Home | History | Annotate | Download | only in Scalar
      1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
     11 #include "llvm/ADT/DenseMap.h"
     12 #include "llvm/ADT/STLExtras.h"
     13 #include "llvm/ADT/Sequence.h"
     14 #include "llvm/ADT/SetVector.h"
     15 #include "llvm/ADT/SmallPtrSet.h"
     16 #include "llvm/ADT/SmallVector.h"
     17 #include "llvm/ADT/Statistic.h"
     18 #include "llvm/ADT/Twine.h"
     19 #include "llvm/Analysis/AssumptionCache.h"
     20 #include "llvm/Analysis/CFG.h"
     21 #include "llvm/Analysis/CodeMetrics.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/LoopAnalysisManager.h"
     24 #include "llvm/Analysis/LoopInfo.h"
     25 #include "llvm/Analysis/LoopIterator.h"
     26 #include "llvm/Analysis/LoopPass.h"
     27 #include "llvm/Analysis/Utils/Local.h"
     28 #include "llvm/IR/BasicBlock.h"
     29 #include "llvm/IR/Constant.h"
     30 #include "llvm/IR/Constants.h"
     31 #include "llvm/IR/Dominators.h"
     32 #include "llvm/IR/Function.h"
     33 #include "llvm/IR/InstrTypes.h"
     34 #include "llvm/IR/Instruction.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/IR/IntrinsicInst.h"
     37 #include "llvm/IR/Use.h"
     38 #include "llvm/IR/Value.h"
     39 #include "llvm/Pass.h"
     40 #include "llvm/Support/Casting.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/ErrorHandling.h"
     43 #include "llvm/Support/GenericDomTree.h"
     44 #include "llvm/Support/raw_ostream.h"
     45 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
     46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     47 #include "llvm/Transforms/Utils/Cloning.h"
     48 #include "llvm/Transforms/Utils/LoopUtils.h"
     49 #include "llvm/Transforms/Utils/ValueMapper.h"
     50 #include <algorithm>
     51 #include <cassert>
     52 #include <iterator>
     53 #include <numeric>
     54 #include <utility>
     55 
     56 #define DEBUG_TYPE "simple-loop-unswitch"
     57 
     58 using namespace llvm;
     59 
     60 STATISTIC(NumBranches, "Number of branches unswitched");
     61 STATISTIC(NumSwitches, "Number of switches unswitched");
     62 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
     63 
     64 static cl::opt<bool> EnableNonTrivialUnswitch(
     65     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
     66     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
     67              "following the configuration passed into the pass."));
     68 
     69 static cl::opt<int>
     70     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
     71                       cl::desc("The cost threshold for unswitching a loop."));
     72 
     73 /// Collect all of the loop invariant input values transitively used by the
     74 /// homogeneous instruction graph from a given root.
     75 ///
     76 /// This essentially walks from a root recursively through loop variant operands
     77 /// which have the exact same opcode and finds all inputs which are loop
     78 /// invariant. For some operations these can be re-associated and unswitched out
     79 /// of the loop entirely.
     80 static TinyPtrVector<Value *>
     81 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
     82                                          LoopInfo &LI) {
     83   assert(!L.isLoopInvariant(&Root) &&
     84          "Only need to walk the graph if root itself is not invariant.");
     85   TinyPtrVector<Value *> Invariants;
     86 
     87   // Build a worklist and recurse through operators collecting invariants.
     88   SmallVector<Instruction *, 4> Worklist;
     89   SmallPtrSet<Instruction *, 8> Visited;
     90   Worklist.push_back(&Root);
     91   Visited.insert(&Root);
     92   do {
     93     Instruction &I = *Worklist.pop_back_val();
     94     for (Value *OpV : I.operand_values()) {
     95       // Skip constants as unswitching isn't interesting for them.
     96       if (isa<Constant>(OpV))
     97         continue;
     98 
     99       // Add it to our result if loop invariant.
