Home | History | Annotate | Download | only in encoder
      1 /*
      2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
      3  *
      4  * This source code is subject to the terms of the BSD 2 Clause License and
      5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
      6  * was not distributed with this source code in the LICENSE file, you can
      7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
      8  * Media Patent License 1.0 was not distributed with this source code in the
      9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
     10  */
     11 
     12 #include <assert.h>
     13 #include <limits.h>
     14 #include <math.h>
     15 #include <stdio.h>
     16 #include <stdlib.h>
     17 #include <string.h>
     18 
     19 #include "aom_dsp/aom_dsp_common.h"
     20 #include "aom_mem/aom_mem.h"
     21 #include "aom_ports/mem.h"
     22 #include "aom_ports/system_state.h"
     23 
     24 #include "av1/common/alloccommon.h"
     25 #include "av1/encoder/aq_cyclicrefresh.h"
     26 #include "av1/common/common.h"
     27 #include "av1/common/entropymode.h"
     28 #include "av1/common/quant_common.h"
     29 #include "av1/common/seg_common.h"
     30 
     31 #include "av1/encoder/encodemv.h"
     32 #include "av1/encoder/encode_strategy.h"
     33 #include "av1/encoder/gop_structure.h"
     34 #include "av1/encoder/random.h"
     35 #include "av1/encoder/ratectrl.h"
     36 
     37 // Max rate target for 1080P and below encodes under normal circumstances
     38 // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
     39 #define MAX_MB_RATE 250
     40 #define MAXRATE_1080P 2025000
     41 
     42 #define DEFAULT_KF_BOOST 2000
     43 #define DEFAULT_GF_BOOST 2000
     44 
     45 #define MIN_BPB_FACTOR 0.005
     46 #define MAX_BPB_FACTOR 50
     47 
     48 #define FRAME_OVERHEAD_BITS 200
     49 #define ASSIGN_MINQ_TABLE(bit_depth, name)                   \
     50   do {                                                       \
     51     switch (bit_depth) {                                     \
     52       case AOM_BITS_8: name = name##_8; break;               \
     53       case AOM_BITS_10: name = name##_10; break;             \
     54       case AOM_BITS_12: name = name##_12; break;             \
     55       default:                                               \
     56         assert(0 &&                                          \
     57                "bit_depth should be AOM_BITS_8, AOM_BITS_10" \
     58                " or AOM_BITS_12");                           \
     59         name = NULL;                                         \
     60     }                                                        \
     61   } while (0)
     62 
     63 // Tables relating active max Q to active min Q
     64 static int kf_low_motion_minq_8[QINDEX_RANGE];
     65 static int kf_high_motion_minq_8[QINDEX_RANGE];
     66 static int arfgf_low_motion_minq_8[QINDEX_RANGE];
     67 static int arfgf_high_motion_minq_8[QINDEX_RANGE];
     68 static int inter_minq_8[QINDEX_RANGE];
     69 static int rtc_minq_8[QINDEX_RANGE];
     70 
     71 static int kf_low_motion_minq_10[QINDEX_RANGE];
     72 static int kf_high_motion_minq_10[QINDEX_RANGE];
     73 static int arfgf_low_motion_minq_10[QINDEX_RANGE];
     74 static int arfgf_high_motion_minq_10[QINDEX_RANGE];
     75 static int inter_minq_10[QINDEX_RANGE];
     76 static int rtc_minq_10[QINDEX_RANGE];
     77 static int kf_low_motion_minq_12[QINDEX_RANGE];
     78 static int kf_high_motion_minq_12[QINDEX_RANGE];
     79 static int arfgf_low_motion_minq_12[QINDEX_RANGE];
     80 static int arfgf_high_motion_minq_12[QINDEX_RANGE];
     81 static int inter_minq_12[QINDEX_RANGE];
     82 static int rtc_minq_12[QINDEX_RANGE];
     83 
     84 static int gf_high = 2000;
     85 static int gf_low = 400;
     86 static int kf_high = 5000;
     87 static int kf_low = 400;
     88 
     89 // How many times less pixels there are to encode given the current scaling.
     90 // Temporary replacement for rcf_mult and rate_thresh_mult.
     91 static double resize_rate_factor(const AV1_COMP *cpi, int width, int height) {
     92   return (double)(cpi->oxcf.width * cpi->oxcf.height) / (width * height);
     93 }
     94 
     95 // Functions to compute the active minq lookup table entries based on a
     96 // formulaic approach to facilitate easier adjustment of the Q tables.
     97 // The formulae were derived from computing a 3rd order polynomial best
     98 // fit to the original data (after plotting real maxq vs minq (not q index))
     99 static int get_minq_index(double maxq, double x3, double x2, double x1,
    100                           aom_bit_depth_t bit_depth) {
    101   const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq);
    102 
    103   // Special case handling to deal with the step from q2.0
    104   // down to lossless mode represented by q 1.0.
    105   if (minqtarget <= 2.0) return 0;
    106 
    107   return av1_find_qindex(minqtarget, bit_depth, 0, QINDEX_RANGE - 1);
    108 }
    109 
    110 static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low,
    111                            int *arfgf_high, int *inter, int *rtc,
    112                            aom_bit_depth_t bit_depth) {
    113   int i;
    114   for (i = 0; i < QINDEX_RANGE; i++) {
    115     const double maxq = av1_convert_qindex_to_q(i, bit_depth);
    116     kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
    117     kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth);
    118     arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
    119     arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
    120     inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
    121     rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
    122   }
    123 }
    124 
    125 void av1_rc_init_minq_luts(void) {
    126   init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
    127                  arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
    128                  inter_minq_8, rtc_minq_8, AOM_BITS_8);
    129   init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
    130                  arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
    131                  inter_minq_10, rtc_minq_10, AOM_BITS_10);
    132   init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
    133                  arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
    134                  inter_minq_12, rtc_minq_12, AOM_BITS_12);
    135 }
    136 
    137 // These functions use formulaic calculations to make playing with the
    138 // quantizer tables easier. If necessary they can be replaced by lookup
    139 // tables if and when things settle down in the experimental bitstream
    140 double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) {
    141   // Convert the index to a real Q value (scaled down to match old Q values)
    142   switch (bit_depth) {
    143     case AOM_BITS_8: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 4.0;
    144     case AOM_BITS_10: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 16.0;
    145     case AOM_BITS_12: return av1_ac_quant_Q3(qindex, 0, bit_depth) / 64.0;
    146     default:
    147       assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12");
    148       return -1.0;
    149   }
    150 }
    151 
    152 int av1_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
    153                        double correction_factor, aom_bit_depth_t bit_depth) {
    154   const double q = av1_convert_qindex_to_q(qindex, bit_depth);
    155   int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
    156 
    157   assert(correction_factor <= MAX_BPB_FACTOR &&
    158          correction_factor >= MIN_BPB_FACTOR);
    159 
    160   // q based adjustment to baseline enumerator
    161   enumerator += (int)(enumerator * q) >> 12;
    162   return (int)(enumerator * correction_factor / q);
    163 }
    164 
    165 int av1_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
    166                            double correction_factor,
    167                            aom_bit_depth_t bit_depth) {
    168   const int bpm =
    169       (int)(av1_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth));
    170   return AOMMAX(FRAME_OVERHEAD_BITS,
    171                 (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS);
    172 }
    173 
    174 int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target,
    175                                     FRAME_UPDATE_TYPE frame_update_type) {
    176   const RATE_CONTROL *rc = &cpi->rc;
    177   const AV1EncoderConfig *oxcf = &cpi->oxcf;
    178   const int min_frame_target =
    179       AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5);
    180   // Clip the frame target to the minimum setup value.
    181   if (frame_update_type == OVERLAY_UPDATE ||
    182       frame_update_type == INTNL_OVERLAY_UPDATE) {
    183     // If there is an active ARF at this location use the minimum
    184     // bits on this frame even if it is a constructed arf.
    185     // The active maximum quantizer insures that an appropriate
    186     // number of bits will be spent if needed for constructed ARFs.
    187     target = min_frame_target;
    188   } else if (target < min_frame_target) {
    189     target = min_frame_target;
    190   }
    191 
    192   // Clip the frame target to the maximum allowed value.
    193   if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
    194   if (oxcf->rc_max_inter_bitrate_pct) {
    195     const int max_rate =
    196         rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
    197     target = AOMMIN(target, max_rate);
    198   }
    199 
    200   return target;
    201 }
    202 
    203 int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int target) {
    204   const RATE_CONTROL *rc = &cpi->rc;
    205   const AV1EncoderConfig *oxcf = &cpi->oxcf;
    206   if (oxcf->rc_max_intra_bitrate_pct) {
    207     const int max_rate =
    208         rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100;
    209     target = AOMMIN(target, max_rate);
    210   }
    211   if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth;
    212   return target;
    213 }
    214 
    215 // Update the buffer level: leaky bucket model.
    216 static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) {
    217   const AV1_COMMON *const cm = &cpi->common;
    218   RATE_CONTROL *const rc = &cpi->rc;
    219 
    220   // Non-viewable frames are a special case and are treated as pure overhead.
    221   if (!cm->show_frame)
    222     rc->bits_off_target -= encoded_frame_size;
    223   else
    224     rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
    225 
    226   // Clip the buffer level to the maximum specified buffer size.
