1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines ExprEngine's support for C expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ExprCXX.h" 15 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 17 18 using namespace clang; 19 using namespace ento; 20 using llvm::APSInt; 21 22 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, 23 ExplodedNode *Pred, 24 ExplodedNodeSet &Dst) { 25 26 Expr *LHS = B->getLHS()->IgnoreParens(); 27 Expr *RHS = B->getRHS()->IgnoreParens(); 28 29 // FIXME: Prechecks eventually go in ::Visit(). 30 ExplodedNodeSet CheckedSet; 31 ExplodedNodeSet Tmp2; 32 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this); 33 34 // With both the LHS and RHS evaluated, process the operation itself. 35 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end(); 36 it != ei; ++it) { 37 38 ProgramStateRef state = (*it)->getState(); 39 const LocationContext *LCtx = (*it)->getLocationContext(); 40 SVal LeftV = state->getSVal(LHS, LCtx); 41 SVal RightV = state->getSVal(RHS, LCtx); 42 43 BinaryOperator::Opcode Op = B->getOpcode(); 44 45 if (Op == BO_Assign) { 46 // EXPERIMENTAL: "Conjured" symbols. 47 // FIXME: Handle structs. 48 if (RightV.isUnknown()) { 49 unsigned Count = currBldrCtx->blockCount(); 50 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, 51 Count); 52 } 53 // Simulate the effects of a "store": bind the value of the RHS 54 // to the L-Value represented by the LHS. 55 SVal ExprVal = B->isGLValue() ? LeftV : RightV; 56 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal), 57 LeftV, RightV); 58 continue; 59 } 60 61 if (!B->isAssignmentOp()) { 62 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx); 63 64 if (B->isAdditiveOp()) { 65 // If one of the operands is a location, conjure a symbol for the other 66 // one (offset) if it's unknown so that memory arithmetic always 67 // results in an ElementRegion. 68 // TODO: This can be removed after we enable history tracking with 69 // SymSymExpr. 70 unsigned Count = currBldrCtx->blockCount(); 71 if (LeftV.getAs<Loc>() && 72 RHS->getType()->isIntegralOrEnumerationType() && 73 RightV.isUnknown()) { 74 RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(), 75 Count); 76 } 77 if (RightV.getAs<Loc>() && 78 LHS->getType()->isIntegralOrEnumerationType() && 79 LeftV.isUnknown()) { 80 LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(), 81 Count); 82 } 83 } 84 85 // Although we don't yet model pointers-to-members, we do need to make 86 // sure that the members of temporaries have a valid 'this' pointer for 87 // other checks. 88 if (B->getOpcode() == BO_PtrMemD) 89 state = createTemporaryRegionIfNeeded(state, LCtx, LHS); 90 91 // Process non-assignments except commas or short-circuited 92 // logical expressions (LAnd and LOr). 93 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); 94 if (Result.isUnknown()) { 95 Bldr.generateNode(B, *it, state); 96 continue; 97 } 98 99 state = state->BindExpr(B, LCtx, Result); 100 Bldr.generateNode(B, *it, state); 101 continue; 102 } 103 104 assert (B->isCompoundAssignmentOp()); 105 106 switch (Op) { 107 default: 108 llvm_unreachable("Invalid opcode for compound assignment."); 109 case BO_MulAssign: Op = BO_Mul; break; 110 case BO_DivAssign: Op = BO_Div; break; 111 case BO_RemAssign: Op = BO_Rem; break; 112 case BO_AddAssign: Op = BO_Add; break; 113 case BO_SubAssign: Op = BO_Sub; break; 114 case BO_ShlAssign: Op = BO_Shl; break; 115 case BO_ShrAssign: Op = BO_Shr; break; 116 case BO_AndAssign: Op = BO_And; break; 117 case BO_XorAssign: Op = BO_Xor; break; 118 case BO_OrAssign: Op = BO_Or; break; 119 } 120 121 // Perform a load (the LHS). This performs the checks for 122 // null dereferences, and so on. 123 ExplodedNodeSet Tmp; 124 SVal location = LeftV; 125 evalLoad(Tmp, B, LHS, *it, state, location); 126 127 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; 128 ++I) { 129 130 state = (*I)->getState(); 131 const LocationContext *LCtx = (*I)->getLocationContext(); 132 SVal V = state->getSVal(LHS, LCtx); 133 134 // Get the computation type. 135 QualType CTy = 136 cast<CompoundAssignOperator>(B)->getComputationResultType(); 137 CTy = getContext().getCanonicalType(CTy); 138 139 QualType CLHSTy = 140 cast<CompoundAssignOperator>(B)->getComputationLHSType(); 141 CLHSTy = getContext().getCanonicalType(CLHSTy); 142 143 QualType LTy = getContext().getCanonicalType(LHS->getType()); 144 145 // Promote LHS. 146 V = svalBuilder.evalCast(V, CLHSTy, LTy); 147 148 // Compute the result of the operation. 