Home | History | Annotate | Download | only in synchronization
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include <stddef.h>
      6 
      7 #include <algorithm>
      8 #include <limits>
      9 #include <vector>
     10 
     11 #include "base/debug/activity_tracker.h"
     12 #include "base/logging.h"
     13 #include "base/synchronization/condition_variable.h"
     14 #include "base/synchronization/lock.h"
     15 #include "base/synchronization/waitable_event.h"
     16 #include "base/threading/scoped_blocking_call.h"
     17 #include "base/threading/thread_restrictions.h"
     18 
     19 // -----------------------------------------------------------------------------
     20 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
     21 // support cross-process events (where one process can signal an event which
     22 // others are waiting on). Because of this, we can avoid having one thread per
     23 // listener in several cases.
     24 //
     25 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
     26 // waiter is either an async wait, in which case we have a Task and the
     27 // MessageLoop to run it on, or a blocking wait, in which case we have the
     28 // condition variable to signal.
     29 //
     30 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
     31 // waits can be canceled, which means grabbing the lock and removing oneself
     32 // from the list.
     33 //
     34 // Waiting on multiple events is handled by adding a single, synchronous wait to
     35 // the wait-list of many events. An event passes a pointer to itself when
     36 // firing a waiter and so we can store that pointer to find out which event
     37 // triggered.
     38 // -----------------------------------------------------------------------------
     39 
     40 namespace base {
     41 
     42 // -----------------------------------------------------------------------------
     43 // This is just an abstract base class for waking the two types of waiters
     44 // -----------------------------------------------------------------------------
     45 WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
     46                              InitialState initial_state)
     47     : kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
     48 
     49 WaitableEvent::~WaitableEvent() = default;
     50 
     51 void WaitableEvent::Reset() {
     52   base::AutoLock locked(kernel_->lock_);
     53   kernel_->signaled_ = false;
     54 }
     55 
     56 void WaitableEvent::Signal() {
     57   base::AutoLock locked(kernel_->lock_);
     58 
     59   if (kernel_->signaled_)
     60     return;
     61 
     62   if (kernel_->manual_reset_) {
     63     SignalAll();
     64     kernel_->signaled_ = true;
     65   } else {
     66     // In the case of auto reset, if no waiters were woken, we remain
     67     // signaled.
     68     if (!SignalOne())
     69       kernel_->signaled_ = true;
     70   }
     71 }
     72 
     73 bool WaitableEvent::IsSignaled() {
     74   base::AutoLock locked(kernel_->lock_);
     75 
     76   const bool result = kernel_->signaled_;
     77   if (result && !kernel_->manual_reset_)
     78     kernel_->signaled_ = false;
     79   return result;
     80 }
     81 
     82 // -----------------------------------------------------------------------------
     83 // Synchronous waits
     84 
     85 // -----------------------------------------------------------------------------
     86 // This is a synchronous waiter. The thread is waiting on the given condition
     87 // variable and the fired flag in this object.
     88 // -----------------------------------------------------------------------------
     89 class SyncWaiter : public WaitableEvent::Waiter {
     90  public:
     91   SyncWaiter()
     92       : fired_(false), signaling_event_(nullptr), lock_(), cv_(&lock_) {}
     93 
     94   bool Fire(WaitableEvent* signaling_event) override {
     95     base::AutoLock locked(lock_);
     96 
     97     if (fired_)
     98       return false;
     99 
    100     fired_ = true;
    101     signaling_event_ = signaling_event;
    102 
    103     cv_.Broadcast();
    104 
    105     // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
    106     // the blocking thread's stack.  There is no |delete this;| in Fire.  The
    107     // SyncWaiter object is destroyed when it goes out of scope.
    108 
    109     return true;
    110   }
    111 
    112   WaitableEvent* signaling_event() const {
    113     return signaling_event_;
    114   }
    115 
    116   // ---------------------------------------------------------------------------
    117   // These waiters are always stack allocated and don't delete themselves. Thus
    118   // there's no problem and the ABA tag is the same as the object pointer.