    100       if (L.isLoopInvariant(OpV)) {
    101         Invariants.push_back(OpV);
    102         continue;
    103       }
    104 
    105       // If not an instruction with the same opcode, nothing we can do.
    106       Instruction *OpI = dyn_cast<Instruction>(OpV);
    107       if (!OpI || OpI->getOpcode() != Root.getOpcode())
    108         continue;
    109 
    110       // Visit this operand.
    111       if (Visited.insert(OpI).second)
    112         Worklist.push_back(OpI);
    113     }
    114   } while (!Worklist.empty());
    115 
    116   return Invariants;
    117 }
    118 
    119 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
    120                                      Constant &Replacement) {
    121   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
    122 
    123   // Replace uses of LIC in the loop with the given constant.
    124   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
    125     // Grab the use and walk past it so we can clobber it in the use list.
    126     Use *U = &*UI++;
    127     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
    128 
    129     // Replace this use within the loop body.
    130     if (UserI && L.contains(UserI))
    131       U->set(&Replacement);
    132   }
    133 }
    134 
    135 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
    136 /// incoming values along this edge.
    137 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
    138                                          BasicBlock &ExitBB) {
    139   for (Instruction &I : ExitBB) {
    140     auto *PN = dyn_cast<PHINode>(&I);
    141     if (!PN)
    142       // No more PHIs to check.
    143       return true;
    144 
    145     // If the incoming value for this edge isn't loop invariant the unswitch
    146     // won't be trivial.
    147     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
    148       return false;
    149   }
    150   llvm_unreachable("Basic blocks should never be empty!");
    151 }
    152 
    153 /// Insert code to test a set of loop invariant values, and conditionally branch
    154 /// on them.
    155 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
    156                                                   ArrayRef<Value *> Invariants,
    157                                                   bool Direction,
    158                                                   BasicBlock &UnswitchedSucc,
    159                                                   BasicBlock &NormalSucc) {
    160   IRBuilder<> IRB(&BB);
    161   Value *Cond = Invariants.front();
    162   for (Value *Invariant :
    163        make_range(std::next(Invariants.begin()), Invariants.end()))
    164     if (Direction)
    165       Cond = IRB.CreateOr(Cond, Invariant);
    166     else
    167       Cond = IRB.CreateAnd(Cond, Invariant);
    168 
    169   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
    170                    Direction ? &NormalSucc : &UnswitchedSucc);
    171 }
    172 
    173 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
    174 ///
    175 /// Requires that the loop exit and unswitched basic block are the same, and
    176 /// that the exiting block was a unique predecessor of that block. Rewrites the
    177 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
    178 /// PHI nodes from the old preheader that now contains the unswitched
    179 /// terminator.
    180 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
    181                                                   BasicBlock &OldExitingBB,
    182                                                   BasicBlock &OldPH) {
    183   for (PHINode &PN : UnswitchedBB.phis()) {
    184     // When the loop exit is directly unswitched we just need to update the
    185     // incoming basic block. We loop to handle weird cases with repeated
    186     // incoming blocks, but expect to typically only have one operand here.
    187     for (auto i : seq<int>(0, PN.getNumOperands())) {
    188       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
    189              "Found incoming block different from unique predecessor!");
    190       PN.setIncomingBlock(i, &OldPH);
    191     }
    192   }
    193 }
    194 
    195 /// Rewrite the PHI nodes in the loop exit basic block and the split off
    196 /// unswitched block.
    197 ///
    198 /// Because the exit block remains an exit from the loop, this rewrites the
    199 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
    200 /// nodes into the unswitched basic block to select between the value in the
    201 /// old preheader and the loop exit.
    202 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
    203                                                       BasicBlock &UnswitchedBB,
    204                                                       BasicBlock &OldExitingBB,
    205                                                       BasicBlock &OldPH,
    206                                                       bool FullUnswitch) {
    207   assert(&ExitBB != &UnswitchedBB &&
    208          "Must have different loop exit and unswitched blocks!");
    209   Instruction *InsertPt = &*UnswitchedBB.begin();
    210   for (PHINode &PN : ExitBB.phis()) {
    211     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
    212                                   PN.getName() + ".split", InsertPt);
    213 
    214     // Walk backwards over the old PHI node's inputs to minimize the cost of
    215     // removing each one. We have to do this weird loop manually so that we
    216     // create the same number of new incoming edges in the new PHI as we expect
    217     // each case-based edge to be included in the unswitched switch in some
    218     // cases.
