Object* ret =
   3746       Mark</*kGrayImmuneObject=*/true, /*kNoUnEvac=*/false, /*kFromGCThread=*/false>(self,
   3747                                                                                      from_ref);
   3748   if (measure_read_barrier_slow_path_) {
   3749     rb_slow_path_ns_.fetch_add(NanoTime() - start_time, std::memory_order_relaxed);
   3750   }
   3751   return ret;
   3752 }
   3753 
   3754 void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) {
   3755   GarbageCollector::DumpPerformanceInfo(os);
   3756   size_t num_gc_cycles = GetCumulativeTimings().GetIterations();
   3757   MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_);
   3758   if (rb_slow_path_time_histogram_.SampleSize() > 0) {
   3759     Histogram<uint64_t>::CumulativeData cumulative_data;
   3760     rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data);
   3761     rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data);
   3762   }
   3763   if (rb_slow_path_count_total_ > 0) {
   3764     os << "Slow path count " << rb_slow_path_count_total_ << "\n";
   3765   }
   3766   if (rb_slow_path_count_gc_total_ > 0) {
   3767     os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n";
   3768   }
   3769 
   3770   os << "Average " << (young_gen_ ? "minor" : "major") << " GC reclaim bytes ratio "
   3771      << (reclaimed_bytes_ratio_sum_ / num_gc_cycles) << " over " << num_gc_cycles
   3772      << " GC cycles\n";
   3773 
   3774   os << "Average " << (young_gen_ ? "minor" : "major") << " GC copied live bytes ratio "
   3775      << (copied_live_bytes_ratio_sum_ / gc_count_) << " over " << gc_count_
   3776      << " " << (young_gen_ ? "minor" : "major") << " GCs\n";
   3777 
   3778   os << "Cumulative bytes moved "
   3779      << cumulative_bytes_moved_.load(std::memory_order_relaxed) << "\n";
   3780   os << "Cumulative objects moved "
   3781      << cumulative_objects_moved_.load(std::memory_order_relaxed) << "\n";
   3782 
   3783   os << "Peak regions allocated "
   3784      << region_space_->GetMaxPeakNumNonFreeRegions() << " ("
   3785      << PrettySize(region_space_->GetMaxPeakNumNonFreeRegions() * space::RegionSpace::kRegionSize)
   3786      << ") / " << region_space_->GetNumRegions() / 2 << " ("
   3787      << PrettySize(region_space_->GetNumRegions() * space::RegionSpace::kRegionSize / 2)
   3788      << ")\n";
   3789 }
   3790 
   3791 }  // namespace collector
   3792 }  // namespace gc
   3793 }  // namespace art
   3794