    227   rc->bits_off_target = AOMMIN(rc->bits_off_target, rc->maximum_buffer_size);
    228   rc->buffer_level = rc->bits_off_target;
    229 }
    230 
    231 int av1_rc_get_default_min_gf_interval(int width, int height,
    232                                        double framerate) {
    233   // Assume we do not need any constraint lower than 4K 20 fps
    234   static const double factor_safe = 3840 * 2160 * 20.0;
    235   const double factor = width * height * framerate;
    236   const int default_interval =
    237       clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL);
    238 
    239   if (factor <= factor_safe)
    240     return default_interval;
    241   else
    242     return AOMMAX(default_interval,
    243                   (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5));
    244   // Note this logic makes:
    245   // 4K24: 5
    246   // 4K30: 6
    247   // 4K60: 12
    248 }
    249 
    250 int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) {
    251   int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75));
    252   interval += (interval & 0x01);  // Round to even value
    253   interval = AOMMAX(MAX_GF_INTERVAL, interval);
    254   return AOMMAX(interval, min_gf_interval);
    255 }
    256 
    257 void av1_rc_init(const AV1EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
    258   int i;
    259 
    260   if (pass == 0 && oxcf->rc_mode == AOM_CBR) {
    261     rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
    262     rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
    263   } else {
    264     rc->avg_frame_qindex[KEY_FRAME] =
    265         (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
    266     rc->avg_frame_qindex[INTER_FRAME] =
    267         (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2;
    268   }
    269 
    270   rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
    271   rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q;
    272 
    273   rc->buffer_level = rc->starting_buffer_level;
    274   rc->bits_off_target = rc->starting_buffer_level;
    275 
    276   rc->rolling_target_bits = rc->avg_frame_bandwidth;
    277   rc->rolling_actual_bits = rc->avg_frame_bandwidth;
    278   rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
    279   rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
    280 
    281   rc->total_actual_bits = 0;
    282   rc->total_target_bits = 0;
    283   rc->total_target_vs_actual = 0;
    284 
    285   rc->frames_since_key = 8;  // Sensible default for first frame.
    286   rc->this_key_frame_forced = 0;
    287   rc->next_key_frame_forced = 0;
    288   rc->source_alt_ref_pending = 0;
    289   rc->source_alt_ref_active = 0;
    290 
    291   rc->frames_till_gf_update_due = 0;
    292   rc->ni_av_qi = oxcf->worst_allowed_q;
    293   rc->ni_tot_qi = 0;
    294   rc->ni_frames = 0;
    295 
    296   rc->tot_q = 0.0;
    297   rc->avg_q = av1_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
    298 
    299   for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
    300     rc->rate_correction_factors[i] = 0.7;
    301   }
    302   rc->rate_correction_factors[KF_STD] = 1.0;
    303   rc->min_gf_interval = oxcf->min_gf_interval;
    304   rc->max_gf_interval = oxcf->max_gf_interval;
    305   if (rc->min_gf_interval == 0)
    306     rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
    307         oxcf->width, oxcf->height, oxcf->init_framerate);
    308   if (rc->max_gf_interval == 0)
    309     rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
    310         oxcf->init_framerate, rc->min_gf_interval);
    311   rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
    312 }
    313 
    314 int av1_rc_drop_frame(AV1_COMP *cpi) {
    315   const AV1EncoderConfig *oxcf = &cpi->oxcf;
    316   RATE_CONTROL *const rc = &cpi->rc;
    317 
    318   if (!oxcf->drop_frames_water_mark) {
    319     return 0;
    320   } else {
    321     if (rc->buffer_level < 0) {
    322       // Always drop if buffer is below 0.
    323       return 1;
    324     } else {
    325       // If buffer is below drop_mark, for now just drop every other frame
    326       // (starting with the next frame) until it increases back over drop_mark.
    327       int drop_mark =
    328           (int)(oxcf->drop_frames_water_mark * rc->optimal_buffer_level / 100);
    329       if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) {
    330         --rc->decimation_factor;
    331       } else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) {
    332         rc->decimation_factor = 1;
    333       }
    334       if (rc->decimation_factor > 0) {
    335         if (rc->decimation_count > 0) {
    336           --rc->decimation_count;
    337           return 1;
    338         } else {
    339           rc->decimation_count = rc->decimation_factor;
    340           return 0;
    341         }
    342       } else {
    343         rc->decimation_count = 0;
    344         return 0;
    345       }
    346     }
    347   }
    348 }
    349 
    350 static const RATE_FACTOR_LEVEL rate_factor_levels[FRAME_UPDATE_TYPES] = {
    351   KF_STD,        // KF_UPDATE
    352   INTER_NORMAL,  // LF_UPDATE
    353   GF_ARF_STD,    // GF_UPDATE
    354   GF_ARF_STD,    // ARF_UPDATE
    355   INTER_NORMAL,  // OVERLAY_UPDATE
    356   INTER_NORMAL,  // INTNL_OVERLAY_UPDATE
    357   GF_ARF_LOW,    // INTNL_ARF_UPDATE
    358 };
    359 
    360 static RATE_FACTOR_LEVEL get_rate_factor_level(const GF_GROUP *const gf_group) {
    361   const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_group->index];
    362   assert(update_type < FRAME_UPDATE_TYPES);
    363   return rate_factor_levels[update_type];
    364 }
    365 
    366 static double get_rate_correction_factor(const AV1_COMP *cpi, int width,
    367                                          int height) {
    368   const RATE_CONTROL *const rc = &cpi->rc;
    369   double rcf;
    370 
    371   if (cpi->common.current_frame.frame_type == KEY_FRAME) {
    372     rcf = rc->rate_correction_factors[KF_STD];
    373   } else if (cpi->oxcf.pass == 2) {
    374     const RATE_FACTOR_LEVEL rf_lvl =
    375         get_rate_factor_level(&cpi->twopass.gf_group);
    376     rcf = rc->rate_correction_factors[rf_lvl];
    377   } else {
    378     if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
    379         !rc->is_src_frame_alt_ref &&
    380         (cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
    381       rcf = rc->rate_correction_factors[GF_ARF_STD];
    382     else
    383       rcf = rc->rate_correction_factors[INTER_NORMAL];
    384   }
    385   rcf *= resize_rate_factor(cpi, width, height);
    386   return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
    387 }
    388 
    389 static void set_rate_correction_factor(AV1_COMP *cpi, double factor, int width,
    390                                        int height) {
    391   RATE_CONTROL *const rc = &cpi->rc;
    392 
    393   // Normalize RCF to account for the size-dependent scaling factor.
    394   factor /= resize_rate_factor(cpi, width, height);
    395 
    396   factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR);
    397 
    398   if (cpi->common.current_frame.frame_type == KEY_FRAME) {
    399     rc->rate_correction_factors[KF_STD] = factor;
    400   } else if (cpi->oxcf.pass == 2) {
    401     const RATE_FACTOR_LEVEL rf_lvl =
    402         get_rate_factor_level(&cpi->twopass.gf_group);
    403     rc->rate_correction_factors[rf_lvl] = factor;
    404   } else {
    405     if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
    406         !rc->is_src_frame_alt_ref &&
    407         (cpi->oxcf.rc_mode != AOM_CBR || cpi->oxcf.gf_cbr_boost_pct > 20))
    408       rc->rate_correction_factors[GF_ARF_STD] = factor;
    409     else
    410       rc->rate_correction_factors[INTER_NORMAL] = factor;
    411   }
    412 }
    413 
    414 void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int width,
    415                                            int height) {
    416   const AV1_COMMON *const cm = &cpi->common;
    417   int correction_factor = 100;
    418   double rate_correction_factor =
    419       get_rate_correction_factor(cpi, width, height);
    420   double adjustment_limit;
    421   const int MBs = av1_get_MBs(width, height);
    422 
    423   int projected_size_based_on_q = 0;
    424 
    425   // Do not update the rate factors for arf overlay frames.
    426   if (cpi->rc.is_src_frame_alt_ref) return;
    427 
    428   // Clear down mmx registers to allow floating point in what follows
    429   aom_clear_system_state();
    430 
    431   // Work out how big we would have expected the frame to be at this Q given
    432   // the current correction factor.
    433   // Stay in double to avoid int overflow when values are large
    434   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) {
    435     projected_size_based_on_q =
    436         av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor);
    437   } else {
    438     projected_size_based_on_q = av1_estimate_bits_at_q(
    439         cpi->common.current_frame.frame_type, cm->base_qindex, MBs,
    440         rate_correction_factor, cm->seq_params.bit_depth);
    441   }
    442   // Work out a size correction factor.
    443   if (projected_size_based_on_q > FRAME_OVERHEAD_BITS)
    444     correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) /
    445                               projected_size_based_on_q);
    446 
    447   // More heavily damped adjustment used if we have been oscillating either side
    448   // of target.
    449   if (correction_factor > 0) {
    450     adjustment_limit =
    451         0.25 + 0.5 * AOMMIN(1, fabs(log10(0.01 * correction_factor)));
    452   } else {
    453     adjustment_limit = 0.75;
    454   }
    455 
    456   cpi->rc.q_2_frame = cpi->rc.q_1_frame;
    457   cpi->rc.q_1_frame = cm->base_qindex;
    458   cpi->rc.rc_2_frame = cpi->rc.rc_1_frame;
    459   if (correction_factor > 110)
    460     cpi->rc.rc_1_frame = -1;
    461   else if (correction_factor < 90)
    462     cpi->rc.rc_1_frame = 1;
    463   else
    464     cpi->rc.rc_1_frame = 0;
    465 
    466   if (correction_factor > 102) {
    467     // We are not already at the worst allowable quality
    468     correction_factor =
    469         (int)(100 + ((correction_factor - 100) * adjustment_limit));
    470     rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
    471     // Keep rate_correction_factor within limits
    472     if (rate_correction_factor > MAX_BPB_FACTOR)
    473       rate_correction_factor = MAX_BPB_FACTOR;
    474   } else if (correction_factor < 99) {
    475     // We are not already at the best allowable quality
    476     correction_factor =
    477         (int)(100 - ((100 - correction_factor) * adjustment_limit));
    478     rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
    479 
    480     // Keep rate_correction_factor within limits
    481     if (rate_correction_factor < MIN_BPB_FACTOR)
    482       rate_correction_factor = MIN_BPB_FACTOR;
    483   }
    484 
    485   set_rate_correction_factor(cpi, rate_correction_factor, width, height);
    486 }
    487 
    488 // Calculate rate for the given 'q'.
