Home | History | Annotate | Download | only in Object
      1 //===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_OBJECT_ELFTYPES_H
     11 #define LLVM_OBJECT_ELFTYPES_H
     12 
     13 #include "llvm/ADT/ArrayRef.h"
     14 #include "llvm/Object/Error.h"
     15 #include "llvm/Support/ELF.h"
     16 #include "llvm/Support/Endian.h"
     17 #include "llvm/Support/ErrorOr.h"
     18 
     19 namespace llvm {
     20 namespace object {
     21 
     22 using support::endianness;
     23 
     24 template <class ELFT> struct Elf_Ehdr_Impl;
     25 template <class ELFT> struct Elf_Shdr_Impl;
     26 template <class ELFT> struct Elf_Sym_Impl;
     27 template <class ELFT> struct Elf_Dyn_Impl;
     28 template <class ELFT> struct Elf_Phdr_Impl;
     29 template <class ELFT, bool isRela> struct Elf_Rel_Impl;
     30 template <class ELFT> struct Elf_Verdef_Impl;
     31 template <class ELFT> struct Elf_Verdaux_Impl;
     32 template <class ELFT> struct Elf_Verneed_Impl;
     33 template <class ELFT> struct Elf_Vernaux_Impl;
     34 template <class ELFT> struct Elf_Versym_Impl;
     35 template <class ELFT> struct Elf_Hash_Impl;
     36 template <class ELFT> struct Elf_GnuHash_Impl;
     37 template <class ELFT> struct Elf_Chdr_Impl;
     38 
     39 template <endianness E, bool Is64> struct ELFType {
     40 private:
     41   template <typename Ty>
     42   using packed = support::detail::packed_endian_specific_integral<Ty, E, 2>;
     43 
     44 public:
     45   static const endianness TargetEndianness = E;
     46   static const bool Is64Bits = Is64;
     47 
     48   typedef typename std::conditional<Is64, uint64_t, uint32_t>::type uint;
     49   typedef Elf_Ehdr_Impl<ELFType<E, Is64>> Ehdr;
     50   typedef Elf_Shdr_Impl<ELFType<E, Is64>> Shdr;
     51   typedef Elf_Sym_Impl<ELFType<E, Is64>> Sym;
     52   typedef Elf_Dyn_Impl<ELFType<E, Is64>> Dyn;
     53   typedef Elf_Phdr_Impl<ELFType<E, Is64>> Phdr;
     54   typedef Elf_Rel_Impl<ELFType<E, Is64>, false> Rel;
     55   typedef Elf_Rel_Impl<ELFType<E, Is64>, true> Rela;
     56   typedef Elf_Verdef_Impl<ELFType<E, Is64>> Verdef;
     57   typedef Elf_Verdaux_Impl<ELFType<E, Is64>> Verdaux;
     58   typedef Elf_Verneed_Impl<ELFType<E, Is64>> Verneed;
     59   typedef Elf_Vernaux_Impl<ELFType<E, Is64>> Vernaux;
     60   typedef Elf_Versym_Impl<ELFType<E, Is64>> Versym;
     61   typedef Elf_Hash_Impl<ELFType<E, Is64>> Hash;
     62   typedef Elf_GnuHash_Impl<ELFType<E, Is64>> GnuHash;
     63   typedef Elf_Chdr_Impl<ELFType<E, Is64>> Chdr;
     64   typedef ArrayRef<Dyn> DynRange;
     65   typedef ArrayRef<Shdr> ShdrRange;
     66   typedef ArrayRef<Sym> SymRange;
     67   typedef ArrayRef<Rel> RelRange;
     68   typedef ArrayRef<Rela> RelaRange;
     69   typedef ArrayRef<Phdr> PhdrRange;
     70 
     71   typedef packed<uint16_t> Half;
     72   typedef packed<uint32_t> Word;
     73   typedef packed<int32_t> Sword;
     74   typedef packed<uint64_t> Xword;
     75   typedef packed<int64_t> Sxword;
     76   typedef packed<uint> Addr;
     77   typedef packed<uint> Off;
     78 };
     79 
     80 typedef ELFType<support::little, false> ELF32LE;
     81 typedef ELFType<support::big, false> ELF32BE;
     82 typedef ELFType<support::little, true> ELF64LE;
     83 typedef ELFType<support::big, true> ELF64BE;
     84 
     85 // Use an alignment of 2 for the typedefs since that is the worst case for
     86 // ELF files in archives.
