Home | History | Annotate | Download | only in bn
      1 /* Copyright (C) 1995-1997 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.]
     56  */
     57 /* ====================================================================
     58  * Copyright (c) 1998-2006 The OpenSSL Project.  All rights reserved.
     59  *
     60  * Redistribution and use in source and binary forms, with or without
     61  * modification, are permitted provided that the following conditions
     62  * are met:
     63  *
     64  * 1. Redistributions of source code must retain the above copyright
     65  *    notice, this list of conditions and the following disclaimer.
     66  *
     67  * 2. Redistributions in binary form must reproduce the above copyright
     68  *    notice, this list of conditions and the following disclaimer in
     69  *    the documentation and/or other materials provided with the
     70  *    distribution.
     71  *
     72  * 3. All advertising materials mentioning features or use of this
     73  *    software must display the following acknowledgment:
     74  *    "This product includes software developed by the OpenSSL Project
     75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     76  *
     77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     78  *    endorse or promote products derived from this software without
     79  *    prior written permission. For written permission, please contact
     80  *    openssl-core (at) openssl.org.
     81  *
     82  * 5. Products derived from this software may not be called "OpenSSL"
     83  *    nor may "OpenSSL" appear in their names without prior written
     84  *    permission of the OpenSSL Project.
     85  *
     86  * 6. Redistributions of any form whatsoever must retain the following
     87  *    acknowledgment:
     88  *    "This product includes software developed by the OpenSSL Project
     89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     90  *
     91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    102  * OF THE POSSIBILITY OF SUCH DAMAGE.
    103  * ====================================================================
    104  *
    105  * This product includes cryptographic software written by Eric Young
    106  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    107  * Hudson (tjh (at) cryptsoft.com).
    108  *
    109  */
    110 /* ====================================================================
    111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
    112  *
    113  * Portions of the attached software ("Contribution") are developed by
    114  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
    115  *
    116  * The Contribution is licensed pursuant to the Eric Young open source
    117  * license provided above.
    118  *
    119  * The binary polynomial arithmetic software is originally written by
    120  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
    121  * Laboratories. */
    122 
    123 #ifndef OPENSSL_HEADER_BN_INTERNAL_H
    124 #define OPENSSL_HEADER_BN_INTERNAL_H
    125 
    126 #include <openssl/base.h>
    127 
    128 #if defined(OPENSSL_X86_64) && defined(_MSC_VER)
    129 OPENSSL_MSVC_PRAGMA(warning(push, 3))
    130 #include <intrin.h>
    131 OPENSSL_MSVC_PRAGMA(warning(pop))
    132 #pragma intrinsic(__umulh, _umul128)
    133 #endif
    134 
    135 #include "../../internal.h"
    136 
    137 #if defined(__cplusplus)
    138 extern "C" {
    139 #endif
    140 
    141 #if defined(OPENSSL_64_BIT)
    142 
    143 #if defined(BORINGSSL_HAS_UINT128)
    144 // MSVC doesn't support two-word integers on 64-bit.
    145 #define BN_ULLONG uint128_t
    146 #if defined(BORINGSSL_CAN_DIVIDE_UINT128)
    147 #define BN_CAN_DIVIDE_ULLONG
    148 #endif
    149 #endif
    150 
    151 #define BN_BITS2 64
    152 #define BN_BYTES 8
    153 #define BN_BITS4 32
    154 #define BN_MASK2 (0xffffffffffffffffUL)
    155 #define BN_MASK2l (0xffffffffUL)
    156 #define BN_MASK2h (0xffffffff00000000UL)
    157 #define BN_MASK2h1 (0xffffffff80000000UL)
    158 #define BN_MONT_CTX_N0_LIMBS 1
    159 #define BN_DEC_CONV (10000000000000000000UL)
    160 #define BN_DEC_NUM 19
    161 #define TOBN(hi, lo) ((BN_ULONG)(hi) << 32 | (lo))
    162 
    163 #elif defined(OPENSSL_32_BIT)
    164 
    165 #define BN_ULLONG uint64_t
    166 #define BN_CAN_DIVIDE_ULLONG
    167 #define BN_BITS2 32
    168 #define BN_BYTES 4
    169 #define BN_BITS4 16
    170 #define BN_MASK2 (0xffffffffUL)
    171 #define BN_MASK2l (0xffffUL)
    172 #define BN_MASK2h1 (0xffff8000UL)
    173 #define BN_MASK2h (0xffff0000UL)
    174 // On some 32-bit platforms, Montgomery multiplication is done using 64-bit
    175 // arithmetic with SIMD instructions. On such platforms, |BN_MONT_CTX::n0|
    176 // needs to be two words long. Only certain 32-bit platforms actually make use
    177 // of n0[1] and shorter R value would suffice for the others. However,
    178 // currently only the assembly files know which is which.