    489 static int get_bits_per_mb(const AV1_COMP *cpi, int use_cyclic_refresh,
    490                            double correction_factor, int q) {
    491   const AV1_COMMON *const cm = &cpi->common;
    492   return use_cyclic_refresh
    493              ? av1_cyclic_refresh_rc_bits_per_mb(cpi, q, correction_factor)
    494              : av1_rc_bits_per_mb(cm->current_frame.frame_type, q,
    495                                   correction_factor, cm->seq_params.bit_depth);
    496 }
    497 
    498 // Similar to find_qindex_by_rate() function in ratectrl.c, but returns the q
    499 // index with rate just above or below the desired rate, depending on which of
    500 // the two rates is closer to the desired rate.
    501 // Also, respects the selected aq_mode when computing the rate.
    502 static int find_closest_qindex_by_rate(int desired_bits_per_mb,
    503                                        const AV1_COMP *cpi,
    504                                        double correction_factor,
    505                                        int best_qindex, int worst_qindex) {
    506   const int use_cyclic_refresh =
    507       cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled;
    508 
    509   // Find 'qindex' based on 'desired_bits_per_mb'.
    510   assert(best_qindex <= worst_qindex);
    511   int low = best_qindex;
    512   int high = worst_qindex;
    513   while (low < high) {
    514     const int mid = (low + high) >> 1;
    515     const int mid_bits_per_mb =
    516         get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, mid);
    517     if (mid_bits_per_mb > desired_bits_per_mb) {
    518       low = mid + 1;
    519     } else {
    520       high = mid;
    521     }
    522   }
    523   assert(low == high);
    524 
    525   // Calculate rate difference of this q index from the desired rate.
    526   const int curr_q = low;
    527   const int curr_bits_per_mb =
    528       get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, curr_q);
    529   const int curr_bit_diff = (curr_bits_per_mb <= desired_bits_per_mb)
    530                                 ? desired_bits_per_mb - curr_bits_per_mb
    531                                 : INT_MAX;
    532   assert((curr_bit_diff != INT_MAX && curr_bit_diff >= 0) ||
    533          curr_q == worst_qindex);
    534 
    535   // Calculate rate difference for previous q index too.
    536   const int prev_q = curr_q - 1;
    537   int prev_bit_diff;
    538   if (curr_bit_diff == INT_MAX || curr_q == best_qindex) {
    539     prev_bit_diff = INT_MAX;
    540   } else {
    541     const int prev_bits_per_mb =
    542         get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, prev_q);
    543     assert(prev_bits_per_mb > desired_bits_per_mb);
    544     prev_bit_diff = prev_bits_per_mb - desired_bits_per_mb;
    545   }
    546 
    547   // Pick one of the two q indices, depending on which one has rate closer to
    548   // the desired rate.
    549   return (curr_bit_diff <= prev_bit_diff) ? curr_q : prev_q;
    550 }
    551 
    552 int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame,
    553                       int active_best_quality, int active_worst_quality,
    554                       int width, int height) {
    555   const int MBs = av1_get_MBs(width, height);
    556   const double correction_factor =
    557       get_rate_correction_factor(cpi, width, height);
    558   const int target_bits_per_mb =
    559       (int)((uint64_t)(target_bits_per_frame) << BPER_MB_NORMBITS) / MBs;
    560 
    561   int q =
    562       find_closest_qindex_by_rate(target_bits_per_mb, cpi, correction_factor,
    563                                   active_best_quality, active_worst_quality);
    564 
    565   // In CBR mode, this makes sure q is between oscillating Qs to prevent
    566   // resonance.
    567   if (cpi->oxcf.rc_mode == AOM_CBR &&
    568       (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) &&
    569       cpi->rc.q_1_frame != cpi->rc.q_2_frame) {
    570     q = clamp(q, AOMMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame),
    571               AOMMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame));
    572   }
    573   return q;
    574 }
    575 
    576 static int get_active_quality(int q, int gfu_boost, int low, int high,
    577                               int *low_motion_minq, int *high_motion_minq) {
    578   if (gfu_boost > high) {
    579     return low_motion_minq[q];
    580   } else if (gfu_boost < low) {
    581     return high_motion_minq[q];
    582   } else {
    583     const int gap = high - low;
    584     const int offset = high - gfu_boost;
    585     const int qdiff = high_motion_minq[q] - low_motion_minq[q];
    586     const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
    587     return low_motion_minq[q] + adjustment;
    588   }
    589 }
    590 
    591 static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
    592                                  aom_bit_depth_t bit_depth) {
    593   int *kf_low_motion_minq;
    594   int *kf_high_motion_minq;
    595   ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
    596   ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
    597   return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
    598                             kf_low_motion_minq, kf_high_motion_minq);
    599 }
    600 
    601 static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
    602                                  aom_bit_depth_t bit_depth) {
    603   int *arfgf_low_motion_minq;
    604   int *arfgf_high_motion_minq;
    605   ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
    606   ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
    607   return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
    608                             arfgf_low_motion_minq, arfgf_high_motion_minq);
    609 }
    610 
    611 static int get_gf_high_motion_quality(int q, aom_bit_depth_t bit_depth) {
    612   int *arfgf_high_motion_minq;
    613   ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
    614   return arfgf_high_motion_minq[q];
    615 }
    616 
    617 static int calc_active_worst_quality_one_pass_vbr(const AV1_COMP *cpi) {
    618   const RATE_CONTROL *const rc = &cpi->rc;
    619   const unsigned int curr_frame = cpi->common.current_frame.frame_number;
    620   int active_worst_quality;
    621 
    622   if (cpi->common.current_frame.frame_type == KEY_FRAME) {
    623     active_worst_quality =
    624         curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] * 2;
    625   } else {
    626     if (!rc->is_src_frame_alt_ref &&
    627         (cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame ||
    628          cpi->refresh_alt_ref_frame)) {
    629       active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
    630                                              : rc->last_q[INTER_FRAME];
    631     } else {
    632       active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
    633                                              : rc->last_q[INTER_FRAME] * 2;
    634     }
    635   }
    636   return AOMMIN(active_worst_quality, rc->worst_quality);
    637 }
    638 
    639 // Adjust active_worst_quality level based on buffer level.
    640 static int calc_active_worst_quality_one_pass_cbr(const AV1_COMP *cpi) {
    641   // Adjust active_worst_quality: If buffer is above the optimal/target level,
    642   // bring active_worst_quality down depending on fullness of buffer.
    643   // If buffer is below the optimal level, let the active_worst_quality go from
    644   // ambient Q (at buffer = optimal level) to worst_quality level
    645   // (at buffer = critical level).
    646   const AV1_COMMON *const cm = &cpi->common;
    647   const RATE_CONTROL *rc = &cpi->rc;
    648   // Buffer level below which we push active_worst to worst_quality.
    649   int64_t critical_level = rc->optimal_buffer_level >> 3;
    650   int64_t buff_lvl_step = 0;
    651   int adjustment = 0;
    652   int active_worst_quality;
    653   int ambient_qp;
    654   if (cm->current_frame.frame_type == KEY_FRAME) return rc->worst_quality;
    655   // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME]
    656   // for the first few frames following key frame. These are both initialized
    657   // to worst_quality and updated with (3/4, 1/4) average in postencode_update.
    658   // So for first few frames following key, the qp of that key frame is weighted
    659   // into the active_worst_quality setting.
    660   ambient_qp = (cm->current_frame.frame_number < 5)
    661                    ? AOMMIN(rc->avg_frame_qindex[INTER_FRAME],
    662                             rc->avg_frame_qindex[KEY_FRAME])
    663                    : rc->avg_frame_qindex[INTER_FRAME];
    664   active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4);
    665   if (rc->buffer_level > rc->optimal_buffer_level) {
    666     // Adjust down.
    667     // Maximum limit for down adjustment, ~30%.
    668     int max_adjustment_down = active_worst_quality / 3;
    669     if (max_adjustment_down) {
    670       buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) /
    671                        max_adjustment_down);
    672       if (buff_lvl_step)
    673         adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
    674                            buff_lvl_step);
    675       active_worst_quality -= adjustment;
    676     }
    677   } else if (rc->buffer_level > critical_level) {
    678     // Adjust up from ambient Q.
    679     if (critical_level) {
    680       buff_lvl_step = (rc->optimal_buffer_level - critical_level);
    681       if (buff_lvl_step) {
    682         adjustment = (int)((rc->worst_quality - ambient_qp) *
    683                            (rc->optimal_buffer_level - rc->buffer_level) /
    684                            buff_lvl_step);
    685       }
    686       active_worst_quality = ambient_qp + adjustment;
    687     }
    688   } else {
    689     // Set to worst_quality if buffer is below critical level.
    690     active_worst_quality = rc->worst_quality;
    691   }
    692   return active_worst_quality;
    693 }
    694 
    695 static int rc_pick_q_and_bounds_one_pass_cbr(const AV1_COMP *cpi, int width,
    696                                              int height, int *bottom_index,
    697                                              int *top_index) {
    698   const AV1_COMMON *const cm = &cpi->common;
    699   const RATE_CONTROL *const rc = &cpi->rc;
    700   const CurrentFrame *const current_frame = &cm->current_frame;
    701   int active_best_quality;
    702   int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
    703   int q;
    704   int *rtc_minq;
    705   const int bit_depth = cm->seq_params.bit_depth;
    706   ASSIGN_MINQ_TABLE(bit_depth, rtc_minq);
    707 
    708   if (frame_is_intra_only(cm)) {
    709     active_best_quality = rc->best_quality;
    710     // Handle the special case for key frames forced when we have reached
    711     // the maximum key frame interval. Here force the Q to a range
    712     // based on the ambient Q to reduce the risk of popping.
    713     if (rc->this_key_frame_forced) {
    714       int qindex = rc->last_boosted_qindex;
    715       double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
    716       int delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
    717                                             (last_boosted_q * 0.75), bit_depth);
    718       active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
    719     } else if (current_frame->frame_number > 0) {
    720       // not first frame of one pass and kf_boost is set
    721       double q_adj_factor = 1.0;
    722       double q_val;
    723 
    724       active_best_quality =
    725           get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth);
    726 
    727       // Allow somewhat lower kf minq with small image formats.
    728       if ((width * height) <= (352 * 288)) {
    729         q_adj_factor -= 0.25;
    730       }
    731 
    732       // Convert the adjustment factor to a qindex delta
    733       // on active_best_quality.