149 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), 150 B->getType(), CTy); 151 152 // EXPERIMENTAL: "Conjured" symbols. 153 // FIXME: Handle structs. 154 155 SVal LHSVal; 156 157 if (Result.isUnknown()) { 158 // The symbolic value is actually for the type of the left-hand side 159 // expression, not the computation type, as this is the value the 160 // LValue on the LHS will bind to. 161 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy, 162 currBldrCtx->blockCount()); 163 // However, we need to convert the symbol to the computation type. 164 Result = svalBuilder.evalCast(LHSVal, CTy, LTy); 165 } 166 else { 167 // The left-hand side may bind to a different value then the 168 // computation type. 169 LHSVal = svalBuilder.evalCast(Result, LTy, CTy); 170 } 171 172 // In C++, assignment and compound assignment operators return an 173 // lvalue. 174 if (B->isGLValue()) 175 state = state->BindExpr(B, LCtx, location); 176 else 177 state = state->BindExpr(B, LCtx, Result); 178 179 evalStore(Tmp2, B, LHS, *I, state, location, LHSVal); 180 } 181 } 182 183 // FIXME: postvisits eventually go in ::Visit() 184 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this); 185 } 186 187 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, 188 ExplodedNodeSet &Dst) { 189 190 CanQualType T = getContext().getCanonicalType(BE->getType()); 191 192 const BlockDecl *BD = BE->getBlockDecl(); 193 // Get the value of the block itself. 194 SVal V = svalBuilder.getBlockPointer(BD, T, 195 Pred->getLocationContext(), 196 currBldrCtx->blockCount()); 197 198 ProgramStateRef State = Pred->getState(); 199 200 // If we created a new MemRegion for the block, we should explicitly bind 201 // the captured variables. 202 if (const BlockDataRegion *BDR = 203 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 204 205 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 206 E = BDR->referenced_vars_end(); 207 208 auto CI = BD->capture_begin(); 209 auto CE = BD->capture_end(); 210 for (; I != E; ++I) { 211 const VarRegion *capturedR = I.getCapturedRegion(); 212 const VarRegion *originalR = I.getOriginalRegion(); 213 214 // If the capture had a copy expression, use the result of evaluating 215 // that expression, otherwise use the original value. 216 // We rely on the invariant that the block declaration's capture variables 217 // are a prefix of the BlockDataRegion's referenced vars (which may include 218 // referenced globals, etc.) to enable fast lookup of the capture for a 219 // given referenced var. 220 const Expr *copyExpr = nullptr; 221 if (CI != CE) { 222 assert(CI->getVariable() == capturedR->getDecl()); 223 copyExpr = CI->getCopyExpr(); 224 CI++; 225 } 226 227 if (capturedR != originalR) { 228 SVal originalV; 229 if (copyExpr) { 230 originalV = State->getSVal(copyExpr, Pred->getLocationContext()); 231 } else { 232 originalV = State->getSVal(loc::MemRegionVal(originalR)); 233 } 234 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV); 235 } 236 } 237 } 238 239 ExplodedNodeSet Tmp; 240 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); 241 Bldr.generateNode(BE, Pred, 242 State->BindExpr(BE, Pred->getLocationContext(), V), 243 nullptr, ProgramPoint::PostLValueKind); 244 245 // FIXME: Move all post/pre visits to ::Visit(). 246 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); 247 } 248 249 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 250 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 251 252 ExplodedNodeSet dstPreStmt; 253 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this); 254 255 if (CastE->getCastKind() == CK_LValueToRValue) { 256 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 257 I!=E; ++I) { 258 ExplodedNode *subExprNode = *I; 259 ProgramStateRef state = subExprNode->getState(); 260 const LocationContext *LCtx = subExprNode->getLocationContext(); 261 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx)); 262 } 263 return; 264 } 265 266 // All other casts. 