    119   // ---------------------------------------------------------------------------
    120   bool Compare(void* tag) override { return this == tag; }
    121 
    122   // ---------------------------------------------------------------------------
    123   // Called with lock held.
    124   // ---------------------------------------------------------------------------
    125   bool fired() const {
    126     return fired_;
    127   }
    128 
    129   // ---------------------------------------------------------------------------
    130   // During a TimedWait, we need a way to make sure that an auto-reset
    131   // WaitableEvent doesn't think that this event has been signaled between
    132   // unlocking it and removing it from the wait-list. Called with lock held.
    133   // ---------------------------------------------------------------------------
    134   void Disable() {
    135     fired_ = true;
    136   }
    137 
    138   base::Lock* lock() {
    139     return &lock_;
    140   }
    141 
    142   base::ConditionVariable* cv() {
    143     return &cv_;
    144   }
    145 
    146  private:
    147   bool fired_;
    148   WaitableEvent* signaling_event_;  // The WaitableEvent which woke us
    149   base::Lock lock_;
    150   base::ConditionVariable cv_;
    151 };
    152 
    153 void WaitableEvent::Wait() {
    154   bool result = TimedWaitUntil(TimeTicks::Max());
    155   DCHECK(result) << "TimedWait() should never fail with infinite timeout";
    156 }
    157 
    158 bool WaitableEvent::TimedWait(const TimeDelta& wait_delta) {
    159   // TimeTicks takes care of overflow including the cases when wait_delta
    160   // is a maximum value.
    161   return TimedWaitUntil(TimeTicks::Now() + wait_delta);
    162 }
    163 
    164 bool WaitableEvent::TimedWaitUntil(const TimeTicks& end_time) {
    165   internal::AssertBaseSyncPrimitivesAllowed();
    166   ScopedBlockingCall scoped_blocking_call(BlockingType::MAY_BLOCK);
    167   // Record the event that this thread is blocking upon (for hang diagnosis).
    168   base::debug::ScopedEventWaitActivity event_activity(this);
    169 
    170   const bool finite_time = !end_time.is_max();
    171 
    172   kernel_->lock_.Acquire();
    173   if (kernel_->signaled_) {
    174     if (!kernel_->manual_reset_) {
    175       // In this case we were signaled when we had no waiters. Now that
    176       // someone has waited upon us, we can automatically reset.
    177       kernel_->signaled_ = false;
    178     }
    179 
    180     kernel_->lock_.Release();
    181     return true;
    182   }
    183 
    184   SyncWaiter sw;
    185   sw.lock()->Acquire();
    186 
    187   Enqueue(&sw);
    188   kernel_->lock_.Release();
    189   // We are violating locking order here by holding the SyncWaiter lock but not
    190   // the WaitableEvent lock. However, this is safe because we don't lock @lock_
    191   // again before unlocking it.
    192 
    193   for (;;) {
    194     const TimeTicks current_time(TimeTicks::Now());
    195 
    196     if (sw.fired() || (finite_time && current_time >= end_time)) {
    197       const bool return_value = sw.fired();
    198 
    199       // We can't acquire @lock_ before releasing the SyncWaiter lock (because
    200       // of locking order), however, in between the two a signal could be fired
    201       // and @sw would accept it, however we will still return false, so the
    202       // signal would be lost on an auto-reset WaitableEvent. Thus we call
    203       // Disable which makes sw::Fire return false.
    204       sw.Disable();
    205       sw.lock()->Release();
    206 
    207       // This is a bug that has been enshrined in the interface of
    208       // WaitableEvent now: |Dequeue| is called even when |sw.fired()| is true,
    209       // even though it'll always return false in that case. However, taking
    210       // the lock ensures that |Signal| has completed before we return and
    211       // means that a WaitableEvent can synchronise its own destruction.
    212       kernel_->lock_.Acquire();
    213       kernel_->Dequeue(&sw, &sw);
    214       kernel_->lock_.Release();
    215 
    216       return return_value;
    217     }
    218 
    219     if (finite_time) {
    220       const TimeDelta max_wait(end_time - current_time);
    221       sw.cv()->TimedWait(max_wait);
    222     } else {
    223       sw.cv()->Wait();
    224     }
    225   }
    226 }
    227 
    228 // -----------------------------------------------------------------------------
    229 // Synchronous waiting on multiple objects.