    219     // FIXME: This is really, really gross. It would be much cleaner if LLVM
    220     // allowed us to create a single entry for a predecessor block without
    221     // having separate entries for each "edge" even though these edges are
    222     // required to produce identical results.
    223     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
    224       if (PN.getIncomingBlock(i) != &OldExitingBB)
    225         continue;
    226 
    227       Value *Incoming = PN.getIncomingValue(i);
    228       if (FullUnswitch)
    229         // No more edge from the old exiting block to the exit block.
    230         PN.removeIncomingValue(i);
    231 
    232       NewPN->addIncoming(Incoming, &OldPH);
    233     }
    234 
    235     // Now replace the old PHI with the new one and wire the old one in as an
    236     // input to the new one.
    237     PN.replaceAllUsesWith(NewPN);
    238     NewPN->addIncoming(&PN, &ExitBB);
    239   }
    240 }
    241 
    242 /// Hoist the current loop up to the innermost loop containing a remaining exit.
    243 ///
    244 /// Because we've removed an exit from the loop, we may have changed the set of
    245 /// loops reachable and need to move the current loop up the loop nest or even
    246 /// to an entirely separate nest.
    247 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
    248                                  DominatorTree &DT, LoopInfo &LI) {
    249   // If the loop is already at the top level, we can't hoist it anywhere.
    250   Loop *OldParentL = L.getParentLoop();
    251   if (!OldParentL)
    252     return;
    253 
    254   SmallVector<BasicBlock *, 4> Exits;
    255   L.getExitBlocks(Exits);
    256   Loop *NewParentL = nullptr;
    257   for (auto *ExitBB : Exits)
    258     if (Loop *ExitL = LI.getLoopFor(ExitBB))
    259       if (!NewParentL || NewParentL->contains(ExitL))
    260         NewParentL = ExitL;
    261 
    262   if (NewParentL == OldParentL)
    263     return;
    264 
    265   // The new parent loop (if different) should always contain the old one.
    266   if (NewParentL)
    267     assert(NewParentL->contains(OldParentL) &&
    268            "Can only hoist this loop up the nest!");
    269 
    270   // The preheader will need to move with the body of this loop. However,
    271   // because it isn't in this loop we also need to update the primary loop map.
    272   assert(OldParentL == LI.getLoopFor(&Preheader) &&
    273          "Parent loop of this loop should contain this loop's preheader!");
    274   LI.changeLoopFor(&Preheader, NewParentL);
    275 
    276   // Remove this loop from its old parent.
    277   OldParentL->removeChildLoop(&L);
    278 
    279   // Add the loop either to the new parent or as a top-level loop.
    280   if (NewParentL)
    281     NewParentL->addChildLoop(&L);
    282   else
    283     LI.addTopLevelLoop(&L);
    284 
    285   // Remove this loops blocks from the old parent and every other loop up the
    286   // nest until reaching the new parent. Also update all of these
    287   // no-longer-containing loops to reflect the nesting change.
    288   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
    289        OldContainingL = OldContainingL->getParentLoop()) {
    290     llvm::erase_if(OldContainingL->getBlocksVector(),
    291                    [&](const BasicBlock *BB) {
    292                      return BB == &Preheader || L.contains(BB);
    293                    });
    294 
    295     OldContainingL->getBlocksSet().erase(&Preheader);
    296     for (BasicBlock *BB : L.blocks())
    297       OldContainingL->getBlocksSet().erase(BB);
    298 
    299     // Because we just hoisted a loop out of this one, we have essentially
    300     // created new exit paths from it. That means we need to form LCSSA PHI
    301     // nodes for values used in the no-longer-nested loop.