     87 
     88 // Templates to choose Elf_Addr and Elf_Off depending on is64Bits.
     89 template <endianness target_endianness> struct ELFDataTypeTypedefHelperCommon {
     90   typedef support::detail::packed_endian_specific_integral<
     91       uint16_t, target_endianness, 2> Elf_Half;
     92   typedef support::detail::packed_endian_specific_integral<
     93       uint32_t, target_endianness, 2> Elf_Word;
     94   typedef support::detail::packed_endian_specific_integral<
     95       int32_t, target_endianness, 2> Elf_Sword;
     96   typedef support::detail::packed_endian_specific_integral<
     97       uint64_t, target_endianness, 2> Elf_Xword;
     98   typedef support::detail::packed_endian_specific_integral<
     99       int64_t, target_endianness, 2> Elf_Sxword;
    100 };
    101 
    102 template <class ELFT> struct ELFDataTypeTypedefHelper;
    103 
    104 /// ELF 32bit types.
    105 template <endianness TargetEndianness>
    106 struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, false>>
    107     : ELFDataTypeTypedefHelperCommon<TargetEndianness> {
    108   typedef uint32_t value_type;
    109   typedef support::detail::packed_endian_specific_integral<
    110       value_type, TargetEndianness, 2> Elf_Addr;
    111   typedef support::detail::packed_endian_specific_integral<
    112       value_type, TargetEndianness, 2> Elf_Off;
    113 };
    114 
    115 /// ELF 64bit types.
    116 template <endianness TargetEndianness>
    117 struct ELFDataTypeTypedefHelper<ELFType<TargetEndianness, true>>
    118     : ELFDataTypeTypedefHelperCommon<TargetEndianness> {
    119   typedef uint64_t value_type;
    120   typedef support::detail::packed_endian_specific_integral<
    121       value_type, TargetEndianness, 2> Elf_Addr;
    122   typedef support::detail::packed_endian_specific_integral<
    123       value_type, TargetEndianness, 2> Elf_Off;
    124 };
    125 
    126 // I really don't like doing this, but the alternative is copypasta.
    127 #define LLVM_ELF_IMPORT_TYPES(E, W)                                            \
    128   typedef typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Addr Elf_Addr; \
    129   typedef typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Off Elf_Off;   \
    130   typedef typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Half Elf_Half; \
    131   typedef typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Word Elf_Word; \
    132   typedef                                                                      \
    133       typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Sword Elf_Sword;   \
    134   typedef                                                                      \
    135       typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Xword Elf_Xword;   \
    136   typedef                                                                      \
    137       typename ELFDataTypeTypedefHelper<ELFType<E, W>>::Elf_Sxword Elf_Sxword;
    138 
    139 #define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)                                       \
    140   LLVM_ELF_IMPORT_TYPES(ELFT::TargetEndianness, ELFT::Is64Bits)
    141 
    142 // Section header.
    143 template <class ELFT> struct Elf_Shdr_Base;
    144 
    145 template <endianness TargetEndianness>
    146 struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> {
    147   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    148   Elf_Word sh_name;      // Section name (index into string table)
    149   Elf_Word sh_type;      // Section type (SHT_*)
    150   Elf_Word sh_flags;     // Section flags (SHF_*)
    151   Elf_Addr sh_addr;      // Address where section is to be loaded
    152   Elf_Off sh_offset;     // File offset of section data, in bytes
    153   Elf_Word sh_size;      // Size of section, in bytes
    154   Elf_Word sh_link;      // Section type-specific header table index link
    155   Elf_Word sh_info;      // Section type-specific extra information
    156   Elf_Word sh_addralign; // Section address alignment
    157   Elf_Word sh_entsize;   // Size of records contained within the section
    158 };
    159 
    160 template <endianness TargetEndianness>
    161 struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> {
    162   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    163   Elf_Word sh_name;       // Section name (index into string table)
    164   Elf_Word sh_type;       // Section type (SHT_*)
    165   Elf_Xword sh_flags;     // Section flags (SHF_*)
    166   Elf_Addr sh_addr;       // Address where section is to be loaded
    167   Elf_Off sh_offset;      // File offset of section data, in bytes
    168   Elf_Xword sh_size;      // Size of section, in bytes
    169   Elf_Word sh_link;       // Section type-specific header table index link
    170   Elf_Word sh_info;       // Section type-specific extra information
    171   Elf_Xword sh_addralign; // Section address alignment
    172   Elf_Xword sh_entsize;   // Size of records contained within the section
    173 };
    174 
    175 template <class ELFT>
    176 struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
    177   using Elf_Shdr_Base<ELFT>::sh_entsize;
    178   using Elf_Shdr_Base<ELFT>::sh_size;
    179 
    180   /// @brief Get the number of entities this section contains if it has any.