    230 
    231 static bool  // StrictWeakOrdering
    232 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
    233              const std::pair<WaitableEvent*, unsigned> &b) {
    234   return a.first < b.first;
    235 }
    236 
    237 // static
    238 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
    239                                size_t count) {
    240   internal::AssertBaseSyncPrimitivesAllowed();
    241   DCHECK(count) << "Cannot wait on no events";
    242   ScopedBlockingCall scoped_blocking_call(BlockingType::MAY_BLOCK);
    243   // Record an event (the first) that this thread is blocking upon.
    244   base::debug::ScopedEventWaitActivity event_activity(raw_waitables[0]);
    245 
    246   // We need to acquire the locks in a globally consistent order. Thus we sort
    247   // the array of waitables by address. We actually sort a pairs so that we can
    248   // map back to the original index values later.
    249   std::vector<std::pair<WaitableEvent*, size_t> > waitables;
    250   waitables.reserve(count);
    251   for (size_t i = 0; i < count; ++i)
    252     waitables.push_back(std::make_pair(raw_waitables[i], i));
    253 
    254   DCHECK_EQ(count, waitables.size());
    255 
    256   sort(waitables.begin(), waitables.end(), cmp_fst_addr);
    257 
    258   // The set of waitables must be distinct. Since we have just sorted by
    259   // address, we can check this cheaply by comparing pairs of consecutive
    260   // elements.
    261   for (size_t i = 0; i < waitables.size() - 1; ++i) {
    262     DCHECK(waitables[i].first != waitables[i+1].first);
    263   }
    264 
    265   SyncWaiter sw;
    266 
    267   const size_t r = EnqueueMany(&waitables[0], count, &sw);
    268   if (r < count) {
    269     // One of the events is already signaled. The SyncWaiter has not been
    270     // enqueued anywhere.
    271     return waitables[r].second;
    272   }
    273 
    274   // At this point, we hold the locks on all the WaitableEvents and we have
    275   // enqueued our waiter in them all.
    276   sw.lock()->Acquire();
    277     // Release the WaitableEvent locks in the reverse order
    278     for (size_t i = 0; i < count; ++i) {
    279       waitables[count - (1 + i)].first->kernel_->lock_.Release();
    280     }
    281 
    282     for (;;) {
    283       if (sw.fired())
    284         break;
    285 
    286       sw.cv()->Wait();
    287     }
    288   sw.lock()->Release();
    289 
    290   // The address of the WaitableEvent which fired is stored in the SyncWaiter.
    291   WaitableEvent *const signaled_event = sw.signaling_event();
    292   // This will store the index of the raw_waitables which fired.
    293   size_t signaled_index = 0;
    294 
    295   // Take the locks of each WaitableEvent in turn (except the signaled one) and
    296   // remove our SyncWaiter from the wait-list
    297   for (size_t i = 0; i < count; ++i) {
    298     if (raw_waitables[i] != signaled_event) {
    299       raw_waitables[i]->kernel_->lock_.Acquire();
    300         // There's no possible ABA issue with the address of the SyncWaiter here
    301         // because it lives on the stack. Thus the tag value is just the pointer
    302         // value again.
    303         raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
    304       raw_waitables[i]->kernel_->lock_.Release();
    305     } else {
    306       // By taking this lock here we ensure that |Signal| has completed by the
    307       // time we return, because |Signal| holds this lock. This matches the
    308       // behaviour of |Wait| and |TimedWait|.
    309       raw_waitables[i]->kernel_->lock_.Acquire();
    310       raw_waitables[i]->kernel_->lock_.Release();
    311       signaled_index = i;
    312     }
    313   }
    314 
    315   return signaled_index;
    316 }
    317 
    318 // -----------------------------------------------------------------------------
    319 // If return value == count:
    320 //   The locks of the WaitableEvents have been taken in order and the Waiter has
    321 //   been enqueued in the wait-list of each. None of the WaitableEvents are
    322 //   currently signaled
    323 // else:
    324 //   None of the WaitableEvent locks are held. The Waiter has not been enqueued
    325 //   in any of them and the return value is the index of the WaitableEvent which
    326 //   was signaled with the lowest input index from the original WaitMany call.