267 QualType T = CastE->getType(); 268 QualType ExTy = Ex->getType(); 269 270 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) 271 T = ExCast->getTypeAsWritten(); 272 273 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx); 274 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 275 I != E; ++I) { 276 277 Pred = *I; 278 ProgramStateRef state = Pred->getState(); 279 const LocationContext *LCtx = Pred->getLocationContext(); 280 281 switch (CastE->getCastKind()) { 282 case CK_LValueToRValue: 283 llvm_unreachable("LValueToRValue casts handled earlier."); 284 case CK_ToVoid: 285 continue; 286 // The analyzer doesn't do anything special with these casts, 287 // since it understands retain/release semantics already. 288 case CK_ARCProduceObject: 289 case CK_ARCConsumeObject: 290 case CK_ARCReclaimReturnedObject: 291 case CK_ARCExtendBlockObject: // Fall-through. 292 case CK_CopyAndAutoreleaseBlockObject: 293 // The analyser can ignore atomic casts for now, although some future 294 // checkers may want to make certain that you're not modifying the same 295 // value through atomic and nonatomic pointers. 296 case CK_AtomicToNonAtomic: 297 case CK_NonAtomicToAtomic: 298 // True no-ops. 299 case CK_NoOp: 300 case CK_ConstructorConversion: 301 case CK_UserDefinedConversion: 302 case CK_FunctionToPointerDecay: 303 case CK_BuiltinFnToFnPtr: { 304 // Copy the SVal of Ex to CastE. 305 ProgramStateRef state = Pred->getState(); 306 const LocationContext *LCtx = Pred->getLocationContext(); 307 SVal V = state->getSVal(Ex, LCtx); 308 state = state->BindExpr(CastE, LCtx, V); 309 Bldr.generateNode(CastE, Pred, state); 310 continue; 311 } 312 case CK_MemberPointerToBoolean: 313 // FIXME: For now, member pointers are represented by void *. 314 // FALLTHROUGH 315 case CK_Dependent: 316 case CK_ArrayToPointerDecay: 317 case CK_BitCast: 318 case CK_AddressSpaceConversion: 319 case CK_BooleanToSignedIntegral: 320 case CK_NullToPointer: 321 case CK_IntegralToPointer: 322 case CK_PointerToIntegral: 323 case CK_PointerToBoolean: 324 case CK_IntegralToBoolean: 325 case CK_IntegralToFloating: 326 case CK_FloatingToIntegral: 327 case CK_FloatingToBoolean: 328 case CK_FloatingCast: 329 case CK_FloatingRealToComplex: 330 case CK_FloatingComplexToReal: 331 case CK_FloatingComplexToBoolean: 332 case CK_FloatingComplexCast: 333 case CK_FloatingComplexToIntegralComplex: 334 case CK_IntegralRealToComplex: 335 case CK_IntegralComplexToReal: 336 case CK_IntegralComplexToBoolean: 337 case CK_IntegralComplexCast: 338 case CK_IntegralComplexToFloatingComplex: 339 case CK_CPointerToObjCPointerCast: 340 case CK_BlockPointerToObjCPointerCast: 341 case CK_AnyPointerToBlockPointerCast: 342 case CK_ObjCObjectLValueCast: 343 case CK_ZeroToOCLEvent: 344 case CK_LValueBitCast: { 345 // Delegate to SValBuilder to process. 346 SVal V = state->getSVal(Ex, LCtx); 347 V = svalBuilder.evalCast(V, T, ExTy); 348 // Negate the result if we're treating the boolean as a signed i1 349 if (CastE->getCastKind() == CK_BooleanToSignedIntegral) 350 V = evalMinus(V); 351 state = state->BindExpr(CastE, LCtx, V); 352 Bldr.generateNode(CastE, Pred, state); 353 continue; 354 } 355 case CK_IntegralCast: { 356 // Delegate to SValBuilder to process. 357 SVal V = state->getSVal(Ex, LCtx); 358 V = svalBuilder.evalIntegralCast(state, V, T, ExTy); 359 state = state->BindExpr(CastE, LCtx, V); 360 Bldr.generateNode(CastE, Pred, state); 361 continue; 362 } 363 case CK_DerivedToBase: 364 case CK_UncheckedDerivedToBase: { 365 // For DerivedToBase cast, delegate to the store manager. 366 SVal val = state->getSVal(Ex, LCtx); 367 val = getStoreManager().evalDerivedToBase(val, CastE); 368 state = state->BindExpr(CastE, LCtx, val); 369 Bldr.generateNode(CastE, Pred, state); 370 continue; 371 } 372 // Handle C++ dyn_cast. 373 case CK_Dynamic: { 374 SVal val = state->getSVal(Ex, LCtx); 375 376 // Compute the type of the result. 377 QualType resultType = CastE->getType(); 378 if (CastE->isGLValue()) 379 resultType = getContext().getPointerType(resultType); 380 381 bool Failed = false; 382 383 // Check if the value being cast evaluates to 0. 