    179 #define BN_MONT_CTX_N0_LIMBS 2
    180 #define BN_DEC_CONV (1000000000UL)
    181 #define BN_DEC_NUM 9
    182 #define TOBN(hi, lo) (lo), (hi)
    183 
    184 #else
    185 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
    186 #endif
    187 
    188 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
    189 #define BN_CAN_USE_INLINE_ASM
    190 #endif
    191 
    192 // |BN_mod_exp_mont_consttime| is based on the assumption that the L1 data
    193 // cache line width of the target processor is at least the following value.
    194 #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH 64
    195 
    196 // The number of |BN_ULONG|s needed for the |BN_mod_exp_mont_consttime| stack-
    197 // allocated storage buffer. The buffer is just the right size for the RSAZ
    198 // and is about ~1KB larger than what's necessary (4480 bytes) for 1024-bit
    199 // inputs.
    200 #define MOD_EXP_CTIME_STORAGE_LEN \
    201   (((320u * 3u) + (32u * 9u * 16u)) / sizeof(BN_ULONG))
    202 
    203 #define STATIC_BIGNUM(x)                                    \
    204   {                                                         \
    205     (BN_ULONG *)(x), sizeof(x) / sizeof(BN_ULONG),          \
    206         sizeof(x) / sizeof(BN_ULONG), 0, BN_FLG_STATIC_DATA \
    207   }
    208 
    209 #if defined(BN_ULLONG)
    210 #define Lw(t) ((BN_ULONG)(t))
    211 #define Hw(t) ((BN_ULONG)((t) >> BN_BITS2))
    212 #endif
    213 
    214 // bn_minimal_width returns the minimal value of |bn->top| which fits the
    215 // value of |bn|.
    216 int bn_minimal_width(const BIGNUM *bn);
    217 
    218 // bn_set_minimal_width sets |bn->width| to |bn_minimal_width(bn)|. If |bn| is
    219 // zero, |bn->neg| is set to zero.
    220 void bn_set_minimal_width(BIGNUM *bn);
    221 
    222 // bn_wexpand ensures that |bn| has at least |words| works of space without
    223 // altering its value. It returns one on success or zero on allocation
    224 // failure.
    225 int bn_wexpand(BIGNUM *bn, size_t words);
    226 
    227 // bn_expand acts the same as |bn_wexpand|, but takes a number of bits rather
    228 // than a number of words.
    229 int bn_expand(BIGNUM *bn, size_t bits);
    230 
    231 // bn_resize_words adjusts |bn->top| to be |words|. It returns one on success
    232 // and zero on allocation error or if |bn|'s value is too large.
    233 OPENSSL_EXPORT int bn_resize_words(BIGNUM *bn, size_t words);
    234 
    235 // bn_select_words sets |r| to |a| if |mask| is all ones or |b| if |mask| is
    236 // all zeros.
    237 void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a,
    238                      const BN_ULONG *b, size_t num);
    239 
    240 // bn_set_words sets |bn| to the value encoded in the |num| words in |words|,
    241 // least significant word first.
    242 int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
    243 
    244 // bn_fits_in_words returns one if |bn| may be represented in |num| words, plus
    245 // a sign bit, and zero otherwise.
    246 int bn_fits_in_words(const BIGNUM *bn, size_t num);
    247 
    248 // bn_copy_words copies the value of |bn| to |out| and returns one if the value
    249 // is representable in |num| words. Otherwise, it returns zero.
    250 int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn);
    251 
    252 // bn_mul_add_words multiples |ap| by |w|, adds the result to |rp|, and places
    253 // the result in |rp|. |ap| and |rp| must both be |num| words long. It returns
    254 // the carry word of the operation. |ap| and |rp| may be equal but otherwise may
    255 // not alias.