    302     formLCSSA(*OldContainingL, DT, &LI, nullptr);
    303 
    304     // We shouldn't need to form dedicated exits because the exit introduced
    305     // here is the (just split by unswitching) preheader. As such, it is
    306     // necessarily dedicated.
    307     assert(OldContainingL->hasDedicatedExits() &&
    308            "Unexpected predecessor of hoisted loop preheader!");
    309   }
    310 }
    311 
    312 /// Unswitch a trivial branch if the condition is loop invariant.
    313 ///
    314 /// This routine should only be called when loop code leading to the branch has
    315 /// been validated as trivial (no side effects). This routine checks if the
    316 /// condition is invariant and one of the successors is a loop exit. This
    317 /// allows us to unswitch without duplicating the loop, making it trivial.
    318 ///
    319 /// If this routine fails to unswitch the branch it returns false.
    320 ///
    321 /// If the branch can be unswitched, this routine splits the preheader and
    322 /// hoists the branch above that split. Preserves loop simplified form
    323 /// (splitting the exit block as necessary). It simplifies the branch within
    324 /// the loop to an unconditional branch but doesn't remove it entirely. Further
    325 /// cleanup can be done with some simplify-cfg like pass.
    326 ///
    327 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
    328 /// invalidated by this.
    329 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
    330                                   LoopInfo &LI, ScalarEvolution *SE) {
    331   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
    332   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
    333 
    334   // The loop invariant values that we want to unswitch.
    335   TinyPtrVector<Value *> Invariants;
    336 
    337   // When true, we're fully unswitching the branch rather than just unswitching
    338   // some input conditions to the branch.
    339   bool FullUnswitch = false;
    340 
    341   if (L.isLoopInvariant(BI.getCondition())) {
    342     Invariants.push_back(BI.getCondition());
    343     FullUnswitch = true;
    344   } else {
    345     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
    346       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
    347     if (Invariants.empty())
    348       // Couldn't find invariant inputs!
    349       return false;
    350   }
    351 
    352   // Check that one of the branch's successors exits, and which one.
    353   bool ExitDirection = true;
    354   int LoopExitSuccIdx = 0;
    355   auto *LoopExitBB = BI.getSuccessor(0);
    356   if (L.contains(LoopExitBB)) {
    357     ExitDirection = false;
    358     LoopExitSuccIdx = 1;
    359     LoopExitBB = BI.getSuccessor(1);
    360     if (L.contains(LoopExitBB))
    361       return false;
    362   }
    363   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
    364   auto *ParentBB = BI.getParent();
    365   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
    366     return false;
    367 
    368   // When unswitching only part of the branch's condition, we need the exit
    369   // block to be reached directly from the partially unswitched input. This can
    370   // be done when the exit block is along the true edge and the branch condition
    371   // is a graph of `or` operations, or the exit block is along the false edge
    372   // and the condition is a graph of `and` operations.
    373   if (!FullUnswitch) {
    374     if (ExitDirection) {
    375       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
    376         return false;
    377     } else {
    378       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
    379         return false;
    380     }
    381   }
    382 
    383   LLVM_DEBUG({
    384     dbgs() << "    unswitching trivial invariant conditions for: " << BI
    385            << "\n";
    386     for (Value *Invariant : Invariants) {
    387       dbgs() << "      " << *Invariant << " == true";
    388       if (Invariant != Invariants.back())
    389         dbgs() << " ||";
    390       dbgs() << "\n";
    391     }
    392   });
    393 
    394   // If we have scalar evolutions, we need to invalidate them including this
    395   // loop and the loop containing the exit block.
    396   if (SE) {
    397     if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
    398       SE->forgetLoop(ExitL);
    399     else
    400       // Forget the entire nest as this exits the entire nest.
    401       SE->forgetTopmostLoop(&L);
    402   }
    403 
    404   // Split the preheader, so that we know that there is a safe place to insert
    405   // the conditional branch. We will change the preheader to have a conditional
    406   // branch on LoopCond.