384 if (val.isZeroConstant()) 385 Failed = true; 386 // Else, evaluate the cast. 387 else 388 val = getStoreManager().evalDynamicCast(val, T, Failed); 389 390 if (Failed) { 391 if (T->isReferenceType()) { 392 // A bad_cast exception is thrown if input value is a reference. 393 // Currently, we model this, by generating a sink. 394 Bldr.generateSink(CastE, Pred, state); 395 continue; 396 } else { 397 // If the cast fails on a pointer, bind to 0. 398 state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull()); 399 } 400 } else { 401 // If we don't know if the cast succeeded, conjure a new symbol. 402 if (val.isUnknown()) { 403 DefinedOrUnknownSVal NewSym = 404 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 405 currBldrCtx->blockCount()); 406 state = state->BindExpr(CastE, LCtx, NewSym); 407 } else 408 // Else, bind to the derived region value. 409 state = state->BindExpr(CastE, LCtx, val); 410 } 411 Bldr.generateNode(CastE, Pred, state); 412 continue; 413 } 414 case CK_NullToMemberPointer: { 415 // FIXME: For now, member pointers are represented by void *. 416 SVal V = svalBuilder.makeNull(); 417 state = state->BindExpr(CastE, LCtx, V); 418 Bldr.generateNode(CastE, Pred, state); 419 continue; 420 } 421 // Various C++ casts that are not handled yet. 422 case CK_ToUnion: 423 case CK_BaseToDerived: 424 case CK_BaseToDerivedMemberPointer: 425 case CK_DerivedToBaseMemberPointer: 426 case CK_ReinterpretMemberPointer: 427 case CK_VectorSplat: { 428 // Recover some path-sensitivty by conjuring a new value. 429 QualType resultType = CastE->getType(); 430 if (CastE->isGLValue()) 431 resultType = getContext().getPointerType(resultType); 432 SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, 433 resultType, 434 currBldrCtx->blockCount()); 435 state = state->BindExpr(CastE, LCtx, result); 436 Bldr.generateNode(CastE, Pred, state); 437 continue; 438 } 439 } 440 } 441 } 442 443 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, 444 ExplodedNode *Pred, 445 ExplodedNodeSet &Dst) { 446 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 447 448 ProgramStateRef State = Pred->getState(); 449 const LocationContext *LCtx = Pred->getLocationContext(); 450 451 const Expr *Init = CL->getInitializer(); 452 SVal V = State->getSVal(CL->getInitializer(), LCtx); 453 454 if (isa<CXXConstructExpr>(Init)) { 455 // No work needed. Just pass the value up to this expression. 456 } else { 457 assert(isa<InitListExpr>(Init)); 458 Loc CLLoc = State->getLValue(CL, LCtx); 459 State = State->bindLoc(CLLoc, V); 460 461 // Compound literal expressions are a GNU extension in C++. 462 // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues, 463 // and like temporary objects created by the functional notation T() 464 // CLs are destroyed at the end of the containing full-expression. 465 // HOWEVER, an rvalue of array type is not something the analyzer can 466 // reason about, since we expect all regions to be wrapped in Locs. 467 // So we treat array CLs as lvalues as well, knowing that they will decay 468 // to pointers as soon as they are used. 469 if (CL->isGLValue() || CL->getType()->isArrayType()) 470 V = CLLoc; 471 } 472 473 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V)); 474 } 475 476 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, 477 ExplodedNodeSet &Dst) { 478 // Assumption: The CFG has one DeclStmt per Decl. 479 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin()); 480 481 if (!VD) { 482 //TODO:AZ: remove explicit insertion after refactoring is done. 483 Dst.insert(Pred); 484 return; 485 } 486 487 // FIXME: all pre/post visits should eventually be handled by ::Visit(). 488 ExplodedNodeSet dstPreVisit; 489 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this); 490 491 ExplodedNodeSet dstEvaluated; 492 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx); 493 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); 494 I!=E; ++I) { 495 ExplodedNode *N = *I; 496 ProgramStateRef state = N->getState(); 497 const LocationContext *LC = N->getLocationContext(); 498 499 // Decls without InitExpr are not initialized explicitly. 500 if (const Expr *InitEx = VD->getInit()) { 501 502 // Note in the state that the initialization has occurred. 