Home | History | Annotate | Download | only in i965
      1 /*
      2  * Copyright  2014 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  */
     23 
     24 #include "brw_context.h"
     25 #include "brw_defines.h"
     26 #include "intel_fbo.h"
     27 #include "brw_meta_util.h"
     28 #include "brw_state.h"
     29 #include "main/blend.h"
     30 #include "main/fbobject.h"
     31 #include "util/format_srgb.h"
     32 
     33 /**
     34  * Helper function for handling mirror image blits.
     35  *
     36  * If coord0 > coord1, swap them and invert the "mirror" boolean.
     37  */
     38 static inline void
     39 fixup_mirroring(bool *mirror, float *coord0, float *coord1)
     40 {
     41    if (*coord0 > *coord1) {
     42       *mirror = !*mirror;
     43       float tmp = *coord0;
     44       *coord0 = *coord1;
     45       *coord1 = tmp;
     46    }
     47 }
     48 
     49 /**
     50  * Compute the number of pixels to clip for each side of a rect
     51  *
     52  * \param x0 The rect's left coordinate
     53  * \param y0 The rect's bottom coordinate
     54  * \param x1 The rect's right coordinate
     55  * \param y1 The rect's top coordinate
     56  * \param min_x The clipping region's left coordinate
     57  * \param min_y The clipping region's bottom coordinate
     58  * \param max_x The clipping region's right coordinate
     59  * \param max_y The clipping region's top coordinate
     60  * \param clipped_x0 The number of pixels to clip from the left side
     61  * \param clipped_y0 The number of pixels to clip from the bottom side
     62  * \param clipped_x1 The number of pixels to clip from the right side
     63  * \param clipped_y1 The number of pixels to clip from the top side
     64  *
     65  * \return false if we clip everything away, true otherwise
     66  */
     67 static inline bool
     68 compute_pixels_clipped(float x0, float y0, float x1, float y1,
     69                        float min_x, float min_y, float max_x, float max_y,
     70                        float *clipped_x0, float *clipped_y0, float *clipped_x1, float *clipped_y1)
     71 {
     72    /* If we are going to clip everything away, stop. */
     73    if (!(min_x <= max_x &&
     74          min_y <= max_y &&
     75          x0 <= max_x &&
     76          y0 <= max_y &&
     77          min_x <= x1 &&
     78          min_y <= y1 &&
     79          x0 <= x1 &&
     80          y0 <= y1)) {
     81       return false;
     82    }
     83 
     84    if (x0 < min_x)
     85       *clipped_x0 = min_x - x0;
     86    else
     87       *clipped_x0 = 0;
     88    if (max_x < x1)
     89       *clipped_x1 = x1 - max_x;
     90    else
     91       *clipped_x1 = 0;
     92 
     93    if (y0 < min_y)
     94       *clipped_y0 = min_y - y0;
     95    else
     96       *clipped_y0 = 0;
     97    if (max_y < y1)
     98       *clipped_y1 = y1 - max_y;
     99    else
    100       *clipped_y1 = 0;
    101 
    102    return true;
    103 }
    104 
    105 /**
    106  * Clips a coordinate (left, right, top or bottom) for the src or dst rect
    107  * (whichever requires the largest clip) and adjusts the coordinate
    108  * for the other rect accordingly.
    109  *
    110  * \param mirror true if mirroring is required
    111  * \param src the source rect coordinate (for example srcX0)
    112  * \param dst0 the dst rect coordinate (for example dstX0)
    113  * \param dst1 the opposite dst rect coordinate (for example dstX1)
    114  * \param clipped_src0 number of pixels to clip from the src coordinate
    115  * \param clipped_dst0 number of pixels to clip from the dst coordinate
    116  * \param clipped_dst1 number of pixels to clip from the opposite dst coordinate
    117  * \param scale the src vs dst scale involved for that coordinate
    118  * \param isLeftOrBottom true if we are clipping the left or bottom sides
    119  *        of the rect.
    120  */
    121 static inline void
    122 clip_coordinates(bool mirror,
    123                  float *src, float *dst0, float *dst1,
    124                  float clipped_src0,
    125                  float clipped_dst0,
    126                  float clipped_dst1,
    127                  float scale,
    128                  bool isLeftOrBottom)
    129 {
    130    /* When clipping we need to add or subtract pixels from the original
    131     * coordinates depending on whether we are acting on the left/bottom
    132     * or right/top sides of the rect respectively. We assume we have to
    133     * add them in the code below, and multiply by -1 when we should
    134     * subtract.
