1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/bignum.h" 6 #include "src/utils.h" 7 8 namespace v8 { 9 namespace internal { 10 11 Bignum::Bignum() 12 : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { 13 for (int i = 0; i < kBigitCapacity; ++i) { 14 bigits_[i] = 0; 15 } 16 } 17 18 19 template<typename S> 20 static int BitSize(S value) { 21 return 8 * sizeof(value); 22 } 23 24 25 // Guaranteed to lie in one Bigit. 26 void Bignum::AssignUInt16(uint16_t value) { 27 DCHECK_GE(kBigitSize, BitSize(value)); 28 Zero(); 29 if (value == 0) return; 30 31 EnsureCapacity(1); 32 bigits_[0] = value; 33 used_digits_ = 1; 34 } 35 36 37 void Bignum::AssignUInt64(uint64_t value) { 38 const int kUInt64Size = 64; 39 40 Zero(); 41 if (value == 0) return; 42 43 int needed_bigits = kUInt64Size / kBigitSize + 1; 44 EnsureCapacity(needed_bigits); 45 for (int i = 0; i < needed_bigits; ++i) { 46 bigits_[i] = static_cast<Chunk>(value & kBigitMask); 47 value = value >> kBigitSize; 48 } 49 used_digits_ = needed_bigits; 50 Clamp(); 51 } 52 53 54 void Bignum::AssignBignum(const Bignum& other) { 55 exponent_ = other.exponent_; 56 for (int i = 0; i < other.used_digits_; ++i) { 57 bigits_[i] = other.bigits_[i]; 58 } 59 // Clear the excess digits (if there were any). 60 for (int i = other.used_digits_; i < used_digits_; ++i) { 61 bigits_[i] = 0; 62 } 63 used_digits_ = other.used_digits_; 64 } 65 66 67 static uint64_t ReadUInt64(Vector<const char> buffer, 68 int from, 69 int digits_to_read) { 70 uint64_t result = 0; 71 int to = from + digits_to_read; 72 73 for (int i = from; i < to; ++i) { 74 int digit = buffer[i] - '0'; 75 DCHECK(0 <= digit && digit <= 9); 76 result = result * 10 + digit; 77 } 78 return result; 79 } 80 81 82 void Bignum::AssignDecimalString(Vector<const char> value) { 83 // 2^64 = 18446744073709551616 > 10^19 84 const int kMaxUint64DecimalDigits = 19; 85 Zero(); 86 int length = value.length(); 87 int pos = 0; 88 // Let's just say that each digit needs 4 bits. 89 while (length >= kMaxUint64DecimalDigits) { 90 uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); 91 pos += kMaxUint64DecimalDigits; 92 length -= kMaxUint64DecimalDigits; 93 MultiplyByPowerOfTen(kMaxUint64DecimalDigits); 94 AddUInt64(digits); 95 } 96 uint64_t digits = ReadUInt64(value, pos, length); 97 MultiplyByPowerOfTen(length); 98 AddUInt64(digits); 99 Clamp(); 100 } 101 102 103 static int HexCharValue(char c) { 104 if ('0' <= c && c <= '9') return c - '0'; 105 if ('a' <= c && c <= 'f') return 10 + c - 'a'; 106 if ('A' <= c && c <= 'F') return 10 + c - 'A'; 107 UNREACHABLE(); 108 } 109 110 111 void Bignum::AssignHexString(Vector<const char> value) { 112 Zero(); 113 int length = value.length(); 114 115 int needed_bigits = length * 4 / kBigitSize + 1; 116 EnsureCapacity(needed_bigits); 117 int string_index = length - 1; 118 for (int i = 0; i < needed_bigits - 1; ++i) { 119 // These bigits are guaranteed to be "full". 120 Chunk current_bigit = 0; 121 for (int j = 0; j < kBigitSize / 4; j++) { 122 current_bigit += HexCharValue(value[string_index--]) << (j * 4); 123 } 124 bigits_[i] = current_bigit; 125 } 126 used_digits_ = needed_bigits - 1; 127 128 Chunk most_significant_bigit = 0; // Could be = 0; 129 for (int j = 0; j <= string_index; ++j) { 130 most_significant_bigit <<= 4; 131 most_significant_bigit += HexCharValue(value[j]); 132 } 133 if (most_significant_bigit != 0) { 134 bigits_[used_digits_] = most_significant_bigit; 135 used_digits_++; 136 } 137 Clamp(); 138 } 139 140 141 void Bignum::AddUInt64(uint64_t operand) { 142 if (operand == 0) return; 143 Bignum other; 144 other.AssignUInt64(operand); 145 AddBignum(other); 146 } 147 148 149 void Bignum::AddBignum(const Bignum& other) { 150 DCHECK(IsClamped()); 151 DCHECK(other.IsClamped()); 152 153 // If this has a greater exponent than other append zero-bigits to this. 154 // After this call exponent_ <= other.exponent_. 