    256 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num,
    257                           BN_ULONG w);
    258 
    259 // bn_mul_words multiples |ap| by |w| and places the result in |rp|. |ap| and
    260 // |rp| must both be |num| words long. It returns the carry word of the
    261 // operation. |ap| and |rp| may be equal but otherwise may not alias.
    262 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w);
    263 
    264 // bn_sqr_words sets |rp[2*i]| and |rp[2*i+1]| to |ap[i]|'s square, for all |i|
    265 // up to |num|. |ap| is an array of |num| words and |rp| an array of |2*num|
    266 // words. |ap| and |rp| may not alias.
    267 //
    268 // This gives the contribution of the |ap[i]*ap[i]| terms when squaring |ap|.
    269 void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num);
    270 
    271 // bn_add_words adds |ap| to |bp| and places the result in |rp|, each of which
    272 // are |num| words long. It returns the carry bit, which is one if the operation
    273 // overflowed and zero otherwise. Any pair of |ap|, |bp|, and |rp| may be equal
    274 // to each other but otherwise may not alias.
    275 BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
    276                       size_t num);
    277 
    278 // bn_sub_words subtracts |bp| from |ap| and places the result in |rp|. It
    279 // returns the borrow bit, which is one if the computation underflowed and zero
    280 // otherwise. Any pair of |ap|, |bp|, and |rp| may be equal to each other but
    281 // otherwise may not alias.
    282 BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
    283                       size_t num);
    284 
    285 // bn_mul_comba4 sets |r| to the product of |a| and |b|.
    286 void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]);
    287 
    288 // bn_mul_comba8 sets |r| to the product of |a| and |b|.
    289 void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]);
    290 
    291 // bn_sqr_comba8 sets |r| to |a|^2.
    292 void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[4]);
    293 
    294 // bn_sqr_comba4 sets |r| to |a|^2.
    295 void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]);
    296 
    297 // bn_less_than_words returns one if |a| < |b| and zero otherwise, where |a|
    298 // and |b| both are |len| words long. It runs in constant time.
    299 int bn_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len);
    300 
    301 // bn_in_range_words returns one if |min_inclusive| <= |a| < |max_exclusive|,
    302 // where |a| and |max_exclusive| both are |len| words long. |a| and
    303 // |max_exclusive| are treated as secret.
    304 int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive,
    305                       const BN_ULONG *max_exclusive, size_t len);
    306 
    307 // bn_rand_range_words sets |out| to a uniformly distributed random number from
    308 // |min_inclusive| to |max_exclusive|. Both |out| and |max_exclusive| are |len|
    309 // words long.
    310 //
    311 // This function runs in time independent of the result, but |min_inclusive| and
    312 // |max_exclusive| are public data. (Information about the range is unavoidably
    313 // leaked by how many iterations it took to select a number.)
    314 int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive,
    315                         const BN_ULONG *max_exclusive, size_t len,
    316                         const uint8_t additional_data[32]);
    317 
    318 // bn_range_secret_range behaves like |BN_rand_range_ex|, but treats
    319 // |max_exclusive| as secret. Because of this constraint, the distribution of
    320 // values returned is more complex.
    321 //
    322 // Rather than repeatedly generating values until one is in range, which would
    323 // leak information, it generates one value. If the value is in range, it sets
    324 // |*out_is_uniform| to one. Otherwise, it sets |*out_is_uniform| to zero,
    325 // fixing up the value to force it in range.
    326 //
    327 // The subset of calls to |bn_rand_secret_range| which set |*out_is_uniform| to
    328 // one are uniformly distributed in the target range. Calls overall are not.
    329 // This function is intended for use in situations where the extra values are
    330 // still usable and where the number of iterations needed to reach the target
    331 // number of uniform outputs may be blinded for negligible probabilities of
    332 // timing leaks.
    333 //
    334 // Although this function treats |max_exclusive| as secret, it treats the number
    335 // of bits in |max_exclusive| as public.