503 ExplodedNode *UpdatedN = N; 504 SVal InitVal = state->getSVal(InitEx, LC); 505 506 assert(DS->isSingleDecl()); 507 if (auto *CtorExpr = findDirectConstructorForCurrentCFGElement()) { 508 assert(InitEx->IgnoreImplicit() == CtorExpr); 509 (void)CtorExpr; 510 // We constructed the object directly in the variable. 511 // No need to bind anything. 512 B.generateNode(DS, UpdatedN, state); 513 } else { 514 // We bound the temp obj region to the CXXConstructExpr. Now recover 515 // the lazy compound value when the variable is not a reference. 516 if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() && 517 !VD->getType()->isReferenceType()) { 518 if (Optional<loc::MemRegionVal> M = 519 InitVal.getAs<loc::MemRegionVal>()) { 520 InitVal = state->getSVal(M->getRegion()); 521 assert(InitVal.getAs<nonloc::LazyCompoundVal>()); 522 } 523 } 524 525 // Recover some path-sensitivity if a scalar value evaluated to 526 // UnknownVal. 527 if (InitVal.isUnknown()) { 528 QualType Ty = InitEx->getType(); 529 if (InitEx->isGLValue()) { 530 Ty = getContext().getPointerType(Ty); 531 } 532 533 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty, 534 currBldrCtx->blockCount()); 535 } 536 537 538 B.takeNodes(UpdatedN); 539 ExplodedNodeSet Dst2; 540 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true); 541 B.addNodes(Dst2); 542 } 543 } 544 else { 545 B.generateNode(DS, N, state); 546 } 547 } 548 549 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this); 550 } 551 552 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, 553 ExplodedNodeSet &Dst) { 554 assert(B->getOpcode() == BO_LAnd || 555 B->getOpcode() == BO_LOr); 556 557 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 558 ProgramStateRef state = Pred->getState(); 559 560 ExplodedNode *N = Pred; 561 while (!N->getLocation().getAs<BlockEntrance>()) { 562 ProgramPoint P = N->getLocation(); 563 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>()); 564 (void) P; 565 assert(N->pred_size() == 1); 566 N = *N->pred_begin(); 567 } 568 assert(N->pred_size() == 1); 569 N = *N->pred_begin(); 570 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 571 SVal X; 572 573 // Determine the value of the expression by introspecting how we 574 // got this location in the CFG. This requires looking at the previous 575 // block we were in and what kind of control-flow transfer was involved. 576 const CFGBlock *SrcBlock = BE.getSrc(); 577 // The only terminator (if there is one) that makes sense is a logical op. 578 CFGTerminator T = SrcBlock->getTerminator(); 579 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) { 580 (void) Term; 581 assert(Term->isLogicalOp()); 582 assert(SrcBlock->succ_size() == 2); 583 // Did we take the true or false branch? 584 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0; 585 X = svalBuilder.makeIntVal(constant, B->getType()); 586 } 587 else { 588 // If there is no terminator, by construction the last statement 589 // in SrcBlock is the value of the enclosing expression. 590 // However, we still need to constrain that value to be 0 or 1. 591 assert(!SrcBlock->empty()); 592 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>(); 593 const Expr *RHS = cast<Expr>(Elem.getStmt()); 594 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext()); 595 596 if (RHSVal.isUndef()) { 597 X = RHSVal; 598 } else { 599 DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>(); 600 ProgramStateRef StTrue, StFalse; 601 std::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS); 602 if (StTrue) { 603 if (StFalse) { 604 // We can't constrain the value to 0 or 1. 605 // The best we can do is a cast. 606 X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType()); 607 } else { 608 // The value is known to be true. 609 X = getSValBuilder().makeIntVal(1, B->getType()); 610 } 611 } else { 612 // The value is known to be false. 613 assert(StFalse && "Infeasible path!"); 614 X = getSValBuilder().makeIntVal(0, B->getType()); 615 } 616 } 617 } 618 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X)); 619 } 620 621 void ExprEngine::VisitInitListExpr(const InitListExpr *IE, 622 ExplodedNode *Pred, 623 ExplodedNodeSet &Dst) { 624 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 625 626 ProgramStateRef state = Pred->getState(); 627 const LocationContext *LCtx = Pred->getLocationContext(); 628 QualType T = getContext().getCanonicalType(IE->getType()); 629 unsigned NumInitElements = IE->getNumInits(); 630 631 if (!IE->isGLValue() && 632 (T->isArrayType() || T->isRecordType() || T->isVectorType() || 633 T->isAnyComplexType())) { 634 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); 635 636 // Handle base case where the initializer has no elements. 