    407   BasicBlock *OldPH = L.getLoopPreheader();
    408   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
    409 
    410   // Now that we have a place to insert the conditional branch, create a place
    411   // to branch to: this is the exit block out of the loop that we are
    412   // unswitching. We need to split this if there are other loop predecessors.
    413   // Because the loop is in simplified form, *any* other predecessor is enough.
    414   BasicBlock *UnswitchedBB;
    415   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
    416     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
    417            "A branch's parent isn't a predecessor!");
    418     UnswitchedBB = LoopExitBB;
    419   } else {
    420     UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
    421   }
    422 
    423   // Actually move the invariant uses into the unswitched position. If possible,
    424   // we do this by moving the instructions, but when doing partial unswitching
    425   // we do it by building a new merge of the values in the unswitched position.
    426   OldPH->getTerminator()->eraseFromParent();
    427   if (FullUnswitch) {
    428     // If fully unswitching, we can use the existing branch instruction.
    429     // Splice it into the old PH to gate reaching the new preheader and re-point
    430     // its successors.
    431     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
    432                                 BI);
    433     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
    434     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
    435 
    436     // Create a new unconditional branch that will continue the loop as a new
    437     // terminator.
    438     BranchInst::Create(ContinueBB, ParentBB);
    439   } else {
    440     // Only unswitching a subset of inputs to the condition, so we will need to
    441     // build a new branch that merges the invariant inputs.
    442     if (ExitDirection)
    443       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
    444                  Instruction::Or &&
    445              "Must have an `or` of `i1`s for the condition!");
    446     else
    447       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
    448                  Instruction::And &&
    449              "Must have an `and` of `i1`s for the condition!");
    450     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
    451                                           *UnswitchedBB, *NewPH);
    452   }
    453 
    454   // Rewrite the relevant PHI nodes.
    455   if (UnswitchedBB == LoopExitBB)
    456     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
    457   else
    458     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
    459                                               *ParentBB, *OldPH, FullUnswitch);
    460 
    461   // Now we need to update the dominator tree.
    462   SmallVector<DominatorTree::UpdateType, 2> DTUpdates;
    463   DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
    464   if (FullUnswitch)
    465     DTUpdates.push_back({DT.Delete, ParentBB, LoopExitBB});
    466   DT.applyUpdates(DTUpdates);
    467 
    468   // The constant we can replace all of our invariants with inside the loop
    469   // body. If any of the invariants have a value other than this the loop won't
    470   // be entered.
    471   ConstantInt *Replacement = ExitDirection
    472                                  ? ConstantInt::getFalse(BI.getContext())
    473                                  : ConstantInt::getTrue(BI.getContext());
    474 
    475   // Since this is an i1 condition we can also trivially replace uses of it
    476   // within the loop with a constant.
    477   for (Value *Invariant : Invariants)
    478     replaceLoopInvariantUses(L, Invariant, *Replacement);
    479 
    480   // If this was full unswitching, we may have changed the nesting relationship
    481   // for this loop so hoist it to its correct parent if needed.
    482   if (FullUnswitch)
    483     hoistLoopToNewParent(L, *NewPH, DT, LI);
    484 
    485   ++NumTrivial;
    486   ++NumBranches;
    487   return true;
    488 }
    489 
    490 /// Unswitch a trivial switch if the condition is loop invariant.
    491 ///
    492 /// This routine should only be called when loop code leading to the switch has
    493 /// been validated as trivial (no side effects). This routine checks if the
    494 /// condition is invariant and that at least one of the successors is a loop
    495 /// exit. This allows us to unswitch without duplicating the loop, making it
    496 /// trivial.
    497 ///
    498 /// If this routine fails to unswitch the switch it returns false.