    336 int bn_rand_secret_range(BIGNUM *r, int *out_is_uniform, BN_ULONG min_inclusive,
    337                          const BIGNUM *max_exclusive);
    338 
    339 #if !defined(OPENSSL_NO_ASM) &&                         \
    340     (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
    341      defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
    342 #define OPENSSL_BN_ASM_MONT
    343 // bn_mul_mont writes |ap| * |bp| mod |np| to |rp|, each |num| words
    344 // long. Inputs and outputs are in Montgomery form. |n0| is a pointer to the
    345 // corresponding field in |BN_MONT_CTX|. It returns one if |bn_mul_mont| handles
    346 // inputs of this size and zero otherwise.
    347 //
    348 // TODO(davidben): The x86_64 implementation expects a 32-bit input and masks
    349 // off upper bits. The aarch64 implementation expects a 64-bit input and does
    350 // not. |size_t| is the safer option but not strictly correct for x86_64. But
    351 // this function implicitly already has a bound on the size of |num| because it
    352 // internally creates |num|-sized stack allocation.
    353 //
    354 // See also discussion in |ToWord| in abi_test.h for notes on smaller-than-word
    355 // inputs.
    356 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
    357                 const BN_ULONG *np, const BN_ULONG *n0, size_t num);
    358 #endif
    359 
    360 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
    361 #define OPENSSL_BN_ASM_MONT5
    362 
    363 // bn_mul_mont_gather5 multiples loads index |power| of |table|, multiplies it
    364 // by |ap| modulo |np|, and stores the result in |rp|. The values are |num|
    365 // words long and represented in Montgomery form. |n0| is a pointer to the
    366 // corresponding field in |BN_MONT_CTX|.
    367 void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
    368                          const BN_ULONG *table, const BN_ULONG *np,
    369                          const BN_ULONG *n0, int num, int power);
    370 
    371 // bn_scatter5 stores |inp| to index |power| of |table|. |inp| and each entry of
    372 // |table| are |num| words long. |power| must be less than 32. |table| must be
    373 // 32*|num| words long.
    374 void bn_scatter5(const BN_ULONG *inp, size_t num, BN_ULONG *table,
    375                  size_t power);
    376 
    377 // bn_gather5 loads index |power| of |table| and stores it in |out|. |out| and
    378 // each entry of |table| are |num| words long. |power| must be less than 32.
    379 void bn_gather5(BN_ULONG *out, size_t num, BN_ULONG *table, size_t power);
    380 
    381 // bn_power5 squares |ap| five times and multiplies it by the value stored at
    382 // index |power| of |table|, modulo |np|. It stores the result in |rp|. The
    383 // values are |num| words long and represented in Montgomery form. |n0| is a
    384 // pointer to the corresponding field in |BN_MONT_CTX|. |num| must be divisible
    385 // by 8.
    386 void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table,
    387                const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
    388 
    389 // bn_from_montgomery converts |ap| from Montgomery form modulo |np| and writes
    390 // the result in |rp|, each of which is |num| words long. It returns one on
    391 // success and zero if it cannot handle inputs of length |num|. |n0| is a
    392 // pointer to the corresponding field in |BN_MONT_CTX|.
    393 int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
    394                        const BN_ULONG *not_used, const BN_ULONG *np,
    395                        const BN_ULONG *n0, int num);
    396 #endif  // !OPENSSL_NO_ASM && OPENSSL_X86_64
    397 
    398 uint64_t bn_mont_n0(const BIGNUM *n);
    399 
    400 // bn_mod_exp_base_2_consttime calculates r = 2**p (mod n). |p| must be larger
    401 // than log_2(n); i.e. 2**p must be larger than |n|. |n| must be positive and
    402 // odd. |p| and the bit width of |n| are assumed public, but |n| is otherwise
    403 // treated as secret.
    404 int bn_mod_exp_base_2_consttime(BIGNUM *r, unsigned p, const BIGNUM *n,
    405                                 BN_CTX *ctx);
    406 
    407 #if defined(OPENSSL_X86_64) && defined(_MSC_VER)
    408 #define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high)))
    409 #endif
    410 
    411 #if !defined(BN_ULLONG) && !defined(BN_UMULT_LOHI)
    412 #error "Either BN_ULLONG or BN_UMULT_LOHI must be defined on every platform."