    327 // -----------------------------------------------------------------------------
    328 // static
    329 size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables,
    330                                   size_t count,
    331                                   Waiter* waiter) {
    332   size_t winner = count;
    333   size_t winner_index = count;
    334   for (size_t i = 0; i < count; ++i) {
    335     auto& kernel = waitables[i].first->kernel_;
    336     kernel->lock_.Acquire();
    337     if (kernel->signaled_ && waitables[i].second < winner) {
    338       winner = waitables[i].second;
    339       winner_index = i;
    340     }
    341   }
    342 
    343   // No events signaled. All locks acquired. Enqueue the Waiter on all of them
    344   // and return.
    345   if (winner == count) {
    346     for (size_t i = 0; i < count; ++i)
    347       waitables[i].first->Enqueue(waiter);
    348     return count;
    349   }
    350 
    351   // Unlock in reverse order and possibly clear the chosen winner's signal
    352   // before returning its index.
    353   for (auto* w = waitables + count - 1; w >= waitables; --w) {
    354     auto& kernel = w->first->kernel_;
    355     if (w->second == winner) {
    356       if (!kernel->manual_reset_)
    357         kernel->signaled_ = false;
    358     }
    359     kernel->lock_.Release();
    360   }
    361 
    362   return winner_index;
    363 }
    364 
    365 // -----------------------------------------------------------------------------
    366 
    367 
    368 // -----------------------------------------------------------------------------
    369 // Private functions...
    370 
    371 WaitableEvent::WaitableEventKernel::WaitableEventKernel(
    372     ResetPolicy reset_policy,
    373     InitialState initial_state)
    374     : manual_reset_(reset_policy == ResetPolicy::MANUAL),
    375       signaled_(initial_state == InitialState::SIGNALED) {}
    376 
    377 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
    378 
    379 // -----------------------------------------------------------------------------
    380 // Wake all waiting waiters. Called with lock held.
    381 // -----------------------------------------------------------------------------
    382 bool WaitableEvent::SignalAll() {
    383   bool signaled_at_least_one = false;
    384 
    385   for (std::list<Waiter*>::iterator
    386        i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
    387     if ((*i)->Fire(this))
    388       signaled_at_least_one = true;
    389   }
    390 
    391   kernel_->waiters_.clear();
    392   return signaled_at_least_one;
    393 }
    394 
    395 // ---------------------------------------------------------------------------
    396 // Try to wake a single waiter. Return true if one was woken. Called with lock
    397 // held.
    398 // ---------------------------------------------------------------------------
    399 bool WaitableEvent::SignalOne() {
    400   for (;;) {
    401     if (kernel_->waiters_.empty())
    402       return false;
    403 
    404     const bool r = (*kernel_->waiters_.begin())->Fire(this);
    405     kernel_->waiters_.pop_front();
    406     if (r)
    407       return true;
    408   }
    409 }
    410 
    411 // -----------------------------------------------------------------------------
    412 // Add a waiter to the list of those waiting. Called with lock held.
    413 // -----------------------------------------------------------------------------
    414 void WaitableEvent::Enqueue(Waiter* waiter) {
    415   kernel_->waiters_.push_back(waiter);
    416 }
    417 
    418 // -----------------------------------------------------------------------------
    419 // Remove a waiter from the list of those waiting. Return true if the waiter was
    420 // actually removed. Called with lock held.
    421 // -----------------------------------------------------------------------------
    422 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
    423   for (std::list<Waiter*>::iterator
    424        i = waiters_.begin(); i != waiters_.end(); ++i) {
    425     if (*i == waiter && (*i)->Compare(tag)) {
    426       waiters_.erase(i);
    427       return true;
    428     }
    429   }
    430 
    431   return false;
    432 }
    433 
    434 // -----------------------------------------------------------------------------
    435 
    436 }  // namespace base
    437