155 Align(other); 156 157 // There are two possibilities: 158 // aaaaaaaaaaa 0000 (where the 0s represent a's exponent) 159 // bbbbb 00000000 160 // ---------------- 161 // ccccccccccc 0000 162 // or 163 // aaaaaaaaaa 0000 164 // bbbbbbbbb 0000000 165 // ----------------- 166 // cccccccccccc 0000 167 // In both cases we might need a carry bigit. 168 169 EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); 170 Chunk carry = 0; 171 int bigit_pos = other.exponent_ - exponent_; 172 DCHECK_GE(bigit_pos, 0); 173 for (int i = 0; i < other.used_digits_; ++i) { 174 Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; 175 bigits_[bigit_pos] = sum & kBigitMask; 176 carry = sum >> kBigitSize; 177 bigit_pos++; 178 } 179 180 while (carry != 0) { 181 Chunk sum = bigits_[bigit_pos] + carry; 182 bigits_[bigit_pos] = sum & kBigitMask; 183 carry = sum >> kBigitSize; 184 bigit_pos++; 185 } 186 used_digits_ = Max(bigit_pos, used_digits_); 187 DCHECK(IsClamped()); 188 } 189 190 191 void Bignum::SubtractBignum(const Bignum& other) { 192 DCHECK(IsClamped()); 193 DCHECK(other.IsClamped()); 194 // We require this to be bigger than other. 195 DCHECK(LessEqual(other, *this)); 196 197 Align(other); 198 199 int offset = other.exponent_ - exponent_; 200 Chunk borrow = 0; 201 int i; 202 for (i = 0; i < other.used_digits_; ++i) { 203 DCHECK((borrow == 0) || (borrow == 1)); 204 Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; 205 bigits_[i + offset] = difference & kBigitMask; 206 borrow = difference >> (kChunkSize - 1); 207 } 208 while (borrow != 0) { 209 Chunk difference = bigits_[i + offset] - borrow; 210 bigits_[i + offset] = difference & kBigitMask; 211 borrow = difference >> (kChunkSize - 1); 212 ++i; 213 } 214 Clamp(); 215 } 216 217 218 void Bignum::ShiftLeft(int shift_amount) { 219 if (used_digits_ == 0) return; 220 exponent_ += shift_amount / kBigitSize; 221 int local_shift = shift_amount % kBigitSize; 222 EnsureCapacity(used_digits_ + 1); 223 BigitsShiftLeft(local_shift); 224 } 225 226 227 void Bignum::MultiplyByUInt32(uint32_t factor) { 228 if (factor == 1) return; 229 if (factor == 0) { 230 Zero(); 231 return; 232 } 233 if (used_digits_ == 0) return; 234 235 // The product of a bigit with the factor is of size kBigitSize + 32. 236 // Assert that this number + 1 (for the carry) fits into double chunk. 237 DCHECK_GE(kDoubleChunkSize, kBigitSize + 32 + 1); 238 DoubleChunk carry = 0; 239 for (int i = 0; i < used_digits_; ++i) { 240 DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; 241 bigits_[i] = static_cast<Chunk>(product & kBigitMask); 242 carry = (product >> kBigitSize); 243 } 244 while (carry != 0) { 245 EnsureCapacity(used_digits_ + 1); 246 bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask); 247 used_digits_++; 248 carry >>= kBigitSize; 249 } 250 } 251 252 253 void Bignum::MultiplyByUInt64(uint64_t factor) { 254 if (factor == 1) return; 255 if (factor == 0) { 256 Zero(); 257 return; 258 } 259 DCHECK_LT(kBigitSize, 32); 260 uint64_t carry = 0; 261 uint64_t low = factor & 0xFFFFFFFF; 262 uint64_t high = factor >> 32; 263 for (int i = 0; i < used_digits_; ++i) { 264 uint64_t product_low = low * bigits_[i]; 265 uint64_t product_high = high * bigits_[i]; 266 uint64_t tmp = (carry & kBigitMask) + product_low; 267 bigits_[i] = static_cast<Chunk>(tmp & kBigitMask); 268 carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + 269 (product_high << (32 - kBigitSize)); 270 } 271 while (carry != 0) { 