    181   unsigned getEntityCount() const {
    182     if (sh_entsize == 0)
    183       return 0;
    184     return sh_size / sh_entsize;
    185   }
    186 };
    187 
    188 template <class ELFT> struct Elf_Sym_Base;
    189 
    190 template <endianness TargetEndianness>
    191 struct Elf_Sym_Base<ELFType<TargetEndianness, false>> {
    192   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    193   Elf_Word st_name;       // Symbol name (index into string table)
    194   Elf_Addr st_value;      // Value or address associated with the symbol
    195   Elf_Word st_size;       // Size of the symbol
    196   unsigned char st_info;  // Symbol's type and binding attributes
    197   unsigned char st_other; // Must be zero; reserved
    198   Elf_Half st_shndx;      // Which section (header table index) it's defined in
    199 };
    200 
    201 template <endianness TargetEndianness>
    202 struct Elf_Sym_Base<ELFType<TargetEndianness, true>> {
    203   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    204   Elf_Word st_name;       // Symbol name (index into string table)
    205   unsigned char st_info;  // Symbol's type and binding attributes
    206   unsigned char st_other; // Must be zero; reserved
    207   Elf_Half st_shndx;      // Which section (header table index) it's defined in
    208   Elf_Addr st_value;      // Value or address associated with the symbol
    209   Elf_Xword st_size;      // Size of the symbol
    210 };
    211 
    212 template <class ELFT>
    213 struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
    214   using Elf_Sym_Base<ELFT>::st_info;
    215   using Elf_Sym_Base<ELFT>::st_shndx;
    216   using Elf_Sym_Base<ELFT>::st_other;
    217   using Elf_Sym_Base<ELFT>::st_value;
    218 
    219   // These accessors and mutators correspond to the ELF32_ST_BIND,
    220   // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
    221   unsigned char getBinding() const { return st_info >> 4; }
    222   unsigned char getType() const { return st_info & 0x0f; }
    223   uint64_t getValue() const { return st_value; }
    224   void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
    225   void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
    226   void setBindingAndType(unsigned char b, unsigned char t) {
    227     st_info = (b << 4) + (t & 0x0f);
    228   }
    229 
    230   /// Access to the STV_xxx flag stored in the first two bits of st_other.
    231   /// STV_DEFAULT: 0
    232   /// STV_INTERNAL: 1
    233   /// STV_HIDDEN: 2
    234   /// STV_PROTECTED: 3
    235   unsigned char getVisibility() const { return st_other & 0x3; }
    236   void setVisibility(unsigned char v) {
    237     assert(v < 4 && "Invalid value for visibility");
    238     st_other = (st_other & ~0x3) | v;
    239   }
    240 
    241   bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; }
    242   bool isCommon() const {
    243     return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON;
    244   }
    245   bool isDefined() const { return !isUndefined(); }
    246   bool isProcessorSpecific() const {
    247     return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC;
    248   }
    249   bool isOSSpecific() const {
    250     return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS;
    251   }
    252   bool isReserved() const {
    253     // ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always
    254     // true and some compilers warn about it.
    255     return st_shndx >= ELF::SHN_LORESERVE;
    256   }
    257   bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; }
    258   bool isExternal() const {
    259     return getBinding() != ELF::STB_LOCAL;
    260   }
    261 
    262   Expected<StringRef> getName(StringRef StrTab) const;
    263 };
    264 
    265 template <class ELFT>
    266 Expected<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const {
    267   uint32_t Offset = this->st_name;
    268   if (Offset >= StrTab.size())
    269     return errorCodeToError(object_error::parse_failed);
    270   return StringRef(StrTab.data() + Offset);
    271 }
    272 
    273 /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
    274 /// (.gnu.version). This structure is identical for ELF32 and ELF64.