    734       q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
    735       active_best_quality +=
    736           av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
    737     }
    738   } else if (!rc->is_src_frame_alt_ref &&
    739              (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
    740     // Use the lower of active_worst_quality and recent
    741     // average Q as basis for GF/ARF best Q limit unless last frame was
    742     // a key frame.
    743     if (rc->frames_since_key > 1 &&
    744         rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
    745       q = rc->avg_frame_qindex[INTER_FRAME];
    746     } else {
    747       q = active_worst_quality;
    748     }
    749     active_best_quality = get_gf_active_quality(rc, q, bit_depth);
    750   } else {
    751     // Use the lower of active_worst_quality and recent/average Q.
    752     if (current_frame->frame_number > 1) {
    753       if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
    754         active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
    755       else
    756         active_best_quality = rtc_minq[active_worst_quality];
    757     } else {
    758       if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
    759         active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
    760       else
    761         active_best_quality = rtc_minq[active_worst_quality];
    762     }
    763   }
    764 
    765   // Clip the active best and worst quality values to limits
    766   active_best_quality =
    767       clamp(active_best_quality, rc->best_quality, rc->worst_quality);
    768   active_worst_quality =
    769       clamp(active_worst_quality, active_best_quality, rc->worst_quality);
    770 
    771   *top_index = active_worst_quality;
    772   *bottom_index = active_best_quality;
    773 
    774   // Limit Q range for the adaptive loop.
    775   if (current_frame->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
    776       !(current_frame->frame_number == 0)) {
    777     int qdelta = 0;
    778     aom_clear_system_state();
    779     qdelta = av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type,
    780                                         active_worst_quality, 2.0, bit_depth);
    781     *top_index = active_worst_quality + qdelta;
    782     *top_index = AOMMAX(*top_index, *bottom_index);
    783   }
    784 
    785   // Special case code to try and match quality with forced key frames
    786   if (current_frame->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
    787     q = rc->last_boosted_qindex;
    788   } else {
    789     q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
    790                           active_worst_quality, width, height);
    791     if (q > *top_index) {
    792       // Special case when we are targeting the max allowed rate
    793       if (rc->this_frame_target >= rc->max_frame_bandwidth)
    794         *top_index = q;
    795       else
    796         q = *top_index;
    797     }
    798   }
    799 
    800   assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
    801   assert(*bottom_index <= rc->worst_quality &&
    802          *bottom_index >= rc->best_quality);
    803   assert(q <= rc->worst_quality && q >= rc->best_quality);
    804   return q;
    805 }
    806 
    807 static int gf_group_pyramid_level(const AV1_COMP *cpi) {
    808   const GF_GROUP *gf_group = &cpi->twopass.gf_group;
    809   int this_height = gf_group->pyramid_level[gf_group->index];
    810   return this_height;
    811 }
    812 
    813 static int get_active_cq_level(const RATE_CONTROL *rc,
    814                                const AV1EncoderConfig *const oxcf,
    815                                int intra_only, int superres_denom) {
    816   static const double cq_adjust_threshold = 0.1;
    817   int active_cq_level = oxcf->cq_level;
    818   (void)intra_only;
    819   if (oxcf->rc_mode == AOM_CQ || oxcf->rc_mode == AOM_Q) {
    820     // printf("Superres %d %d %d = %d\n", superres_denom, intra_only,
    821     //        rc->frames_to_key, !(intra_only && rc->frames_to_key <= 1));
    822     if (oxcf->superres_mode == SUPERRES_QTHRESH &&
    823         superres_denom != SCALE_NUMERATOR &&
    824         !(intra_only && rc->frames_to_key <= 1)) {
    825       active_cq_level =
    826           AOMMAX(active_cq_level - ((superres_denom - SCALE_NUMERATOR) * 4), 0);
    827     }
    828   }
    829   if (oxcf->rc_mode == AOM_CQ && rc->total_target_bits > 0) {
    830     const double x = (double)rc->total_actual_bits / rc->total_target_bits;
    831     if (x < cq_adjust_threshold) {
    832       active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
    833     }
    834   }
    835   return active_cq_level;
    836 }
    837 
    838 static int rc_pick_q_and_bounds_one_pass_vbr(const AV1_COMP *cpi, int width,
    839                                              int height, int *bottom_index,
    840                                              int *top_index) {
    841   const AV1_COMMON *const cm = &cpi->common;
    842   const RATE_CONTROL *const rc = &cpi->rc;
    843   const CurrentFrame *const current_frame = &cm->current_frame;
    844   const AV1EncoderConfig *const oxcf = &cpi->oxcf;
    845   const int cq_level = get_active_cq_level(rc, oxcf, frame_is_intra_only(cm),
    846                                            cm->superres_scale_denominator);
    847   int active_best_quality;
    848   int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
    849   int q;
    850   int *inter_minq;
    851   const int bit_depth = cm->seq_params.bit_depth;
    852   ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
    853 
    854   if (frame_is_intra_only(cm)) {
    855     if (oxcf->rc_mode == AOM_Q) {
    856       const int qindex = cq_level;
    857       const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
    858       const int delta_qindex =
    859           av1_compute_qdelta(rc, q_val, q_val * 0.25, bit_depth);
    860       active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
    861     } else if (rc->this_key_frame_forced) {
    862       const int qindex = rc->last_boosted_qindex;
    863       const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
    864       const int delta_qindex = av1_compute_qdelta(
    865           rc, last_boosted_q, last_boosted_q * 0.75, bit_depth);
    866       active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
    867     } else {  // not first frame of one pass and kf_boost is set
    868       double q_adj_factor = 1.0;
    869 
    870       active_best_quality =
    871           get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], bit_depth);
    872 
    873       // Allow somewhat lower kf minq with small image formats.
    874       if ((width * height) <= (352 * 288)) {
    875         q_adj_factor -= 0.25;
    876       }
    877 
    878       // Convert the adjustment factor to a qindex delta on active_best_quality.
    879       {
    880         const double q_val =
    881             av1_convert_qindex_to_q(active_best_quality, bit_depth);
    882         active_best_quality +=
    883             av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
    884       }
    885     }
    886   } else if (!rc->is_src_frame_alt_ref &&
    887              (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
    888     // Use the lower of active_worst_quality and recent
    889     // average Q as basis for GF/ARF best Q limit unless last frame was
    890     // a key frame.
    891     q = (rc->frames_since_key > 1 &&
    892          rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
    893             ? rc->avg_frame_qindex[INTER_FRAME]
    894             : rc->avg_frame_qindex[KEY_FRAME];
    895     // For constrained quality dont allow Q less than the cq level
    896     if (oxcf->rc_mode == AOM_CQ) {
    897       if (q < cq_level) q = cq_level;
    898       active_best_quality = get_gf_active_quality(rc, q, bit_depth);
    899       // Constrained quality use slightly lower active best.
    900       active_best_quality = active_best_quality * 15 / 16;
    901     } else if (oxcf->rc_mode == AOM_Q) {
    902       const int qindex = cq_level;
    903       const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
    904       const int delta_qindex =
    905           (cpi->refresh_alt_ref_frame)
    906               ? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth)
    907               : av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth);
    908       active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
    909     } else {
    910       active_best_quality = get_gf_active_quality(rc, q, bit_depth);
    911     }
    912   } else {
    913     if (oxcf->rc_mode == AOM_Q) {
    914       const int qindex = cq_level;
    915       const double q_val = av1_convert_qindex_to_q(qindex, bit_depth);
    916       const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0,
    917                                                      0.70, 1.0, 0.85, 1.0 };
    918       const int delta_qindex = av1_compute_qdelta(
    919           rc, q_val,
    920           q_val * delta_rate[current_frame->frame_number % FIXED_GF_INTERVAL],
    921           bit_depth);
    922       active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
    923     } else {
    924       // Use the lower of active_worst_quality and recent/average Q.
    925       active_best_quality = (current_frame->frame_number > 1)
    926                                 ? inter_minq[rc->avg_frame_qindex[INTER_FRAME]]
    927                                 : inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
    928       // For the constrained quality mode we don't want
    929       // q to fall below the cq level.
    930       if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
    931         active_best_quality = cq_level;
    932       }
    933     }
    934   }
    935 
    936   // Clip the active best and worst quality values to limits
    937   active_best_quality =
    938       clamp(active_best_quality, rc->best_quality, rc->worst_quality);
    939   active_worst_quality =
    940       clamp(active_worst_quality, active_best_quality, rc->worst_quality);
    941 
    942   *top_index = active_worst_quality;
    943   *bottom_index = active_best_quality;
    944 
    945   // Limit Q range for the adaptive loop.