272 EnsureCapacity(used_digits_ + 1); 273 bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask); 274 used_digits_++; 275 carry >>= kBigitSize; 276 } 277 } 278 279 280 void Bignum::MultiplyByPowerOfTen(int exponent) { 281 const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765C793, fa10079d); 282 const uint16_t kFive1 = 5; 283 const uint16_t kFive2 = kFive1 * 5; 284 const uint16_t kFive3 = kFive2 * 5; 285 const uint16_t kFive4 = kFive3 * 5; 286 const uint16_t kFive5 = kFive4 * 5; 287 const uint16_t kFive6 = kFive5 * 5; 288 const uint32_t kFive7 = kFive6 * 5; 289 const uint32_t kFive8 = kFive7 * 5; 290 const uint32_t kFive9 = kFive8 * 5; 291 const uint32_t kFive10 = kFive9 * 5; 292 const uint32_t kFive11 = kFive10 * 5; 293 const uint32_t kFive12 = kFive11 * 5; 294 const uint32_t kFive13 = kFive12 * 5; 295 const uint32_t kFive1_to_12[] = 296 { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, 297 kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; 298 299 DCHECK_GE(exponent, 0); 300 if (exponent == 0) return; 301 if (used_digits_ == 0) return; 302 303 // We shift by exponent at the end just before returning. 304 int remaining_exponent = exponent; 305 while (remaining_exponent >= 27) { 306 MultiplyByUInt64(kFive27); 307 remaining_exponent -= 27; 308 } 309 while (remaining_exponent >= 13) { 310 MultiplyByUInt32(kFive13); 311 remaining_exponent -= 13; 312 } 313 if (remaining_exponent > 0) { 314 MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); 315 } 316 ShiftLeft(exponent); 317 } 318 319 320 void Bignum::Square() { 321 DCHECK(IsClamped()); 322 int product_length = 2 * used_digits_; 323 EnsureCapacity(product_length); 324 325 // Comba multiplication: compute each column separately. 326 // Example: r = a2a1a0 * b2b1b0. 327 // r = 1 * a0b0 + 328 // 10 * (a1b0 + a0b1) + 329 // 100 * (a2b0 + a1b1 + a0b2) + 330 // 1000 * (a2b1 + a1b2) + 331 // 10000 * a2b2 332 // 333 // In the worst case we have to accumulate nb-digits products of digit*digit. 334 // 335 // Assert that the additional number of bits in a DoubleChunk are enough to 336 // sum up used_digits of Bigit*Bigit. 337 if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { 338 UNIMPLEMENTED(); 339 } 340 DoubleChunk accumulator = 0; 341 // First shift the digits so we don't overwrite them. 342 int copy_offset = used_digits_; 343 for (int i = 0; i < used_digits_; ++i) { 344 bigits_[copy_offset + i] = bigits_[i]; 345 } 346 // We have two loops to avoid some 'if's in the loop. 347 for (int i = 0; i < used_digits_; ++i) { 348 // Process temporary digit i with power i. 349 // The sum of the two indices must be equal to i. 350 int bigit_index1 = i; 351 int bigit_index2 = 0; 352 // Sum all of the sub-products. 353 while (bigit_index1 >= 0) { 354 Chunk chunk1 = bigits_[copy_offset + bigit_index1]; 355 Chunk chunk2 = bigits_[copy_offset + bigit_index2]; 356 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; 357 bigit_index1--; 358 bigit_index2++; 359 } 360 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; 361 accumulator >>= kBigitSize; 362 } 363 for (int i = used_digits_; i < product_length; ++i) { 364 int bigit_index1 = used_digits_ - 1; 365 int bigit_index2 = i - bigit_index1; 366 // Invariant: sum of both indices is again equal to i. 367 // Inner loop runs 0 times on last iteration, emptying accumulator. 368 while (bigit_index2 < used_digits_) { 369 Chunk chunk1 = bigits_[copy_offset + bigit_index1]; 370 Chunk chunk2 = bigits_[copy_offset + bigit_index2]; 371 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; 372 bigit_index1--; 373 bigit_index2++; 374 } 375 // The overwritten bigits_[i] will never be read in further loop iterations, 376 // because bigit_index1 and bigit_index2 are always greater 377 // than i - used_digits_. 