    275 template <class ELFT>
    276 struct Elf_Versym_Impl {
    277   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    278   Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
    279 };
    280 
    281 template <class ELFT> struct Elf_Verdaux_Impl;
    282 
    283 /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
    284 /// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
    285 template <class ELFT>
    286 struct Elf_Verdef_Impl {
    287   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    288   typedef Elf_Verdaux_Impl<ELFT> Elf_Verdaux;
    289   Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
    290   Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
    291   Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
    292   Elf_Half vd_cnt;     // Number of Verdaux entries
    293   Elf_Word vd_hash;    // Hash of name
    294   Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
    295   Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
    296 
    297   /// Get the first Verdaux entry for this Verdef.
    298   const Elf_Verdaux *getAux() const {
    299     return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
    300   }
    301 };
    302 
    303 /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
    304 /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
    305 template <class ELFT>
    306 struct Elf_Verdaux_Impl {
    307   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    308   Elf_Word vda_name; // Version name (offset in string table)
    309   Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
    310 };
    311 
    312 /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
    313 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
    314 template <class ELFT>
    315 struct Elf_Verneed_Impl {
    316   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    317   Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
    318   Elf_Half vn_cnt;     // Number of associated Vernaux entries
    319   Elf_Word vn_file;    // Library name (string table offset)
    320   Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
    321   Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
    322 };
    323 
    324 /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
    325 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
    326 template <class ELFT>
    327 struct Elf_Vernaux_Impl {
    328   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    329   Elf_Word vna_hash;  // Hash of dependency name
    330   Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
    331   Elf_Half vna_other; // Version index, used in .gnu.version entries
    332   Elf_Word vna_name;  // Dependency name
    333   Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
    334 };
    335 
    336 /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
    337 ///               table section (.dynamic) look like.
    338 template <class ELFT> struct Elf_Dyn_Base;
    339 
    340 template <endianness TargetEndianness>
    341 struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> {
    342   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    343   Elf_Sword d_tag;
    344   union {
    345     Elf_Word d_val;
    346     Elf_Addr d_ptr;
    347   } d_un;
    348 };
    349 
    350 template <endianness TargetEndianness>
    351 struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> {
    352   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    353   Elf_Sxword d_tag;
    354   union {
    355     Elf_Xword d_val;
    356     Elf_Addr d_ptr;
    357   } d_un;
    358 };
    359 
    360 /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters.
    361 template <class ELFT>
    362 struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
    363   using Elf_Dyn_Base<ELFT>::d_tag;
    364   using Elf_Dyn_Base<ELFT>::d_un;
    365   typedef typename std::conditional<ELFT::Is64Bits,
    366                                     int64_t, int32_t>::type intX_t;
    367   typedef typename std::conditional<ELFT::Is64Bits,
    368                                     uint64_t, uint32_t>::type uintX_t;
    369   intX_t getTag() const { return d_tag; }
    370   uintX_t getVal() const { return d_un.d_val; }
    371   uintX_t getPtr() const { return d_un.d_ptr; }
    372 };
    373 
    374 template <endianness TargetEndianness>
    375 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
    376   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    377   static const bool IsRela = false;
    378   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
    379   Elf_Word r_info;   // Symbol table index and type of relocation to apply
    380 
    381   uint32_t getRInfo(bool isMips64EL) const {
    382     assert(!isMips64EL);
    383     return r_info;
    384   }
    385   void setRInfo(uint32_t R, bool IsMips64EL) {
    386     assert(!IsMips64EL);
    387     r_info = R;
    388   }
    389 
    390   // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
    391   // and ELF32_R_INFO macros defined in the ELF specification:
    392   uint32_t getSymbol(bool isMips64EL) const {
    393     return this->getRInfo(isMips64EL) >> 8;
    394   }
    395   unsigned char getType(bool isMips64EL) const {
    396     return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
    397   }
    398   void setSymbol(uint32_t s, bool IsMips64EL) {
    399     setSymbolAndType(s, getType(), IsMips64EL);
    400   }
    401   void setType(unsigned char t, bool IsMips64EL) {
    402     setSymbolAndType(getSymbol(), t, IsMips64EL);
    403   }
    404   void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) {
    405     this->setRInfo((s << 8) + t, IsMips64EL);
    406   }
    407 };
    408 
    409 template <endianness TargetEndianness>
    410 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true>
    411     : public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
    412   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    413   static const bool IsRela = true;
    414   Elf_Sword r_addend; // Compute value for relocatable field by adding this
    415 };
    416 
    417 template <endianness TargetEndianness>
    418 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
    419   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    420   static const bool IsRela = false;
    421   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
    422   Elf_Xword r_info;  // Symbol table index and type of relocation to apply
    423 
    424   uint64_t getRInfo(bool isMips64EL) const {
    425     uint64_t t = r_info;
    426     if (!isMips64EL)
    427       return t;
    428     // Mips64 little endian has a "special" encoding of r_info. Instead of one
    429     // 64 bit little endian number, it is a little endian 32 bit number followed
    430     // by a 32 bit big endian number.