    413 #endif
    414 
    415 // bn_jacobi returns the Jacobi symbol of |a| and |b| (which is -1, 0 or 1), or
    416 // -2 on error.
    417 int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
    418 
    419 // bn_is_bit_set_words returns one if bit |bit| is set in |a| and zero
    420 // otherwise.
    421 int bn_is_bit_set_words(const BN_ULONG *a, size_t num, unsigned bit);
    422 
    423 // bn_one_to_montgomery sets |r| to one in Montgomery form. It returns one on
    424 // success and zero on error. This function treats the bit width of the modulus
    425 // as public.
    426 int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx);
    427 
    428 // bn_less_than_montgomery_R returns one if |bn| is less than the Montgomery R
    429 // value for |mont| and zero otherwise.
    430 int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont);
    431 
    432 // bn_mod_u16_consttime returns |bn| mod |d|, ignoring |bn|'s sign bit. It runs
    433 // in time independent of the value of |bn|, but it treats |d| as public.
    434 OPENSSL_EXPORT uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d);
    435 
    436 // bn_odd_number_is_obviously_composite returns one if |bn| is divisible by one
    437 // of the first several odd primes and zero otherwise.
    438 int bn_odd_number_is_obviously_composite(const BIGNUM *bn);
    439 
    440 // bn_rshift1_words sets |r| to |a| >> 1, where both arrays are |num| bits wide.
    441 void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num);
    442 
    443 // bn_rshift_words sets |r| to |a| >> |shift|, where both arrays are |num| bits
    444 // wide.
    445 void bn_rshift_words(BN_ULONG *r, const BN_ULONG *a, unsigned shift,
    446                      size_t num);
    447 
    448 // bn_rshift_secret_shift behaves like |BN_rshift| but runs in time independent
    449 // of both |a| and |n|.
    450 OPENSSL_EXPORT int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a,
    451                                           unsigned n, BN_CTX *ctx);
    452 
    453 // bn_reduce_once sets |r| to |a| mod |m| where 0 <= |a| < 2*|m|. It returns
    454 // zero if |a| < |m| and a mask of all ones if |a| >= |m|. Each array is |num|
    455 // words long, but |a| has an additional word specified by |carry|. |carry| must
    456 // be zero or one, as implied by the bounds on |a|.
    457 //
    458 // |r|, |a|, and |m| may not alias. Use |bn_reduce_once_in_place| if |r| and |a|
    459 // must alias.
    460 BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry,
    461                         const BN_ULONG *m, size_t num);
    462 
    463 // bn_reduce_once_in_place behaves like |bn_reduce_once| but acts in-place on
    464 // |r|, using |tmp| as scratch space. |r|, |tmp|, and |m| may not alias.
    465 BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m,
    466                                  BN_ULONG *tmp, size_t num);
    467 
    468 
    469 // Constant-time non-modular arithmetic.
    470 //
    471 // The following functions implement non-modular arithmetic in constant-time
    472 // and pessimally set |r->width| to the largest possible word size.
    473 //
    474 // Note this means that, e.g., repeatedly multiplying by one will cause widths
    475 // to increase without bound. The corresponding public API functions minimize
    476 // their outputs to avoid regressing calculator consumers.
    477 
    478 // bn_uadd_consttime behaves like |BN_uadd|, but it pessimally sets
    479 // |r->width| = |a->width| + |b->width| + 1.
    480 int bn_uadd_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    481 
    482 // bn_usub_consttime behaves like |BN_usub|, but it pessimally sets
    483 // |r->width| = |a->width|.
    484 int bn_usub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
    485 
    486 // bn_abs_sub_consttime sets |r| to the absolute value of |a| - |b|, treating
    487 // both inputs as secret. It returns one on success and zero on error.
    488 OPENSSL_EXPORT int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a,
    489                                         const BIGNUM *b, BN_CTX *ctx);
    490 
    491 // bn_mul_consttime behaves like |BN_mul|, but it rejects negative inputs and
    492 // pessimally sets |r->width| to |a->width| + |b->width|, to avoid leaking
    493 // information about |a| and |b|.
    494 int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
    495 
    496 // bn_sqrt_consttime behaves like |BN_sqrt|, but it pessimally sets |r->width|
    497 // to 2*|a->width|, to avoid leaking information about |a| and |b|.