    946   {
    947     int qdelta = 0;
    948     aom_clear_system_state();
    949     if (current_frame->frame_type == KEY_FRAME && !rc->this_key_frame_forced &&
    950         !(current_frame->frame_number == 0)) {
    951       qdelta = av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type,
    952                                           active_worst_quality, 2.0, bit_depth);
    953     } else if (!rc->is_src_frame_alt_ref &&
    954                (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
    955       qdelta =
    956           av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type,
    957                                      active_worst_quality, 1.75, bit_depth);
    958     }
    959     *top_index = active_worst_quality + qdelta;
    960     *top_index = AOMMAX(*top_index, *bottom_index);
    961   }
    962 
    963   if (oxcf->rc_mode == AOM_Q) {
    964     q = active_best_quality;
    965     // Special case code to try and match quality with forced key frames
    966   } else if ((current_frame->frame_type == KEY_FRAME) &&
    967              rc->this_key_frame_forced) {
    968     q = rc->last_boosted_qindex;
    969   } else {
    970     q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
    971                           active_worst_quality, width, height);
    972     if (q > *top_index) {
    973       // Special case when we are targeting the max allowed rate
    974       if (rc->this_frame_target >= rc->max_frame_bandwidth)
    975         *top_index = q;
    976       else
    977         q = *top_index;
    978     }
    979   }
    980 
    981   assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
    982   assert(*bottom_index <= rc->worst_quality &&
    983          *bottom_index >= rc->best_quality);
    984   assert(q <= rc->worst_quality && q >= rc->best_quality);
    985   return q;
    986 }
    987 
    988 static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
    989   1.00,  // INTER_NORMAL
    990   1.25,  // GF_ARF_LOW
    991   2.00,  // GF_ARF_STD
    992   2.00,  // KF_STD
    993 };
    994 
    995 int av1_frame_type_qdelta(const AV1_COMP *cpi, int q) {
    996   const RATE_FACTOR_LEVEL rf_lvl =
    997       get_rate_factor_level(&cpi->twopass.gf_group);
    998   const FRAME_TYPE frame_type = (rf_lvl == KF_STD) ? KEY_FRAME : INTER_FRAME;
    999   return av1_compute_qdelta_by_rate(&cpi->rc, frame_type, q,
   1000                                     rate_factor_deltas[rf_lvl],
   1001                                     cpi->common.seq_params.bit_depth);
   1002 }
   1003 
   1004 #define STATIC_MOTION_THRESH 95
   1005 static int rc_pick_q_and_bounds_two_pass(const AV1_COMP *cpi, int width,
   1006                                          int height, int *bottom_index,
   1007                                          int *top_index, int *arf_q) {
   1008   const AV1_COMMON *const cm = &cpi->common;
   1009   const RATE_CONTROL *const rc = &cpi->rc;
   1010   const AV1EncoderConfig *const oxcf = &cpi->oxcf;
   1011   const GF_GROUP *gf_group = &cpi->twopass.gf_group;
   1012   const int cq_level = get_active_cq_level(rc, oxcf, frame_is_intra_only(cm),
   1013                                            cm->superres_scale_denominator);
   1014   int active_best_quality;
   1015   int active_worst_quality = cpi->twopass.active_worst_quality;
   1016   int q;
   1017   int *inter_minq;
   1018   const int bit_depth = cm->seq_params.bit_depth;
   1019   ASSIGN_MINQ_TABLE(bit_depth, inter_minq);
   1020 
   1021   const int is_intrl_arf_boost =
   1022       gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE;
   1023 
   1024   if (frame_is_intra_only(cm)) {
   1025     if (rc->frames_to_key == 1 && oxcf->rc_mode == AOM_Q) {
   1026       // If the next frame is also a key frame or the current frame is the
   1027       // only frame in the sequence in AOM_Q mode, just use the cq_level
   1028       // as q.
   1029       active_best_quality = cq_level;
   1030       active_worst_quality = cq_level;
   1031     } else if (cm->current_frame.frame_type == KEY_FRAME &&
   1032                cm->show_frame == 0) {
   1033       // Handle the special case for forward reference key frames.
   1034       // Increase the boost because this keyframe is used as a forward and
   1035       // backward reference.
   1036       const int qindex = rc->last_boosted_qindex;
   1037       const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
   1038       const int delta_qindex = av1_compute_qdelta(
   1039           rc, last_boosted_q, last_boosted_q * 0.25, bit_depth);
   1040       active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
   1041       // Update the arf_q since the forward keyframe is replacing the ALTREF
   1042       *arf_q = active_best_quality;
   1043     } else if (rc->this_key_frame_forced) {
   1044       // Handle the special case for key frames forced when we have reached
   1045       // the maximum key frame interval. Here force the Q to a range
   1046       // based on the ambient Q to reduce the risk of popping.
   1047       double last_boosted_q;
   1048       int delta_qindex;
   1049       int qindex;
   1050 
   1051       if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
   1052         qindex = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
   1053         active_best_quality = qindex;
   1054         last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
   1055         delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
   1056                                           last_boosted_q * 1.25, bit_depth);
   1057         active_worst_quality =
   1058             AOMMIN(qindex + delta_qindex, active_worst_quality);
   1059       } else {
   1060         qindex = rc->last_boosted_qindex;
   1061         last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth);
   1062         delta_qindex = av1_compute_qdelta(rc, last_boosted_q,
   1063                                           last_boosted_q * 0.50, bit_depth);
   1064         active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality);
   1065       }
   1066     } else {
   1067       // Not forced keyframe.
   1068       double q_adj_factor = 1.0;
   1069       double q_val;
   1070 
   1071       // Baseline value derived from cpi->active_worst_quality and kf boost.
   1072       active_best_quality =
   1073           get_kf_active_quality(rc, active_worst_quality, bit_depth);
   1074 
   1075       if (cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) {
   1076         active_best_quality /= 3;
   1077       }
   1078 
   1079       // Allow somewhat lower kf minq with small image formats.
   1080       if ((width * height) <= (352 * 288)) {
   1081         q_adj_factor -= 0.25;
   1082       }
   1083 
   1084       // Make a further adjustment based on the kf zero motion measure.
   1085       q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
   1086 
   1087       // Convert the adjustment factor to a qindex delta
   1088       // on active_best_quality.
   1089       q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth);
   1090       active_best_quality +=
   1091           av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth);
   1092     }
   1093   } else if (!rc->is_src_frame_alt_ref &&
   1094              (cpi->refresh_golden_frame || is_intrl_arf_boost ||
   1095               cpi->refresh_alt_ref_frame)) {
   1096     // Use the lower of active_worst_quality and recent
   1097     // average Q as basis for GF/ARF best Q limit unless last frame was
   1098     // a key frame.
   1099     if (rc->frames_since_key > 1 &&
   1100         rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
   1101       q = rc->avg_frame_qindex[INTER_FRAME];
   1102     } else {
   1103       q = active_worst_quality;
   1104     }
   1105     // For constrained quality dont allow Q less than the cq level
   1106     if (oxcf->rc_mode == AOM_CQ) {
   1107       if (q < cq_level) q = cq_level;
   1108 
   1109       active_best_quality = get_gf_active_quality(rc, q, bit_depth);
   1110 
   1111       // Constrained quality use slightly lower active best.
   1112       active_best_quality = active_best_quality * 15 / 16;
   1113 
   1114       if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
   1115         const int min_boost = get_gf_high_motion_quality(q, bit_depth);
   1116         const int boost = min_boost - active_best_quality;
   1117 
   1118         active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor);
   1119         *arf_q = active_best_quality;
   1120       } else if (is_intrl_arf_boost) {
   1121         assert(rc->arf_q >= 0);  // Ensure it is set to a valid value.
   1122         active_best_quality = rc->arf_q;
   1123         int this_height = gf_group_pyramid_level(cpi);
   1124         while (this_height < gf_group->pyramid_height) {
   1125           active_best_quality = (active_best_quality + cq_level + 1) / 2;
   1126           ++this_height;
   1127         }
   1128       }
   1129     } else if (oxcf->rc_mode == AOM_Q) {
   1130       if (!cpi->refresh_alt_ref_frame && !is_intrl_arf_boost) {
   1131         active_best_quality = cq_level;
   1132       } else {
   1133         if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
   1134           active_best_quality = get_gf_active_quality(rc, q, bit_depth);
   1135           const int min_boost = get_gf_high_motion_quality(q, bit_depth);
   1136           const int boost = min_boost - active_best_quality;
   1137 
   1138           active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor);
   1139           *arf_q = active_best_quality;
   1140         } else {
   1141           assert(rc->arf_q >= 0);  // Ensure it is set to a valid value.
   1142           assert(is_intrl_arf_boost);
   1143           active_best_quality = rc->arf_q;
   1144           int this_height = gf_group_pyramid_level(cpi);
   1145           while (this_height < gf_group->pyramid_height) {
   1146             active_best_quality = (active_best_quality + cq_level + 1) / 2;
   1147             ++this_height;
   1148           }
   1149         }
   1150       }
   1151     } else {
   1152       active_best_quality = get_gf_active_quality(rc, q, bit_depth);
   1153       const int min_boost = get_gf_high_motion_quality(q, bit_depth);
   1154       const int boost = min_boost - active_best_quality;
   1155 
   1156       active_best_quality = min_boost - (int)(boost * rc->arf_boost_factor);
   1157       if (is_intrl_arf_boost) {
   1158         int this_height = gf_group_pyramid_level(cpi);
   1159         while (this_height < gf_group->pyramid_height) {
   1160           active_best_quality =
   1161               (active_best_quality + active_worst_quality + 1) / 2;
   1162           ++this_height;
   1163         }
   1164       }
   1165     }
   1166   } else {
   1167     if (oxcf->rc_mode == AOM_Q) {
   1168       active_best_quality = cq_level;
   1169     } else {
   1170       active_best_quality = inter_minq[active_worst_quality];
   1171 
   1172       // For the constrained quality mode we don't want
   1173       // q to fall below the cq level.
   1174       if ((oxcf->rc_mode == AOM_CQ) && (active_best_quality < cq_level)) {
   1175         active_best_quality = cq_level;
   1176       }
   1177     }
   1178   }
   1179 
   1180   // Extension to max or min Q if undershoot or overshoot is outside
   1181   // the permitted range.
   1182   if (cpi->oxcf.rc_mode != AOM_Q) {
   1183     if (frame_is_intra_only(cm) ||
   1184         (!rc->is_src_frame_alt_ref &&
   1185          (cpi->refresh_golden_frame || is_intrl_arf_boost ||
   1186           cpi->refresh_alt_ref_frame))) {
   1187       active_best_quality -=
   1188           (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast);
   1189       active_worst_quality += (cpi->twopass.extend_maxq / 2);
   1190     } else {
   1191       active_best_quality -=
   1192           (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2;
   1193       active_worst_quality += cpi->twopass.extend_maxq;
   1194     }
   1195   }
   1196 
   1197   aom_clear_system_state();
   1198   // Static forced key frames Q restrictions dealt with elsewhere.
   1199   if (!(frame_is_intra_only(cm)) || !rc->this_key_frame_forced ||
   1200       (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
   1201     const int qdelta = av1_frame_type_qdelta(cpi, active_worst_quality);
   1202     active_worst_quality =
   1203         AOMMAX(active_worst_quality + qdelta, active_best_quality);
   1204   }
   1205 
   1206   // Modify active_best_quality for downscaled normal frames.