637 // e.g: static int* myArray[] = {}; 638 if (NumInitElements == 0) { 639 SVal V = svalBuilder.makeCompoundVal(T, vals); 640 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 641 return; 642 } 643 644 for (InitListExpr::const_reverse_iterator it = IE->rbegin(), 645 ei = IE->rend(); it != ei; ++it) { 646 SVal V = state->getSVal(cast<Expr>(*it), LCtx); 647 vals = getBasicVals().consVals(V, vals); 648 } 649 650 B.generateNode(IE, Pred, 651 state->BindExpr(IE, LCtx, 652 svalBuilder.makeCompoundVal(T, vals))); 653 return; 654 } 655 656 // Handle scalars: int{5} and int{} and GLvalues. 657 // Note, if the InitListExpr is a GLvalue, it means that there is an address 658 // representing it, so it must have a single init element. 659 assert(NumInitElements <= 1); 660 661 SVal V; 662 if (NumInitElements == 0) 663 V = getSValBuilder().makeZeroVal(T); 664 else 665 V = state->getSVal(IE->getInit(0), LCtx); 666 667 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 668 } 669 670 void ExprEngine::VisitGuardedExpr(const Expr *Ex, 671 const Expr *L, 672 const Expr *R, 673 ExplodedNode *Pred, 674 ExplodedNodeSet &Dst) { 675 assert(L && R); 676 677 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 678 ProgramStateRef state = Pred->getState(); 679 const LocationContext *LCtx = Pred->getLocationContext(); 680 const CFGBlock *SrcBlock = nullptr; 681 682 // Find the predecessor block. 683 ProgramStateRef SrcState = state; 684 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) { 685 ProgramPoint PP = N->getLocation(); 686 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) { 687 assert(N->pred_size() == 1); 688 continue; 689 } 690 SrcBlock = PP.castAs<BlockEdge>().getSrc(); 691 SrcState = N->getState(); 692 break; 693 } 694 695 assert(SrcBlock && "missing function entry"); 696 697 // Find the last expression in the predecessor block. That is the 698 // expression that is used for the value of the ternary expression. 699 bool hasValue = false; 700 SVal V; 701 702 for (CFGElement CE : llvm::reverse(*SrcBlock)) { 703 if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 704 const Expr *ValEx = cast<Expr>(CS->getStmt()); 705 ValEx = ValEx->IgnoreParens(); 706 707 // For GNU extension '?:' operator, the left hand side will be an 708 // OpaqueValueExpr, so get the underlying expression. 709 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L)) 710 L = OpaqueEx->getSourceExpr(); 711 712 // If the last expression in the predecessor block matches true or false 713 // subexpression, get its the value. 714 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) { 715 hasValue = true; 716 V = SrcState->getSVal(ValEx, LCtx); 717 } 718 break; 719 } 720 } 721 722 if (!hasValue) 723 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 724 currBldrCtx->blockCount()); 725 726 // Generate a new node with the binding from the appropriate path. 727 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true)); 728 } 729 730 void ExprEngine:: 731 VisitOffsetOfExpr(const OffsetOfExpr *OOE, 732 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 733 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 734 APSInt IV; 735 if (OOE->EvaluateAsInt(IV, getContext())) { 736 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); 737 assert(OOE->getType()->isBuiltinType()); 738 assert(OOE->getType()->getAs<BuiltinType>()->isInteger()); 739 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); 740 SVal X = svalBuilder.makeIntVal(IV); 741 B.generateNode(OOE, Pred, 742 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(), 743 X)); 744 } 745 // FIXME: Handle the case where __builtin_offsetof is not a constant. 746 } 747 748 749 void ExprEngine:: 750 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, 751 ExplodedNode *Pred, 752 ExplodedNodeSet &Dst) { 753 // FIXME: Prechecks eventually go in ::Visit(). 