    431     return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
    432            ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
    433   }
    434   void setRInfo(uint64_t R, bool IsMips64EL) {
    435     if (IsMips64EL)
    436       r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
    437                ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
    438     else
    439       r_info = R;
    440   }
    441 
    442   // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
    443   // and ELF64_R_INFO macros defined in the ELF specification:
    444   uint32_t getSymbol(bool isMips64EL) const {
    445     return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
    446   }
    447   uint32_t getType(bool isMips64EL) const {
    448     return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
    449   }
    450   void setSymbol(uint32_t s, bool IsMips64EL) {
    451     setSymbolAndType(s, getType(), IsMips64EL);
    452   }
    453   void setType(uint32_t t, bool IsMips64EL) {
    454     setSymbolAndType(getSymbol(), t, IsMips64EL);
    455   }
    456   void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) {
    457     this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL);
    458   }
    459 };
    460 
    461 template <endianness TargetEndianness>
    462 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true>
    463     : public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
    464   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    465   static const bool IsRela = true;
    466   Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
    467 };
    468 
    469 template <class ELFT>
    470 struct Elf_Ehdr_Impl {
    471   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    472   unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
    473   Elf_Half e_type;                       // Type of file (see ET_*)
    474   Elf_Half e_machine;   // Required architecture for this file (see EM_*)
    475   Elf_Word e_version;   // Must be equal to 1
    476   Elf_Addr e_entry;     // Address to jump to in order to start program
    477   Elf_Off e_phoff;      // Program header table's file offset, in bytes
    478   Elf_Off e_shoff;      // Section header table's file offset, in bytes
    479   Elf_Word e_flags;     // Processor-specific flags
    480   Elf_Half e_ehsize;    // Size of ELF header, in bytes
    481   Elf_Half e_phentsize; // Size of an entry in the program header table
    482   Elf_Half e_phnum;     // Number of entries in the program header table
    483   Elf_Half e_shentsize; // Size of an entry in the section header table
    484   Elf_Half e_shnum;     // Number of entries in the section header table
    485   Elf_Half e_shstrndx;  // Section header table index of section name
    486                         // string table
    487   bool checkMagic() const {
    488     return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
    489   }
    490   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
    491   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
    492 };
    493 
    494 template <class ELFT> struct Elf_Phdr_Impl;
    495 
    496 template <endianness TargetEndianness>
    497 struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> {
    498   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    499   Elf_Word p_type;   // Type of segment
    500   Elf_Off p_offset;  // FileOffset where segment is located, in bytes
    501   Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
    502   Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
    503   Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
    504   Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
    505   Elf_Word p_flags;  // Segment flags
    506   Elf_Word p_align;  // Segment alignment constraint
    507 };
    508 
    509 template <endianness TargetEndianness>
    510 struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> {
    511   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    512   Elf_Word p_type;    // Type of segment
    513   Elf_Word p_flags;   // Segment flags
    514   Elf_Off p_offset;   // FileOffset where segment is located, in bytes
    515   Elf_Addr p_vaddr;   // Virtual Address of beginning of segment
    516   Elf_Addr p_paddr;   // Physical address of beginning of segment (OS-specific)
    517   Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
    518   Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
    519   Elf_Xword p_align;  // Segment alignment constraint
    520 };
    521 
    522 // ELFT needed for endianess.