   1207   if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) {
   1208     int qdelta = av1_compute_qdelta_by_rate(
   1209         rc, cm->current_frame.frame_type, active_best_quality, 2.0, bit_depth);
   1210     active_best_quality =
   1211         AOMMAX(active_best_quality + qdelta, rc->best_quality);
   1212   }
   1213 
   1214   active_best_quality =
   1215       clamp(active_best_quality, rc->best_quality, rc->worst_quality);
   1216   active_worst_quality =
   1217       clamp(active_worst_quality, active_best_quality, rc->worst_quality);
   1218 
   1219   if (oxcf->rc_mode == AOM_Q ||
   1220       (frame_is_intra_only(cm) && !rc->this_key_frame_forced &&
   1221        cpi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH &&
   1222        rc->frames_to_key > 1)) {
   1223     q = active_best_quality;
   1224     // Special case code to try and match quality with forced key frames.
   1225   } else if (frame_is_intra_only(cm) && rc->this_key_frame_forced) {
   1226     // If static since last kf use better of last boosted and last kf q.
   1227     if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
   1228       q = AOMMIN(rc->last_kf_qindex, rc->last_boosted_qindex);
   1229     } else {
   1230       q = AOMMIN(rc->last_boosted_qindex,
   1231                  (active_best_quality + active_worst_quality) / 2);
   1232     }
   1233   } else {
   1234     q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality,
   1235                           active_worst_quality, width, height);
   1236     if (q > active_worst_quality) {
   1237       // Special case when we are targeting the max allowed rate.
   1238       if (rc->this_frame_target >= rc->max_frame_bandwidth)
   1239         active_worst_quality = q;
   1240       else
   1241         q = active_worst_quality;
   1242     }
   1243   }
   1244   clamp(q, active_best_quality, active_worst_quality);
   1245 
   1246   *top_index = active_worst_quality;
   1247   *bottom_index = active_best_quality;
   1248 
   1249   assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality);
   1250   assert(*bottom_index <= rc->worst_quality &&
   1251          *bottom_index >= rc->best_quality);
   1252   assert(q <= rc->worst_quality && q >= rc->best_quality);
   1253   return q;
   1254 }
   1255 
   1256 int av1_rc_pick_q_and_bounds(AV1_COMP *cpi, int width, int height,
   1257                              int *bottom_index, int *top_index) {
   1258   int q;
   1259   if (cpi->oxcf.pass == 0) {
   1260     if (cpi->oxcf.rc_mode == AOM_CBR)
   1261       q = rc_pick_q_and_bounds_one_pass_cbr(cpi, width, height, bottom_index,
   1262                                             top_index);
   1263     else
   1264       q = rc_pick_q_and_bounds_one_pass_vbr(cpi, width, height, bottom_index,
   1265                                             top_index);
   1266   } else {
   1267     assert(cpi->oxcf.pass == 2 && "invalid encode pass");
   1268 
   1269     GF_GROUP *gf_group = &cpi->twopass.gf_group;
   1270     int arf_q = -1;  // Initialize to invalid value, for sanity check later.
   1271 
   1272     q = rc_pick_q_and_bounds_two_pass(cpi, width, height, bottom_index,
   1273                                       top_index, &arf_q);
   1274 
   1275     if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
   1276       cpi->rc.arf_q = arf_q;
   1277     }
   1278   }
   1279 
   1280   return q;
   1281 }
   1282 
   1283 void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target,
   1284                                       int *frame_under_shoot_limit,
   1285                                       int *frame_over_shoot_limit) {
   1286   if (cpi->oxcf.rc_mode == AOM_Q) {
   1287     *frame_under_shoot_limit = 0;
   1288     *frame_over_shoot_limit = INT_MAX;
   1289   } else {
   1290     // For very small rate targets where the fractional adjustment
   1291     // may be tiny make sure there is at least a minimum range.
   1292     const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
   1293     *frame_under_shoot_limit = AOMMAX(frame_target - tolerance - 200, 0);
   1294     *frame_over_shoot_limit =
   1295         AOMMIN(frame_target + tolerance + 200, cpi->rc.max_frame_bandwidth);
   1296   }
   1297 }
   1298 
   1299 static void rc_set_frame_target(AV1_COMP *cpi, int target, int width,
   1300                                 int height) {
   1301   const AV1_COMMON *const cm = &cpi->common;
   1302   RATE_CONTROL *const rc = &cpi->rc;
   1303 
   1304   rc->this_frame_target = target;
   1305 
   1306   // Modify frame size target when down-scaled.
   1307   if (av1_frame_scaled(cm))
   1308     rc->this_frame_target =
   1309         (int)(rc->this_frame_target * resize_rate_factor(cpi, width, height));
   1310 
   1311   // Target rate per SB64 (including partial SB64s.
   1312   rc->sb64_target_rate =
   1313       (int)((int64_t)rc->this_frame_target * 64 * 64) / (width * height);
   1314 }
   1315 
   1316 static void update_alt_ref_frame_stats(AV1_COMP *cpi) {
   1317   // this frame refreshes means next frames don't unless specified by user
   1318   RATE_CONTROL *const rc = &cpi->rc;
   1319   rc->frames_since_golden = 0;
   1320 
   1321   // Mark the alt ref as done (setting to 0 means no further alt refs pending).
   1322   rc->source_alt_ref_pending = 0;
   1323 
   1324   // Set the alternate reference frame active flag
   1325   rc->source_alt_ref_active = 1;
   1326 }
   1327 
   1328 static void update_golden_frame_stats(AV1_COMP *cpi) {
   1329   RATE_CONTROL *const rc = &cpi->rc;
   1330   const TWO_PASS *const twopass = &cpi->twopass;
   1331   const GF_GROUP *const gf_group = &twopass->gf_group;
   1332   const int is_intrnl_arf =
   1333       cpi->oxcf.pass == 2
   1334           ? gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE
   1335           : cpi->refresh_alt2_ref_frame;
   1336 
   1337   // Update the Golden frame usage counts.
   1338   // NOTE(weitinglin): If we use show_existing_frame for an OVERLAY frame,
   1339   //                   only the virtual indices for the reference frame will be
   1340   //                   updated and cpi->refresh_golden_frame will still be zero.
   1341   if (cpi->refresh_golden_frame || rc->is_src_frame_alt_ref) {
   1342     // We will not use internal overlay frames to replace the golden frame
   1343     if (!rc->is_src_frame_internal_arf) {
   1344       // this frame refreshes means next frames don't unless specified by user
   1345       rc->frames_since_golden = 0;
   1346     }
   1347 
   1348     // If we are not using alt ref in the up and coming group clear the arf
   1349     // active flag. In multi arf group case, if the index is not 0 then
   1350     // we are overlaying a mid group arf so should not reset the flag.
   1351     if (cpi->oxcf.pass == 2) {
   1352       if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0))
   1353         rc->source_alt_ref_active = 0;
   1354     } else if (!rc->source_alt_ref_pending) {
   1355       rc->source_alt_ref_active = 0;
   1356     }
   1357   } else if (!cpi->refresh_alt_ref_frame && !is_intrnl_arf) {
   1358     rc->frames_since_golden++;
   1359   }
   1360 }
   1361 
   1362 void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) {
   1363   const AV1_COMMON *const cm = &cpi->common;
   1364   const CurrentFrame *const current_frame = &cm->current_frame;
   1365   RATE_CONTROL *const rc = &cpi->rc;
   1366   const TWO_PASS *const twopass = &cpi->twopass;
   1367   const GF_GROUP *const gf_group = &twopass->gf_group;
   1368   const int is_intrnl_arf =
   1369       cpi->oxcf.pass == 2
   1370           ? gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE
   1371           : cpi->refresh_alt2_ref_frame;
   1372 
   1373   const int qindex = cm->base_qindex;
   1374 
   1375   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
   1376     av1_cyclic_refresh_postencode(cpi);
   1377   }
   1378 
   1379   // Update rate control heuristics
   1380   rc->projected_frame_size = (int)(bytes_used << 3);
   1381 
   1382   // Post encode loop adjustment of Q prediction.
   1383   av1_rc_update_rate_correction_factors(cpi, cm->width, cm->height);
   1384 
   1385   // Keep a record of last Q and ambient average Q.
   1386   if (current_frame->frame_type == KEY_FRAME) {
   1387     rc->last_q[KEY_FRAME] = qindex;
   1388     rc->avg_frame_qindex[KEY_FRAME] =
   1389         ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
   1390   } else {
   1391     if (!rc->is_src_frame_alt_ref &&
   1392         !(cpi->refresh_golden_frame || is_intrnl_arf ||
   1393           cpi->refresh_alt_ref_frame)) {
   1394       rc->last_q[INTER_FRAME] = qindex;
   1395       rc->avg_frame_qindex[INTER_FRAME] =
   1396           ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
   1397       rc->ni_frames++;
   1398       rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params.bit_depth);
   1399       rc->avg_q = rc->tot_q / rc->ni_frames;
   1400       // Calculate the average Q for normal inter frames (not key or GFU
   1401       // frames).
   1402       rc->ni_tot_qi += qindex;
   1403       rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
   1404     }
   1405   }
   1406 
   1407   // Keep record of last boosted (KF/GF/ARF) Q value.
   1408   // If the current frame is coded at a lower Q then we also update it.
   1409   // If all mbs in this group are skipped only update if the Q value is
   1410   // better than that already stored.
   1411   // This is used to help set quality in forced key frames to reduce popping
   1412   if ((qindex < rc->last_boosted_qindex) ||
   1413       (current_frame->frame_type == KEY_FRAME) ||
   1414       (!rc->constrained_gf_group &&
   1415        (cpi->refresh_alt_ref_frame || is_intrnl_arf ||
   1416         (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
   1417     rc->last_boosted_qindex = qindex;
   1418   }
   1419   if (current_frame->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex;
   1420 
   1421   update_buffer_level(cpi, rc->projected_frame_size);
   1422 
   1423   // Rolling monitors of whether we are over or underspending used to help
   1424   // regulate min and Max Q in two pass.