    135     */
    136    int mult = isLeftOrBottom ? 1 : -1;
    137 
    138    if (!mirror) {
    139       if (clipped_src0 >= clipped_dst0 * scale) {
    140          *src += clipped_src0 * mult;
    141          *dst0 += clipped_src0 / scale * mult;
    142       } else {
    143          *dst0 += clipped_dst0 * mult;
    144          *src += clipped_dst0 * scale * mult;
    145       }
    146    } else {
    147       if (clipped_src0 >= clipped_dst1 * scale) {
    148          *src += clipped_src0 * mult;
    149          *dst1 -= clipped_src0 / scale * mult;
    150       } else {
    151          *dst1 -= clipped_dst1 * mult;
    152          *src += clipped_dst1 * scale * mult;
    153       }
    154    }
    155 }
    156 
    157 bool
    158 brw_meta_mirror_clip_and_scissor(const struct gl_context *ctx,
    159                                  const struct gl_framebuffer *read_fb,
    160                                  const struct gl_framebuffer *draw_fb,
    161                                  GLfloat *srcX0, GLfloat *srcY0,
    162                                  GLfloat *srcX1, GLfloat *srcY1,
    163                                  GLfloat *dstX0, GLfloat *dstY0,
    164                                  GLfloat *dstX1, GLfloat *dstY1,
    165                                  bool *mirror_x, bool *mirror_y)
    166 {
    167    *mirror_x = false;
    168    *mirror_y = false;
    169 
    170    /* Detect if the blit needs to be mirrored */
    171    fixup_mirroring(mirror_x, srcX0, srcX1);
    172    fixup_mirroring(mirror_x, dstX0, dstX1);
    173    fixup_mirroring(mirror_y, srcY0, srcY1);
    174    fixup_mirroring(mirror_y, dstY0, dstY1);
    175 
    176    /* Compute number of pixels to clip for each side of both rects. Return
    177     * early if we are going to clip everything away.
    178     */
    179    float clip_src_x0;
    180    float clip_src_x1;
    181    float clip_src_y0;
    182    float clip_src_y1;
    183    float clip_dst_x0;
    184    float clip_dst_x1;
    185    float clip_dst_y0;
    186    float clip_dst_y1;
    187 
    188    if (!compute_pixels_clipped(*srcX0, *srcY0, *srcX1, *srcY1,
    189                                0, 0, read_fb->Width, read_fb->Height,
    190                                &clip_src_x0, &clip_src_y0, &clip_src_x1, &clip_src_y1))
    191       return true;
    192 
    193    if (!compute_pixels_clipped(*dstX0, *dstY0, *dstX1, *dstY1,
    194                                draw_fb->_Xmin, draw_fb->_Ymin, draw_fb->_Xmax, draw_fb->_Ymax,
    195                                &clip_dst_x0, &clip_dst_y0, &clip_dst_x1, &clip_dst_y1))
    196       return true;
    197 
    198    /* When clipping any of the two rects we need to adjust the coordinates in
    199     * the other rect considering the scaling factor involved. To obtain the best
    200     * precision we want to make sure that we only clip once per side to avoid
    201     * accumulating errors due to the scaling adjustment.
    202     *
    203     * For example, if srcX0 and dstX0 need both to be clipped we want to avoid
    204     * the situation where we clip srcX0 first, then adjust dstX0 accordingly
    205     * but then we realize that the resulting dstX0 still needs to be clipped,
    206     * so we clip dstX0 and adjust srcX0 again. Because we are applying scaling
    207     * factors to adjust the coordinates in each clipping pass we lose some
    208     * precision and that can affect the results of the blorp blit operation
    209     * slightly. What we want to do here is detect the rect that we should
    210     * clip first for each side so that when we adjust the other rect we ensure
    211     * the resulting coordinate does not need to be clipped again.
    212     *
    213     * The code below implements this by comparing the number of pixels that
    214     * we need to clip for each side of both rects  considering the scales
    215     * involved. For example, clip_src_x0 represents the number of pixels to be
    216     * clipped for the src rect's left side, so if clip_src_x0 = 5,
    217     * clip_dst_x0 = 4 and scaleX = 2 it means that we are clipping more from
    218     * the dst rect so we should clip dstX0 only and adjust srcX0. This is
    219     * because clipping 4 pixels in the dst is equivalent to clipping
    220     * 4 * 2 = 8 > 5 in the src.