    498 int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
    499 
    500 // bn_div_consttime behaves like |BN_div|, but it rejects negative inputs and
    501 // treats both inputs, including their magnitudes, as secret. It is, as a
    502 // result, much slower than |BN_div| and should only be used for rare operations
    503 // where Montgomery reduction is not available.
    504 //
    505 // Note that |quotient->width| will be set pessimally to |numerator->width|.
    506 OPENSSL_EXPORT int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
    507                                     const BIGNUM *numerator,
    508                                     const BIGNUM *divisor, BN_CTX *ctx);
    509 
    510 // bn_is_relatively_prime checks whether GCD(|x|, |y|) is one. On success, it
    511 // returns one and sets |*out_relatively_prime| to one if the GCD was one and
    512 // zero otherwise. On error, it returns zero.
    513 OPENSSL_EXPORT int bn_is_relatively_prime(int *out_relatively_prime,
    514                                           const BIGNUM *x, const BIGNUM *y,
    515                                           BN_CTX *ctx);
    516 
    517 // bn_lcm_consttime sets |r| to LCM(|a|, |b|). It returns one and success and
    518 // zero on error. |a| and |b| are both treated as secret.
    519 OPENSSL_EXPORT int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    520                                     BN_CTX *ctx);
    521 
    522 
    523 // Constant-time modular arithmetic.
    524 //
    525 // The following functions implement basic constant-time modular arithmetic.
    526 
    527 // bn_mod_add_words sets |r| to |a| + |b| (mod |m|), using |tmp| as scratch
    528 // space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of
    529 // |r|, |a|, and |b| may alias.
    530 void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
    531                       const BN_ULONG *m, BN_ULONG *tmp, size_t num);
    532 
    533 // bn_mod_add_consttime acts like |BN_mod_add_quick| but takes a |BN_CTX|.
    534 int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    535                          const BIGNUM *m, BN_CTX *ctx);
    536 
    537 // bn_mod_sub_words sets |r| to |a| - |b| (mod |m|), using |tmp| as scratch
    538 // space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of
    539 // |r|, |a|, and |b| may alias.
    540 void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
    541                       const BN_ULONG *m, BN_ULONG *tmp, size_t num);
    542 
    543 // bn_mod_sub_consttime acts like |BN_mod_sub_quick| but takes a |BN_CTX|.
    544 int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
    545                          const BIGNUM *m, BN_CTX *ctx);
    546 
    547 // bn_mod_lshift1_consttime acts like |BN_mod_lshift1_quick| but takes a
    548 // |BN_CTX|.
    549 int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
    550                              BN_CTX *ctx);
    551 
    552 // bn_mod_lshift_consttime acts like |BN_mod_lshift_quick| but takes a |BN_CTX|.
    553 int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
    554                             BN_CTX *ctx);
    555 
    556 // bn_mod_inverse_consttime sets |r| to |a|^-1, mod |n|. |a| must be non-
    557 // negative and less than |n|. It returns one on success and zero on error. On
    558 // failure, if the failure was caused by |a| having no inverse mod |n| then
    559 // |*out_no_inverse| will be set to one; otherwise it will be set to zero.
    560 //
    561 // This function treats both |a| and |n| as secret, provided they are both non-
    562 // zero and the inverse exists. It should only be used for even moduli where
    563 // none of the less general implementations are applicable.
    564 OPENSSL_EXPORT int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse,
    565                                             const BIGNUM *a, const BIGNUM *n,
    566                                             BN_CTX *ctx);
    567 
    568 // bn_mod_inverse_prime sets |out| to the modular inverse of |a| modulo |p|,
    569 // computed with Fermat's Little Theorem. It returns one on success and zero on
    570 // error. If |mont_p| is NULL, one will be computed temporarily.
    571 int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
    572                          BN_CTX *ctx, const BN_MONT_CTX *mont_p);
    573 
    574 // bn_mod_inverse_secret_prime behaves like |bn_mod_inverse_prime| but uses
    575 // |BN_mod_exp_mont_consttime| instead of |BN_mod_exp_mont| in hopes of
    576 // protecting the exponent.