378 bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; 379 accumulator >>= kBigitSize; 380 } 381 // Since the result was guaranteed to lie inside the number the 382 // accumulator must be 0 now. 383 DCHECK_EQ(accumulator, 0); 384 385 // Don't forget to update the used_digits and the exponent. 386 used_digits_ = product_length; 387 exponent_ *= 2; 388 Clamp(); 389 } 390 391 392 void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { 393 DCHECK_NE(base, 0); 394 DCHECK_GE(power_exponent, 0); 395 if (power_exponent == 0) { 396 AssignUInt16(1); 397 return; 398 } 399 Zero(); 400 int shifts = 0; 401 // We expect base to be in range 2-32, and most often to be 10. 402 // It does not make much sense to implement different algorithms for counting 403 // the bits. 404 while ((base & 1) == 0) { 405 base >>= 1; 406 shifts++; 407 } 408 int bit_size = 0; 409 int tmp_base = base; 410 while (tmp_base != 0) { 411 tmp_base >>= 1; 412 bit_size++; 413 } 414 int final_size = bit_size * power_exponent; 415 // 1 extra bigit for the shifting, and one for rounded final_size. 416 EnsureCapacity(final_size / kBigitSize + 2); 417 418 // Left to Right exponentiation. 419 int mask = 1; 420 while (power_exponent >= mask) mask <<= 1; 421 422 // The mask is now pointing to the bit above the most significant 1-bit of 423 // power_exponent. 424 // Get rid of first 1-bit; 425 mask >>= 2; 426 uint64_t this_value = base; 427 428 bool delayed_multipliciation = false; 429 const uint64_t max_32bits = 0xFFFFFFFF; 430 while (mask != 0 && this_value <= max_32bits) { 431 this_value = this_value * this_value; 432 // Verify that there is enough space in this_value to perform the 433 // multiplication. The first bit_size bits must be 0. 434 if ((power_exponent & mask) != 0) { 435 uint64_t base_bits_mask = 436 ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); 437 bool high_bits_zero = (this_value & base_bits_mask) == 0; 438 if (high_bits_zero) { 439 this_value *= base; 440 } else { 441 delayed_multipliciation = true; 442 } 443 } 444 mask >>= 1; 445 } 446 AssignUInt64(this_value); 447 if (delayed_multipliciation) { 448 MultiplyByUInt32(base); 449 } 450 451 // Now do the same thing as a bignum. 452 while (mask != 0) { 453 Square(); 454 if ((power_exponent & mask) != 0) { 455 MultiplyByUInt32(base); 456 } 457 mask >>= 1; 458 } 459 460 // And finally add the saved shifts. 461 ShiftLeft(shifts * power_exponent); 462 } 463 464 465 // Precondition: this/other < 16bit. 466 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { 467 DCHECK(IsClamped()); 468 DCHECK(other.IsClamped()); 469 DCHECK_GT(other.used_digits_, 0); 470 471 // Easy case: if we have less digits than the divisor than the result is 0. 472 // Note: this handles the case where this == 0, too. 473 if (BigitLength() < other.BigitLength()) { 474 return 0; 475 } 476 477 Align(other); 478 479 uint16_t result = 0; 480 481 // Start by removing multiples of 'other' until both numbers have the same 482 // number of digits. 483 while (BigitLength() > other.BigitLength()) { 484 // This naive approach is extremely inefficient if the this divided other 485 // might be big. This function is implemented for doubleToString where 486 // the result should be small (less than 10). 487 DCHECK(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); 488 // Remove the multiples of the first digit. 489 // Example this = 23 and other equals 9. -> Remove 2 multiples. 