    221     */
    222 
    223    float scaleX = (float) (*srcX1 - *srcX0) / (*dstX1 - *dstX0);
    224    float scaleY = (float) (*srcY1 - *srcY0) / (*dstY1 - *dstY0);
    225 
    226    /* Clip left side */
    227    clip_coordinates(*mirror_x,
    228                     srcX0, dstX0, dstX1,
    229                     clip_src_x0, clip_dst_x0, clip_dst_x1,
    230                     scaleX, true);
    231 
    232    /* Clip right side */
    233    clip_coordinates(*mirror_x,
    234                     srcX1, dstX1, dstX0,
    235                     clip_src_x1, clip_dst_x1, clip_dst_x0,
    236                     scaleX, false);
    237 
    238    /* Clip bottom side */
    239    clip_coordinates(*mirror_y,
    240                     srcY0, dstY0, dstY1,
    241                     clip_src_y0, clip_dst_y0, clip_dst_y1,
    242                     scaleY, true);
    243 
    244    /* Clip top side */
    245    clip_coordinates(*mirror_y,
    246                     srcY1, dstY1, dstY0,
    247                     clip_src_y1, clip_dst_y1, clip_dst_y0,
    248                     scaleY, false);
    249 
    250    /* Account for the fact that in the system framebuffer, the origin is at
    251     * the lower left.
    252     */
    253    if (_mesa_is_winsys_fbo(read_fb)) {
    254       GLint tmp = read_fb->Height - *srcY0;
    255       *srcY0 = read_fb->Height - *srcY1;
    256       *srcY1 = tmp;
    257       *mirror_y = !*mirror_y;
    258    }
    259    if (_mesa_is_winsys_fbo(draw_fb)) {
    260       GLint tmp = draw_fb->Height - *dstY0;
    261       *dstY0 = draw_fb->Height - *dstY1;
    262       *dstY1 = tmp;
    263       *mirror_y = !*mirror_y;
    264    }
    265 
    266    return false;
    267 }
    268 
    269 /**
    270  * Determine if fast color clear supports the given clear color.
    271  *
    272  * Fast color clear can only clear to color values of 1.0 or 0.0.  At the
    273  * moment we only support floating point, unorm, and snorm buffers.
    274  */
    275 bool
    276 brw_is_color_fast_clear_compatible(struct brw_context *brw,
    277                                    const struct intel_mipmap_tree *mt,
    278                                    const union gl_color_union *color)
    279 {
    280    const struct gen_device_info *devinfo = &brw->screen->devinfo;
    281    const struct gl_context *ctx = &brw->ctx;
    282 
    283    /* If we're mapping the render format to a different format than the
    284     * format we use for texturing then it is a bit questionable whether it
    285     * should be possible to use a fast clear. Although we only actually
    286     * render using a renderable format, without the override workaround it
    287     * wouldn't be possible to have a non-renderable surface in a fast clear
    288     * state so the hardware probably legitimately doesn't need to support
    289     * this case. At least on Gen9 this really does seem to cause problems.
    290     */
    291    if (devinfo->gen >= 9 &&
    292        brw_isl_format_for_mesa_format(mt->format) !=
    293        brw->mesa_to_isl_render_format[mt->format])
    294       return false;
    295 
    296    const bool srgb_rb = _mesa_get_srgb_format_linear(mt->format) != mt->format;
    297   /* Gen10 doesn't automatically decode the clear color of sRGB buffers. Since
    298    * we currently don't perform this decode in software, avoid a fast-clear
    299    * altogether. TODO: Do this in software.