    577 int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
    578                                 BN_CTX *ctx, const BN_MONT_CTX *mont_p);
    579 
    580 
    581 // Low-level operations for small numbers.
    582 //
    583 // The following functions implement algorithms suitable for use with scalars
    584 // and field elements in elliptic curves. They rely on the number being small
    585 // both to stack-allocate various temporaries and because they do not implement
    586 // optimizations useful for the larger values used in RSA.
    587 
    588 // BN_SMALL_MAX_WORDS is the largest size input these functions handle. This
    589 // limit allows temporaries to be more easily stack-allocated. This limit is set
    590 // to accommodate P-521.
    591 #if defined(OPENSSL_32_BIT)
    592 #define BN_SMALL_MAX_WORDS 17
    593 #else
    594 #define BN_SMALL_MAX_WORDS 9
    595 #endif
    596 
    597 // bn_mul_small sets |r| to |a|*|b|. |num_r| must be |num_a| + |num_b|. |r| may
    598 // not alias with |a| or |b|.
    599 void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
    600                  const BN_ULONG *b, size_t num_b);
    601 
    602 // bn_sqr_small sets |r| to |a|^2. |num_a| must be at most |BN_SMALL_MAX_WORDS|.
    603 // |num_r| must be |num_a|*2. |r| and |a| may not alias.
    604 void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a);
    605 
    606 // In the following functions, the modulus must be at most |BN_SMALL_MAX_WORDS|
    607 // words long.
    608 
    609 // bn_to_montgomery_small sets |r| to |a| translated to the Montgomery domain.
    610 // |r| and |a| are |num| words long, which must be |mont->N.width|. |a| must be
    611 // fully reduced and may alias |r|.
    612 void bn_to_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
    613                             const BN_MONT_CTX *mont);
    614 
    615 // bn_from_montgomery_small sets |r| to |a| translated out of the Montgomery
    616 // domain. |r| and |a| are |num| words long, which must be |mont->N.width|. |a|
    617 // must be fully-reduced and may alias |r|.
    618 void bn_from_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
    619                               const BN_MONT_CTX *mont);
    620 
    621 // bn_mod_mul_montgomery_small sets |r| to |a| * |b| mod |mont->N|. Both inputs
    622 // and outputs are in the Montgomery domain. Each array is |num| words long,
    623 // which must be |mont->N.width|. Any two of |r|, |a|, and |b| may alias. |a|
    624 // and |b| must be reduced on input.
    625 void bn_mod_mul_montgomery_small(BN_ULONG *r, const BN_ULONG *a,
    626                                  const BN_ULONG *b, size_t num,
    627                                  const BN_MONT_CTX *mont);
    628 
    629 // bn_mod_exp_mont_small sets |r| to |a|^|p| mod |mont->N|. It returns one on
    630 // success and zero on programmer or internal error. Both inputs and outputs are
    631 // in the Montgomery domain. |r| and |a| are |num| words long, which must be
    632 // |mont->N.width| and at most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced.
    633 // This function runs in time independent of |a|, but |p| and |mont->N| are
    634 // public values. |a| must be fully-reduced and may alias with |r|.
    635 //
    636 // Note this function differs from |BN_mod_exp_mont| which uses Montgomery
    637 // reduction but takes input and output outside the Montgomery domain. Combine
    638 // this function with |bn_from_montgomery_small| and |bn_to_montgomery_small|
    639 // if necessary.
    640 void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
    641                            const BN_ULONG *p, size_t num_p,
    642                            const BN_MONT_CTX *mont);
    643 
    644 // bn_mod_inverse_prime_mont_small sets |r| to |a|^-1 mod |mont->N|. |mont->N|
    645 // must be a prime. |r| and |a| are |num| words long, which must be
    646 // |mont->N.width| and at most |BN_SMALL_MAX_WORDS|. |a| must be fully-reduced
    647 // and may alias |r|. This function runs in time independent of |a|, but
    648 // |mont->N| is a public value.
    649 void bn_mod_inverse_prime_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
    650                                      const BN_MONT_CTX *mont);
    651 
    652 
    653 #if defined(__cplusplus)
    654 }  // extern C
    655 #endif
    656 
    657 #endif  // OPENSSL_HEADER_BN_INTERNAL_H
    658