   1425   if (av1_frame_scaled(cm))
   1426     rc->this_frame_target =
   1427         (int)(rc->this_frame_target /
   1428               resize_rate_factor(cpi, cm->width, cm->height));
   1429   if (current_frame->frame_type != KEY_FRAME) {
   1430     rc->rolling_target_bits = ROUND_POWER_OF_TWO(
   1431         rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
   1432     rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
   1433         rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
   1434     rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
   1435         rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
   1436     rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
   1437         rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
   1438   }
   1439 
   1440   // Actual bits spent
   1441   rc->total_actual_bits += rc->projected_frame_size;
   1442   rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
   1443 
   1444   rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
   1445 
   1446   if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
   1447       (current_frame->frame_type != KEY_FRAME))
   1448     // Update the alternate reference frame stats as appropriate.
   1449     update_alt_ref_frame_stats(cpi);
   1450   else
   1451     // Update the Golden frame stats as appropriate.
   1452     update_golden_frame_stats(cpi);
   1453 
   1454   if (current_frame->frame_type == KEY_FRAME) rc->frames_since_key = 0;
   1455   // if (current_frame->frame_number == 1 && cm->show_frame)
   1456   /*
   1457   rc->this_frame_target =
   1458       (int)(rc->this_frame_target / resize_rate_factor(cpi, cm->width,
   1459   cm->height));
   1460       */
   1461 }
   1462 
   1463 void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) {
   1464   // Update buffer level with zero size, update frame counters, and return.
   1465   update_buffer_level(cpi, 0);
   1466   cpi->rc.frames_since_key++;
   1467   cpi->rc.frames_to_key--;
   1468   cpi->rc.rc_2_frame = 0;
   1469   cpi->rc.rc_1_frame = 0;
   1470 }
   1471 
   1472 // Use this macro to turn on/off use of alt-refs in one-pass mode.
   1473 #define USE_ALTREF_FOR_ONE_PASS 1
   1474 
   1475 static int calc_pframe_target_size_one_pass_vbr(
   1476     const AV1_COMP *const cpi, FRAME_UPDATE_TYPE frame_update_type) {
   1477   static const int af_ratio = 10;
   1478   const RATE_CONTROL *const rc = &cpi->rc;
   1479   int target;
   1480 #if USE_ALTREF_FOR_ONE_PASS
   1481   if (frame_update_type == KF_UPDATE || frame_update_type == GF_UPDATE ||
   1482       frame_update_type == ARF_UPDATE) {
   1483     target = (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
   1484              (rc->baseline_gf_interval + af_ratio - 1);
   1485   } else {
   1486     target = (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
   1487              (rc->baseline_gf_interval + af_ratio - 1);
   1488   }
   1489 #else
   1490   target = rc->avg_frame_bandwidth;
   1491 #endif
   1492   return av1_rc_clamp_pframe_target_size(cpi, target, frame_update_type);
   1493 }
   1494 
   1495 static int calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) {
   1496   static const int kf_ratio = 25;
   1497   const RATE_CONTROL *rc = &cpi->rc;
   1498   const int target = rc->avg_frame_bandwidth * kf_ratio;
   1499   return av1_rc_clamp_iframe_target_size(cpi, target);
   1500 }
   1501 
   1502 void av1_rc_get_one_pass_vbr_params(AV1_COMP *cpi,
   1503                                     FRAME_UPDATE_TYPE *const frame_update_type,
   1504                                     EncodeFrameParams *const frame_params,
   1505                                     unsigned int frame_flags) {
   1506   AV1_COMMON *const cm = &cpi->common;
   1507   RATE_CONTROL *const rc = &cpi->rc;
   1508   CurrentFrame *const current_frame = &cm->current_frame;
   1509   int target;
   1510   int altref_enabled = is_altref_enabled(cpi);
   1511   int sframe_dist = cpi->oxcf.sframe_dist;
   1512   int sframe_mode = cpi->oxcf.sframe_mode;
   1513   int sframe_enabled = cpi->oxcf.sframe_enabled;
   1514   // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
   1515   if (*frame_update_type != ARF_UPDATE &&
   1516       (current_frame->frame_number == 0 || (frame_flags & FRAMEFLAGS_KEY) ||
   1517        rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) {
   1518     frame_params->frame_type = KEY_FRAME;
   1519     rc->this_key_frame_forced =
   1520         current_frame->frame_number != 0 && rc->frames_to_key == 0;
   1521     rc->frames_to_key = cpi->oxcf.key_freq;
   1522     rc->kf_boost = DEFAULT_KF_BOOST;
   1523     rc->source_alt_ref_active = 0;
   1524   } else {
   1525     frame_params->frame_type = INTER_FRAME;
   1526     if (sframe_enabled) {
   1527       if (altref_enabled) {
   1528         if (sframe_mode == 1) {
   1529           // sframe_mode == 1: insert sframe if it matches altref frame.
   1530 
   1531           if (current_frame->frame_number % sframe_dist == 0 &&
   1532               current_frame->frame_number != 0 &&
   1533               *frame_update_type == ARF_UPDATE) {
   1534             frame_params->frame_type = S_FRAME;
   1535           }
   1536         } else {
   1537           // sframe_mode != 1: if sframe will be inserted at the next available
   1538           // altref frame
   1539 
   1540           if (current_frame->frame_number % sframe_dist == 0 &&
   1541               current_frame->frame_number != 0) {
   1542             rc->sframe_due = 1;
   1543           }
   1544 
   1545           if (rc->sframe_due && *frame_update_type == ARF_UPDATE) {
   1546             frame_params->frame_type = S_FRAME;
   1547             rc->sframe_due = 0;
   1548           }
   1549         }
   1550       } else {
   1551         if (current_frame->frame_number % sframe_dist == 0 &&
   1552             current_frame->frame_number != 0) {
   1553           frame_params->frame_type = S_FRAME;
   1554         }
   1555       }
   1556     }
   1557   }
   1558   if (rc->frames_till_gf_update_due == 0) {
   1559     rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2;
   1560     rc->frames_till_gf_update_due = rc->baseline_gf_interval;
   1561     // NOTE: frames_till_gf_update_due must be <= frames_to_key.
   1562     if (rc->frames_till_gf_update_due > rc->frames_to_key) {
   1563       rc->frames_till_gf_update_due = rc->frames_to_key;
   1564       rc->constrained_gf_group = 1;
   1565     } else {
   1566       rc->constrained_gf_group = 0;
   1567     }
   1568     if (*frame_update_type == LF_UPDATE) *frame_update_type = GF_UPDATE;
   1569     rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
   1570     rc->gfu_boost = DEFAULT_GF_BOOST;
   1571   }
   1572 
   1573   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
   1574     av1_cyclic_refresh_update_parameters(cpi);
   1575 
   1576   if (frame_params->frame_type == KEY_FRAME)
   1577     target = calc_iframe_target_size_one_pass_vbr(cpi);
   1578   else
   1579     target = calc_pframe_target_size_one_pass_vbr(cpi, *frame_update_type);
   1580   rc_set_frame_target(cpi, target, cm->width, cm->height);
   1581 }
   1582 
   1583 static int calc_pframe_target_size_one_pass_cbr(
   1584     const AV1_COMP *cpi, FRAME_UPDATE_TYPE frame_update_type) {
   1585   const AV1EncoderConfig *oxcf = &cpi->oxcf;
   1586   const RATE_CONTROL *rc = &cpi->rc;
   1587   const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
   1588   const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
   1589   int min_frame_target =
   1590       AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
   1591   int target;
   1592 
   1593   if (oxcf->gf_cbr_boost_pct) {
   1594     const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100;
   1595     if (frame_update_type == GF_UPDATE || frame_update_type == OVERLAY_UPDATE) {
   1596       target =
   1597           (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) /
   1598           (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
   1599     } else {
   1600       target = (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) /
   1601                (rc->baseline_gf_interval * 100 + af_ratio_pct - 100);
   1602     }
   1603   } else {
   1604     target = rc->avg_frame_bandwidth;
   1605   }
   1606 
   1607   if (diff > 0) {
   1608     // Lower the target bandwidth for this frame.
   1609     const int pct_low = (int)AOMMIN(diff / one_pct_bits, oxcf->under_shoot_pct);
   1610     target -= (target * pct_low) / 200;
   1611   } else if (diff < 0) {
   1612     // Increase the target bandwidth for this frame.
   1613     const int pct_high =
   1614         (int)AOMMIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
   1615     target += (target * pct_high) / 200;
   1616   }
   1617   if (oxcf->rc_max_inter_bitrate_pct) {
   1618     const int max_rate =
   1619         rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100;
   1620     target = AOMMIN(target, max_rate);
   1621   }
   1622   return AOMMAX(min_frame_target, target);
   1623 }
   1624 
   1625 static int calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) {
   1626   const RATE_CONTROL *rc = &cpi->rc;
   1627   int target;
   1628   if (cpi->common.current_frame.frame_number == 0) {
   1629     target = ((rc->starting_buffer_level / 2) > INT_MAX)
   1630                  ? INT_MAX
   1631                  : (int)(rc->starting_buffer_level / 2);
   1632   } else {
   1633     int kf_boost = 32;
   1634     double framerate = cpi->framerate;
   1635 
   1636     kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16));
   1637     if (rc->frames_since_key < framerate / 2) {
   1638       kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2));
   1639     }
   1640     target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
   1641   }
   1642   return av1_rc_clamp_iframe_target_size(cpi, target);
   1643 }
   1644 
   1645 void av1_rc_get_one_pass_cbr_params(AV1_COMP *cpi,
   1646                                     FRAME_UPDATE_TYPE *const frame_update_type,
   1647                                     EncodeFrameParams *const frame_params,
   1648                                     unsigned int frame_flags) {
   1649   AV1_COMMON *const cm = &cpi->common;
   1650   RATE_CONTROL *const rc = &cpi->rc;
   1651   CurrentFrame *const current_frame = &cm->current_frame;
   1652   int target;
   1653   // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
   1654   if ((current_frame->frame_number == 0 || (frame_flags & FRAMEFLAGS_KEY) ||
   1655        rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) {
   1656     frame_params->frame_type = KEY_FRAME;
   1657     rc->this_key_frame_forced =
   1658         current_frame->frame_number != 0 && rc->frames_to_key == 0;
   1659     rc->frames_to_key = cpi->oxcf.key_freq;
   1660     rc->kf_boost = DEFAULT_KF_BOOST;
   1661     rc->source_alt_ref_active = 0;
   1662   } else {
   1663     frame_params->frame_type = INTER_FRAME;
   1664   }
   1665   if (rc->frames_till_gf_update_due == 0) {
   1666     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
   1667       av1_cyclic_refresh_set_golden_update(cpi);
   1668     else
   1669       rc->baseline_gf_interval =
   1670           (rc->min_gf_interval + rc->max_gf_interval) / 2;
   1671     rc->frames_till_gf_update_due = rc->baseline_gf_interval;
   1672     // NOTE: frames_till_gf_update_due must be <= frames_to_key.