    300    */
    301    const mesa_format format = _mesa_get_render_format(ctx, mt->format);
    302    if (devinfo->gen >= 10 && srgb_rb) {
    303       perf_debug("sRGB fast clear not enabled for (%s)",
    304                  _mesa_get_format_name(format));
    305       return false;
    306    }
    307 
    308    if (_mesa_is_format_integer_color(format)) {
    309       if (devinfo->gen >= 8) {
    310          perf_debug("Integer fast clear not enabled for (%s)",
    311                     _mesa_get_format_name(format));
    312       }
    313       return false;
    314    }
    315 
    316    for (int i = 0; i < 4; i++) {
    317       if (!_mesa_format_has_color_component(format, i)) {
    318          continue;
    319       }
    320 
    321       if (devinfo->gen < 9 &&
    322           color->f[i] != 0.0f && color->f[i] != 1.0f) {
    323          return false;
    324       }
    325    }
    326    return true;
    327 }
    328 
    329 /**
    330  * Convert the given color to a bitfield suitable for ORing into DWORD 7 of
    331  * SURFACE_STATE (DWORD 12-15 on SKL+).
    332  */
    333 union isl_color_value
    334 brw_meta_convert_fast_clear_color(const struct brw_context *brw,
    335                                   const struct intel_mipmap_tree *mt,
    336                                   const union gl_color_union *color)
    337 {
    338    union isl_color_value override_color = {
    339       .u32 = {
    340          color->ui[0],
    341          color->ui[1],
    342          color->ui[2],
    343          color->ui[3],
    344       },
    345    };
    346 
    347    /* The sampler doesn't look at the format of the surface when the fast
    348     * clear color is used so we need to implement luminance, intensity and
    349     * missing components manually.
    350     */
    351    switch (_mesa_get_format_base_format(mt->format)) {
    352    case GL_INTENSITY:
    353       override_color.u32[3] = override_color.u32[0];
    354       /* flow through */
    355    case GL_LUMINANCE:
    356    case GL_LUMINANCE_ALPHA:
    357       override_color.u32[1] = override_color.u32[0];
    358       override_color.u32[2] = override_color.u32[0];
    359       break;
    360    default:
    361       for (int i = 0; i < 3; i++) {
    362          if (!_mesa_format_has_color_component(mt->format, i))
    363             override_color.u32[i] = 0;
    364       }
    365       break;
    366    }
    367 
    368    switch (_mesa_get_format_datatype(mt->format)) {
    369    case GL_UNSIGNED_NORMALIZED:
    370       for (int i = 0; i < 4; i++)
    371          override_color.f32[i] = CLAMP(override_color.f32[i], 0.0f, 1.0f);
    372       break;
    373 
    374    case GL_SIGNED_NORMALIZED:
    375       for (int i = 0; i < 4; i++)
    376          override_color.f32[i] = CLAMP(override_color.f32[i], -1.0f, 1.0f);
    377       break;
    378 
    379    case GL_UNSIGNED_INT:
    380       for (int i = 0; i < 4; i++) {
    381          unsigned bits = _mesa_get_format_bits(mt->format, GL_RED_BITS + i);
    382          if (bits < 32) {
    383             uint32_t max = (1u << bits) - 1;
    384             override_color.u32[i] = MIN2(override_color.u32[i], max);
    385          }
    386       }
    387       break;
    388 
    389    case GL_INT:
    390       for (int i = 0; i < 4; i++) {
    391          unsigned bits = _mesa_get_format_bits(mt->format, GL_RED_BITS + i);
    392          if (bits < 32) {
    393             int32_t max = (1 << (bits - 1)) - 1;
    394             int32_t min = -(1 << (bits - 1));
    395             override_color.i32[i] = CLAMP(override_color.i32[i], min, max);
    396          }
    397       }
    398       break;
    399 
    400    case GL_FLOAT:
    401       if (!_mesa_is_format_signed(mt->format)) {
    402          for (int i = 0; i < 4; i++)
    403             override_color.f32[i] = MAX2(override_color.f32[i], 0.0f);
    404       }
    405       break;
    406    }
    407 
    408    if (!_mesa_format_has_color_component(mt->format, 3)) {
    409       if (_mesa_is_format_integer_color(mt->format))
    410          override_color.u32[3] = 1;
    411       else
    412          override_color.f32[3] = 1.0f;
    413    }
    414 
    415    /* Handle linear to SRGB conversion */
    416    if (brw->ctx.Color.sRGBEnabled &&
    417        _mesa_get_srgb_format_linear(mt->format) != mt->format) {
    418       for (int i = 0; i < 3; i++) {
    419          override_color.f32[i] =
    420             util_format_linear_to_srgb_float(override_color.f32[i]);
    421       }
    422    }
    423 
    424    return override_color;
    425 }
    426