754 ExplodedNodeSet CheckedSet; 755 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this); 756 757 ExplodedNodeSet EvalSet; 758 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 759 760 QualType T = Ex->getTypeOfArgument(); 761 762 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 763 I != E; ++I) { 764 if (Ex->getKind() == UETT_SizeOf) { 765 if (!T->isIncompleteType() && !T->isConstantSizeType()) { 766 assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); 767 768 // FIXME: Add support for VLA type arguments and VLA expressions. 769 // When that happens, we should probably refactor VLASizeChecker's code. 770 continue; 771 } else if (T->getAs<ObjCObjectType>()) { 772 // Some code tries to take the sizeof an ObjCObjectType, relying that 773 // the compiler has laid out its representation. Just report Unknown 774 // for these. 775 continue; 776 } 777 } 778 779 APSInt Value = Ex->EvaluateKnownConstInt(getContext()); 780 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue()); 781 782 ProgramStateRef state = (*I)->getState(); 783 state = state->BindExpr(Ex, (*I)->getLocationContext(), 784 svalBuilder.makeIntVal(amt.getQuantity(), 785 Ex->getType())); 786 Bldr.generateNode(Ex, *I, state); 787 } 788 789 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); 790 } 791 792 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, 793 ExplodedNode *Pred, 794 ExplodedNodeSet &Dst) { 795 // FIXME: Prechecks eventually go in ::Visit(). 796 ExplodedNodeSet CheckedSet; 797 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this); 798 799 ExplodedNodeSet EvalSet; 800 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 801 802 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 803 I != E; ++I) { 804 switch (U->getOpcode()) { 805 default: { 806 Bldr.takeNodes(*I); 807 ExplodedNodeSet Tmp; 808 VisitIncrementDecrementOperator(U, *I, Tmp); 809 Bldr.addNodes(Tmp); 810 break; 811 } 812 case UO_Real: { 813 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 814 815 // FIXME: We don't have complex SValues yet. 816 if (Ex->getType()->isAnyComplexType()) { 817 // Just report "Unknown." 818 break; 819 } 820 821 // For all other types, UO_Real is an identity operation. 822 assert (U->getType() == Ex->getType()); 823 ProgramStateRef state = (*I)->getState(); 824 const LocationContext *LCtx = (*I)->getLocationContext(); 825 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 826 state->getSVal(Ex, LCtx))); 827 break; 828 } 829 830 case UO_Imag: { 831 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 832 // FIXME: We don't have complex SValues yet. 833 if (Ex->getType()->isAnyComplexType()) { 834 // Just report "Unknown." 835 break; 836 } 837 // For all other types, UO_Imag returns 0. 838 ProgramStateRef state = (*I)->getState(); 839 const LocationContext *LCtx = (*I)->getLocationContext(); 840 SVal X = svalBuilder.makeZeroVal(Ex->getType()); 841 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X)); 842 break; 843 } 844 845 case UO_Plus: 846 assert(!U->isGLValue()); 847 // FALL-THROUGH. 848 case UO_Deref: 849 case UO_AddrOf: 850 case UO_Extension: { 851 // FIXME: We can probably just have some magic in Environment::getSVal() 852 // that propagates values, instead of creating a new node here. 853 // 854 // Unary "+" is a no-op, similar to a parentheses. We still have places 855 // where it may be a block-level expression, so we need to 856 // generate an extra node that just propagates the value of the 857 // subexpression. 858 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 859 ProgramStateRef state = (*I)->getState(); 860 const LocationContext *LCtx = (*I)->getLocationContext(); 861 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 862 state->getSVal(Ex, LCtx))); 863 break; 864 } 865 866 case UO_LNot: 867 case UO_Minus: 868 case UO_Not: { 869 assert (!U->isGLValue()); 870 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 871 ProgramStateRef state = (*I)->getState(); 872 const LocationContext *LCtx = (*I)->getLocationContext(); 873 874 // Get the value of the subexpression. 875 SVal V = state->getSVal(Ex, LCtx); 876 877 if (V.isUnknownOrUndef()) { 878 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V)); 879 break; 880 } 881 882 switch (U->getOpcode()) { 883 default: 884 llvm_unreachable("Invalid Opcode."); 885 case UO_Not: 886 // FIXME: Do we need to handle promotions? 