    523 template <class ELFT>
    524 struct Elf_Hash_Impl {
    525   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    526   Elf_Word nbucket;
    527   Elf_Word nchain;
    528 
    529   ArrayRef<Elf_Word> buckets() const {
    530     return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket);
    531   }
    532 
    533   ArrayRef<Elf_Word> chains() const {
    534     return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket,
    535                               &nbucket + 2 + nbucket + nchain);
    536   }
    537 };
    538 
    539 // .gnu.hash section
    540 template <class ELFT>
    541 struct Elf_GnuHash_Impl {
    542   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    543   Elf_Word nbuckets;
    544   Elf_Word symndx;
    545   Elf_Word maskwords;
    546   Elf_Word shift2;
    547 
    548   ArrayRef<Elf_Off> filter() const {
    549     return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1),
    550                              maskwords);
    551   }
    552 
    553   ArrayRef<Elf_Word> buckets() const {
    554     return ArrayRef<Elf_Word>(
    555         reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets);
    556   }
    557 
    558   ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const {
    559     return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx);
    560   }
    561 };
    562 
    563 // Compressed section headers.
    564 // http://www.sco.com/developers/gabi/latest/ch4.sheader.html#compression_header
    565 template <endianness TargetEndianness>
    566 struct Elf_Chdr_Impl<ELFType<TargetEndianness, false>> {
    567   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    568   Elf_Word ch_type;
    569   Elf_Word ch_size;
    570   Elf_Word ch_addralign;
    571 };
    572 
    573 template <endianness TargetEndianness>
    574 struct Elf_Chdr_Impl<ELFType<TargetEndianness, true>> {
    575   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    576   Elf_Word ch_type;
    577   Elf_Word ch_reserved;
    578   Elf_Xword ch_size;
    579   Elf_Xword ch_addralign;
    580 };
    581 
    582 // MIPS .reginfo section
    583 template <class ELFT>
    584 struct Elf_Mips_RegInfo;
    585 
    586 template <llvm::support::endianness TargetEndianness>
    587 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> {
    588   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
    589   Elf_Word ri_gprmask;     // bit-mask of used general registers
    590   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
    591   Elf_Addr ri_gp_value;    // gp register value
    592 };
    593 
    594 template <llvm::support::endianness TargetEndianness>
    595 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> {
    596   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
    597   Elf_Word ri_gprmask;     // bit-mask of used general registers
    598   Elf_Word ri_pad;         // unused padding field
    599   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
    600   Elf_Addr ri_gp_value;    // gp register value
    601 };
    602 
    603 // .MIPS.options section
    604 template <class ELFT> struct Elf_Mips_Options {
    605   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    606   uint8_t kind;     // Determines interpretation of variable part of descriptor
    607   uint8_t size;     // Byte size of descriptor, including this header
    608   Elf_Half section; // Section header index of section affected,
    609                     // or 0 for global options
    610   Elf_Word info;    // Kind-specific information
    611 
    612   const Elf_Mips_RegInfo<ELFT> &getRegInfo() const {
    613     assert(kind == llvm::ELF::ODK_REGINFO);
    614     return *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
    615                (const uint8_t *)this + sizeof(Elf_Mips_Options));
    616   }
    617 };
    618 
    619 // .MIPS.abiflags section content
    620 template <class ELFT> struct Elf_Mips_ABIFlags {
    621   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
    622   Elf_Half version;  // Version of the structure
    623   uint8_t isa_level; // ISA level: 1-5, 32, and 64
    624   uint8_t isa_rev;   // ISA revision (0 for MIPS I - MIPS V)
    625   uint8_t gpr_size;  // General purpose registers size
    626   uint8_t cpr1_size; // Co-processor 1 registers size
    627   uint8_t cpr2_size; // Co-processor 2 registers size
    628   uint8_t fp_abi;    // Floating-point ABI flag
    629   Elf_Word isa_ext;  // Processor-specific extension
    630   Elf_Word ases;     // ASEs flags
    631   Elf_Word flags1;   // General flags
    632   Elf_Word flags2;   // General flags
    633 };
    634 
    635 } // end namespace object.
    636 } // end namespace llvm.
    637 
    638 #endif
    639