490 result += bigits_[used_digits_ - 1]; 491 SubtractTimes(other, bigits_[used_digits_ - 1]); 492 } 493 494 DCHECK(BigitLength() == other.BigitLength()); 495 496 // Both bignums are at the same length now. 497 // Since other has more than 0 digits we know that the access to 498 // bigits_[used_digits_ - 1] is safe. 499 Chunk this_bigit = bigits_[used_digits_ - 1]; 500 Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; 501 502 if (other.used_digits_ == 1) { 503 // Shortcut for easy (and common) case. 504 int quotient = this_bigit / other_bigit; 505 bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; 506 result += quotient; 507 Clamp(); 508 return result; 509 } 510 511 int division_estimate = this_bigit / (other_bigit + 1); 512 result += division_estimate; 513 SubtractTimes(other, division_estimate); 514 515 if (other_bigit * (division_estimate + 1) > this_bigit) { 516 // No need to even try to subtract. Even if other's remaining digits were 0 517 // another subtraction would be too much. 518 return result; 519 } 520 521 while (LessEqual(other, *this)) { 522 SubtractBignum(other); 523 result++; 524 } 525 return result; 526 } 527 528 529 template<typename S> 530 static int SizeInHexChars(S number) { 531 DCHECK_GT(number, 0); 532 int result = 0; 533 while (number != 0) { 534 number >>= 4; 535 result++; 536 } 537 return result; 538 } 539 540 541 bool Bignum::ToHexString(char* buffer, int buffer_size) const { 542 DCHECK(IsClamped()); 543 // Each bigit must be printable as separate hex-character. 544 DCHECK_EQ(kBigitSize % 4, 0); 545 const int kHexCharsPerBigit = kBigitSize / 4; 546 547 if (used_digits_ == 0) { 548 if (buffer_size < 2) return false; 549 buffer[0] = '0'; 550 buffer[1] = '\0'; 551 return true; 552 } 553 // We add 1 for the terminating '\0' character. 554 int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + 555 SizeInHexChars(bigits_[used_digits_ - 1]) + 1; 556 if (needed_chars > buffer_size) return false; 557 int string_index = needed_chars - 1; 558 buffer[string_index--] = '\0'; 559 for (int i = 0; i < exponent_; ++i) { 560 for (int j = 0; j < kHexCharsPerBigit; ++j) { 561 buffer[string_index--] = '0'; 562 } 563 } 564 for (int i = 0; i < used_digits_ - 1; ++i) { 565 Chunk current_bigit = bigits_[i]; 566 for (int j = 0; j < kHexCharsPerBigit; ++j) { 567 buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); 568 current_bigit >>= 4; 569 } 570 } 571 // And finally the last bigit. 572 Chunk most_significant_bigit = bigits_[used_digits_ - 1]; 573 while (most_significant_bigit != 0) { 574 buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); 575 most_significant_bigit >>= 4; 576 } 577 return true; 578 } 579 580 581 Bignum::Chunk Bignum::BigitAt(int index) const { 582 if (index >= BigitLength()) return 0; 583 if (index < exponent_) return 0; 584 return bigits_[index - exponent_]; 585 } 586 587 588 int Bignum::Compare(const Bignum& a, const Bignum& b) { 589 DCHECK(a.IsClamped()); 590 DCHECK(b.IsClamped()); 591 int bigit_length_a = a.BigitLength(); 592 int bigit_length_b = b.BigitLength(); 593 if (bigit_length_a < bigit_length_b) return -1; 594 if (bigit_length_a > bigit_length_b) return +1; 595 for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { 596 Chunk bigit_a = a.BigitAt(i); 597 Chunk bigit_b = b.BigitAt(i); 598 if (bigit_a < bigit_b) return -1; 599 if (bigit_a > bigit_b) return +1; 600 // Otherwise they are equal up to this digit. Try the next digit. 601 } 602 return 0; 603 } 604 605 606 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { 607 DCHECK(a.IsClamped()); 608 DCHECK(b.IsClamped()); 609 DCHECK(c.IsClamped()); 610 if (a.BigitLength() < b.BigitLength()) { 611 return PlusCompare(b, a, c); 612 } 613 if (a.BigitLength() + 1 < c.BigitLength()) return -1; 614 if (a.BigitLength() > c.BigitLength()) return +1; 615 // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than 616 // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one 617 // of 'a'. 