   1673     if (rc->frames_till_gf_update_due > rc->frames_to_key)
   1674       rc->frames_till_gf_update_due = rc->frames_to_key;
   1675     if (*frame_update_type == LF_UPDATE) *frame_update_type = GF_UPDATE;
   1676     rc->gfu_boost = DEFAULT_GF_BOOST;
   1677   }
   1678 
   1679   // Any update/change of global cyclic refresh parameters (amount/delta-qp)
   1680   // should be done here, before the frame qp is selected.
   1681   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
   1682     av1_cyclic_refresh_update_parameters(cpi);
   1683 
   1684   if (frame_params->frame_type == KEY_FRAME)
   1685     target = calc_iframe_target_size_one_pass_cbr(cpi);
   1686   else
   1687     target = calc_pframe_target_size_one_pass_cbr(cpi, *frame_update_type);
   1688 
   1689   rc_set_frame_target(cpi, target, cm->width, cm->height);
   1690   // TODO(afergs): Decide whether to scale up, down, or not at all
   1691 }
   1692 
   1693 int av1_find_qindex(double desired_q, aom_bit_depth_t bit_depth,
   1694                     int best_qindex, int worst_qindex) {
   1695   assert(best_qindex <= worst_qindex);
   1696   int low = best_qindex;
   1697   int high = worst_qindex;
   1698   while (low < high) {
   1699     const int mid = (low + high) >> 1;
   1700     const double mid_q = av1_convert_qindex_to_q(mid, bit_depth);
   1701     if (mid_q < desired_q) {
   1702       low = mid + 1;
   1703     } else {
   1704       high = mid;
   1705     }
   1706   }
   1707   assert(low == high);
   1708   assert(av1_convert_qindex_to_q(low, bit_depth) >= desired_q ||
   1709          low == worst_qindex);
   1710   return low;
   1711 }
   1712 
   1713 int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
   1714                        aom_bit_depth_t bit_depth) {
   1715   const int start_index =
   1716       av1_find_qindex(qstart, bit_depth, rc->best_quality, rc->worst_quality);
   1717   const int target_index =
   1718       av1_find_qindex(qtarget, bit_depth, rc->best_quality, rc->worst_quality);
   1719   return target_index - start_index;
   1720 }
   1721 
   1722 // Find q_index for the desired_bits_per_mb, within [best_qindex, worst_qindex],
   1723 // assuming 'correction_factor' is 1.0.
   1724 // To be precise, 'q_index' is the smallest integer, for which the corresponding
   1725 // bits per mb <= desired_bits_per_mb.
   1726 // If no such q index is found, returns 'worst_qindex'.
   1727 static int find_qindex_by_rate(int desired_bits_per_mb,
   1728                                aom_bit_depth_t bit_depth, FRAME_TYPE frame_type,
   1729                                int best_qindex, int worst_qindex) {
   1730   assert(best_qindex <= worst_qindex);
   1731   int low = best_qindex;
   1732   int high = worst_qindex;
   1733   while (low < high) {
   1734     const int mid = (low + high) >> 1;
   1735     const int mid_bits_per_mb =
   1736         av1_rc_bits_per_mb(frame_type, mid, 1.0, bit_depth);
   1737     if (mid_bits_per_mb > desired_bits_per_mb) {
   1738       low = mid + 1;
   1739     } else {
   1740       high = mid;
   1741     }
   1742   }
   1743   assert(low == high);
   1744   assert(av1_rc_bits_per_mb(frame_type, low, 1.0, bit_depth) <=
   1745              desired_bits_per_mb ||
   1746          low == worst_qindex);
   1747   return low;
   1748 }
   1749 
   1750 int av1_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
   1751                                int qindex, double rate_target_ratio,
   1752                                aom_bit_depth_t bit_depth) {
   1753   // Look up the current projected bits per block for the base index
   1754   const int base_bits_per_mb =
   1755       av1_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth);
   1756 
   1757   // Find the target bits per mb based on the base value and given ratio.
   1758   const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
   1759 
   1760   const int target_index =
   1761       find_qindex_by_rate(target_bits_per_mb, bit_depth, frame_type,
   1762                           rc->best_quality, rc->worst_quality);
   1763   return target_index - qindex;
   1764 }
   1765 
   1766 void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi,
   1767                                   RATE_CONTROL *const rc) {
   1768   const AV1EncoderConfig *const oxcf = &cpi->oxcf;
   1769 
   1770   // Special case code for 1 pass fixed Q mode tests
   1771   if ((oxcf->pass == 0) && (oxcf->rc_mode == AOM_Q)) {
   1772     rc->max_gf_interval = FIXED_GF_INTERVAL;
   1773     rc->min_gf_interval = FIXED_GF_INTERVAL;
   1774     rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL;
   1775   } else {
   1776     // Set Maximum gf/arf interval
   1777     rc->max_gf_interval = oxcf->max_gf_interval;
   1778     rc->min_gf_interval = oxcf->min_gf_interval;
   1779     if (rc->min_gf_interval == 0)
   1780       rc->min_gf_interval = av1_rc_get_default_min_gf_interval(
   1781           oxcf->width, oxcf->height, cpi->framerate);
   1782     if (rc->max_gf_interval == 0)
   1783       rc->max_gf_interval = av1_rc_get_default_max_gf_interval(
   1784           cpi->framerate, rc->min_gf_interval);
   1785 
   1786     // Extended max interval for genuinely static scenes like slide shows.
   1787     rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH;
   1788 
   1789     if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
   1790       rc->max_gf_interval = rc->static_scene_max_gf_interval;
   1791 
   1792     // Clamp min to max
   1793     rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval);
   1794   }
   1795 }
   1796 
   1797 void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) {
   1798   const AV1EncoderConfig *const oxcf = &cpi->oxcf;
   1799   RATE_CONTROL *const rc = &cpi->rc;
   1800   int vbr_max_bits;
   1801   const int MBs = av1_get_MBs(width, height);
   1802 
   1803   rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
   1804   rc->min_frame_bandwidth =
   1805       (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100);
   1806 
   1807   rc->min_frame_bandwidth =
   1808       AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
   1809 
   1810   // A maximum bitrate for a frame is defined.
   1811   // The baseline for this aligns with HW implementations that
   1812   // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
   1813   // per 16x16 MB (averaged over a frame). However this limit is extended if
   1814   // a very high rate is given on the command line or the the rate cannnot
   1815   // be acheived because of a user specificed max q (e.g. when the user
   1816   // specifies lossless encode.
   1817   vbr_max_bits =
   1818       (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) /
   1819             100);
   1820   rc->max_frame_bandwidth =
   1821       AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits);
   1822 
   1823   av1_rc_set_gf_interval_range(cpi, rc);
   1824 }
   1825 
   1826 #define VBR_PCT_ADJUSTMENT_LIMIT 50
   1827 // For VBR...adjustment to the frame target based on error from previous frames
   1828 static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) {
   1829   RATE_CONTROL *const rc = &cpi->rc;
   1830   int64_t vbr_bits_off_target = rc->vbr_bits_off_target;
   1831   int max_delta;
   1832   double position_factor = 1.0;
   1833 
   1834   // How far through the clip are we.
   1835   // This number is used to damp the per frame rate correction.
   1836   // Range 0 - 1.0
   1837   if (cpi->twopass.total_stats.count != 0.) {
   1838     position_factor = sqrt((double)cpi->common.current_frame.frame_number /
   1839                            cpi->twopass.total_stats.count);
   1840   }
   1841   max_delta = (int)(position_factor *
   1842                     ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100));
   1843 
   1844   // vbr_bits_off_target > 0 means we have extra bits to spend
   1845   if (vbr_bits_off_target > 0) {
   1846     *this_frame_target += (vbr_bits_off_target > max_delta)
   1847                               ? max_delta
   1848                               : (int)vbr_bits_off_target;
   1849   } else {
   1850     *this_frame_target -= (vbr_bits_off_target < -max_delta)
   1851                               ? max_delta
   1852                               : (int)-vbr_bits_off_target;
   1853   }
   1854 
   1855   // Fast redistribution of bits arising from massive local undershoot.
   1856   // Dont do it for kf,arf,gf or overlay frames.
   1857   if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref &&
   1858       rc->vbr_bits_off_target_fast) {
   1859     int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target);
   1860     int fast_extra_bits;
   1861     fast_extra_bits = (int)AOMMIN(rc->vbr_bits_off_target_fast, one_frame_bits);
   1862     fast_extra_bits = (int)AOMMIN(
   1863         fast_extra_bits,
   1864         AOMMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8));
   1865     *this_frame_target += (int)fast_extra_bits;
   1866     rc->vbr_bits_off_target_fast -= fast_extra_bits;
   1867   }
   1868 }
   1869 
   1870 void av1_set_target_rate(AV1_COMP *cpi, int width, int height) {
   1871   RATE_CONTROL *const rc = &cpi->rc;
   1872   int target_rate = rc->base_frame_target;
   1873 
   1874   // Correction to rate target based on prior over or under shoot.
   1875   if (cpi->oxcf.rc_mode == AOM_VBR || cpi->oxcf.rc_mode == AOM_CQ)
   1876     vbr_rate_correction(cpi, &target_rate);
   1877   rc_set_frame_target(cpi, target_rate, width, height);
   1878 }
   1879