887 state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>())); 888 break; 889 case UO_Minus: 890 // FIXME: Do we need to handle promotions? 891 state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>())); 892 break; 893 case UO_LNot: 894 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." 895 // 896 // Note: technically we do "E == 0", but this is the same in the 897 // transfer functions as "0 == E". 898 SVal Result; 899 if (Optional<Loc> LV = V.getAs<Loc>()) { 900 Loc X = svalBuilder.makeNull(); 901 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType()); 902 } 903 else if (Ex->getType()->isFloatingType()) { 904 // FIXME: handle floating point types. 905 Result = UnknownVal(); 906 } else { 907 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); 908 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, 909 U->getType()); 910 } 911 912 state = state->BindExpr(U, LCtx, Result); 913 break; 914 } 915 Bldr.generateNode(U, *I, state); 916 break; 917 } 918 } 919 } 920 921 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this); 922 } 923 924 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U, 925 ExplodedNode *Pred, 926 ExplodedNodeSet &Dst) { 927 // Handle ++ and -- (both pre- and post-increment). 928 assert (U->isIncrementDecrementOp()); 929 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 930 931 const LocationContext *LCtx = Pred->getLocationContext(); 932 ProgramStateRef state = Pred->getState(); 933 SVal loc = state->getSVal(Ex, LCtx); 934 935 // Perform a load. 936 ExplodedNodeSet Tmp; 937 evalLoad(Tmp, U, Ex, Pred, state, loc); 938 939 ExplodedNodeSet Dst2; 940 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx); 941 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) { 942 943 state = (*I)->getState(); 944 assert(LCtx == (*I)->getLocationContext()); 945 SVal V2_untested = state->getSVal(Ex, LCtx); 946 947 // Propagate unknown and undefined values. 948 if (V2_untested.isUnknownOrUndef()) { 949 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested)); 950 continue; 951 } 952 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>(); 953 954 // Handle all other values. 955 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; 956 957 // If the UnaryOperator has non-location type, use its type to create the 958 // constant value. If the UnaryOperator has location type, create the 959 // constant with int type and pointer width. 960 SVal RHS; 961 962 if (U->getType()->isAnyPointerType()) 963 RHS = svalBuilder.makeArrayIndex(1); 964 else if (U->getType()->isIntegralOrEnumerationType()) 965 RHS = svalBuilder.makeIntVal(1, U->getType()); 966 else 967 RHS = UnknownVal(); 968 969 SVal Result = evalBinOp(state, Op, V2, RHS, U->getType()); 970 971 // Conjure a new symbol if necessary to recover precision. 972 if (Result.isUnknown()){ 973 DefinedOrUnknownSVal SymVal = 974 svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 975 currBldrCtx->blockCount()); 976 Result = SymVal; 977 978 // If the value is a location, ++/-- should always preserve 979 // non-nullness. Check if the original value was non-null, and if so 980 // propagate that constraint. 981 if (Loc::isLocType(U->getType())) { 982 DefinedOrUnknownSVal Constraint = 983 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); 984 985 if (!state->assume(Constraint, true)) { 986 // It isn't feasible for the original value to be null. 987 // Propagate this constraint. 988 Constraint = svalBuilder.evalEQ(state, SymVal, 989 svalBuilder.makeZeroVal(U->getType())); 990 991 992 state = state->assume(Constraint, false); 993 assert(state); 994 } 995 } 996 } 997 998 // Since the lvalue-to-rvalue conversion is explicit in the AST, 999 // we bind an l-value if the operator is prefix and an lvalue (in C++). 1000 if (U->isGLValue()) 1001 state = state->BindExpr(U, LCtx, loc); 1002 else 1003 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result); 1004 1005 // Perform the store. 1006 Bldr.takeNodes(*I); 1007 ExplodedNodeSet Dst3; 1008 evalStore(Dst3, U, U, *I, state, loc, Result); 1009 Bldr.addNodes(Dst3); 1010 } 1011 Dst.insert(Dst2); 1012 } 1013