618 if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { 619 return -1; 620 } 621 622 Chunk borrow = 0; 623 // Starting at min_exponent all digits are == 0. So no need to compare them. 624 int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); 625 for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { 626 Chunk chunk_a = a.BigitAt(i); 627 Chunk chunk_b = b.BigitAt(i); 628 Chunk chunk_c = c.BigitAt(i); 629 Chunk sum = chunk_a + chunk_b; 630 if (sum > chunk_c + borrow) { 631 return +1; 632 } else { 633 borrow = chunk_c + borrow - sum; 634 if (borrow > 1) return -1; 635 borrow <<= kBigitSize; 636 } 637 } 638 if (borrow == 0) return 0; 639 return -1; 640 } 641 642 643 void Bignum::Clamp() { 644 while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { 645 used_digits_--; 646 } 647 if (used_digits_ == 0) { 648 // Zero. 649 exponent_ = 0; 650 } 651 } 652 653 654 bool Bignum::IsClamped() const { 655 return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; 656 } 657 658 659 void Bignum::Zero() { 660 for (int i = 0; i < used_digits_; ++i) { 661 bigits_[i] = 0; 662 } 663 used_digits_ = 0; 664 exponent_ = 0; 665 } 666 667 668 void Bignum::Align(const Bignum& other) { 669 if (exponent_ > other.exponent_) { 670 // If "X" represents a "hidden" digit (by the exponent) then we are in the 671 // following case (a == this, b == other): 672 // a: aaaaaaXXXX or a: aaaaaXXX 673 // b: bbbbbbX b: bbbbbbbbXX 674 // We replace some of the hidden digits (X) of a with 0 digits. 675 // a: aaaaaa000X or a: aaaaa0XX 676 int zero_digits = exponent_ - other.exponent_; 677 EnsureCapacity(used_digits_ + zero_digits); 678 for (int i = used_digits_ - 1; i >= 0; --i) { 679 bigits_[i + zero_digits] = bigits_[i]; 680 } 681 for (int i = 0; i < zero_digits; ++i) { 682 bigits_[i] = 0; 683 } 684 used_digits_ += zero_digits; 685 exponent_ -= zero_digits; 686 DCHECK_GE(used_digits_, 0); 687 DCHECK_GE(exponent_, 0); 688 } 689 } 690 691 692 void Bignum::BigitsShiftLeft(int shift_amount) { 693 DCHECK_LT(shift_amount, kBigitSize); 694 DCHECK_GE(shift_amount, 0); 695 Chunk carry = 0; 696 for (int i = 0; i < used_digits_; ++i) { 697 Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); 698 bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; 699 carry = new_carry; 700 } 701 if (carry != 0) { 702 bigits_[used_digits_] = carry; 703 used_digits_++; 704 } 705 } 706 707 708 void Bignum::SubtractTimes(const Bignum& other, int factor) { 709 #ifdef DEBUG 710 Bignum a, b; 711 a.AssignBignum(*this); 712 b.AssignBignum(other); 713 b.MultiplyByUInt32(factor); 714 a.SubtractBignum(b); 715 #endif 716 DCHECK(exponent_ <= other.exponent_); 717 if (factor < 3) { 718 for (int i = 0; i < factor; ++i) { 719 SubtractBignum(other); 720 } 721 return; 722 } 723 Chunk borrow = 0; 724 int exponent_diff = other.exponent_ - exponent_; 725 for (int i = 0; i < other.used_digits_; ++i) { 726 DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; 727 DoubleChunk remove = borrow + product; 728 Chunk difference = 729 bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask); 730 bigits_[i + exponent_diff] = difference & kBigitMask; 731 borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + 732 (remove >> kBigitSize)); 733 } 734 for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { 735 if (borrow == 0) return; 736 Chunk difference = bigits_[i] - borrow; 737 bigits_[i] = difference & kBigitMask; 738 borrow = difference >> (kChunkSize - 1); 739 } 740 Clamp(); 741 DCHECK(Bignum::Equal(a, *this)); 742 } 743 744 745 } // namespace internal 746 } // namespace v8 747