    499 ///
    500 /// If the switch can be unswitched, this routine splits the preheader and
    501 /// copies the switch above that split. If the default case is one of the
    502 /// exiting cases, it copies the non-exiting cases and points them at the new
    503 /// preheader. If the default case is not exiting, it copies the exiting cases
    504 /// and points the default at the preheader. It preserves loop simplified form
    505 /// (splitting the exit blocks as necessary). It simplifies the switch within
    506 /// the loop by removing now-dead cases. If the default case is one of those
    507 /// unswitched, it replaces its destination with a new basic block containing
    508 /// only unreachable. Such basic blocks, while technically loop exits, are not
    509 /// considered for unswitching so this is a stable transform and the same
    510 /// switch will not be revisited. If after unswitching there is only a single
    511 /// in-loop successor, the switch is further simplified to an unconditional
    512 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
    513 ///
    514 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
    515 /// invalidated by this.
    516 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
    517                                   LoopInfo &LI, ScalarEvolution *SE) {
    518   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
    519   Value *LoopCond = SI.getCondition();
    520 
    521   // If this isn't switching on an invariant condition, we can't unswitch it.
    522   if (!L.isLoopInvariant(LoopCond))
    523     return false;
    524 
    525   auto *ParentBB = SI.getParent();
    526 
    527   SmallVector<int, 4> ExitCaseIndices;
    528   for (auto Case : SI.cases()) {
    529     auto *SuccBB = Case.getCaseSuccessor();
    530     if (!L.contains(SuccBB) &&
    531         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
    532       ExitCaseIndices.push_back(Case.getCaseIndex());
    533   }
    534   BasicBlock *DefaultExitBB = nullptr;
    535   if (!L.contains(SI.getDefaultDest()) &&
    536       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
    537       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
    538     DefaultExitBB = SI.getDefaultDest();
    539   else if (ExitCaseIndices.empty())
    540     return false;
    541 
    542   LLVM_DEBUG(dbgs() << "    unswitching trivial cases...\n");
    543 
    544   // We may need to invalidate SCEVs for the outermost loop reached by any of
    545   // the exits.
    546   Loop *OuterL = &L;
    547 
    548   if (DefaultExitBB) {
    549     // Clear out the default destination temporarily to allow accurate
    550     // predecessor lists to be examined below.
    551     SI.setDefaultDest(nullptr);
    552     // Check the loop containing this exit.
    553     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
    554     if (!ExitL || ExitL->contains(OuterL))
    555       OuterL = ExitL;
    556   }
    557 
    558   // Store the exit cases into a separate data structure and remove them from
    559   // the switch.
    560   SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
    561   ExitCases.reserve(ExitCaseIndices.size());
    562   // We walk the case indices backwards so that we remove the last case first
    563   // and don't disrupt the earlier indices.
    564   for (unsigned Index : reverse(ExitCaseIndices)) {
    565     auto CaseI = SI.case_begin() + Index;
    566     // Compute the outer loop from this exit.
    567     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
    568     if (!ExitL || ExitL->contains(OuterL))
    569       OuterL = ExitL;
    570     // Save the value of this case.
    571     ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
    572     // Delete the unswitched cases.
    573     SI.removeCase(CaseI);
    574   }
    575 
    576   if (SE) {
    577     if (OuterL)
    578       SE->forgetLoop(OuterL);
    579     else
    580       SE->forgetTopmostLoop(&L);
    581   }
    582 
    583   // Check if after this all of the remaining cases point at the same
    584   // successor.
    585   BasicBlock *CommonSuccBB = nullptr;
    586   if (SI.getNumCases() > 0 &&
    587       std::all_of(std::next(SI.case_begin()), SI.case_end(),
    588                   [&SI](const SwitchInst::CaseHandle &Case) {
    589                     return Case.getCaseSuccessor() ==
    590                            SI.case_begin()->getCaseSuccessor();
    591                   }))
    592     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
    593   if (!DefaultExitBB) {
    594     // If we're not unswitching the default, we need it to match any cases to
    595     // have a common successor or if we have no cases it is the common
    596     // successor.
    597     if (SI.getNumCases() == 0)
    598       CommonSuccBB = SI.getDefaultDest();
    599     else if (SI.getDefaultDest() != CommonSuccBB)
    600       CommonSuccBB = nullptr;
    601   }
    602 
    603   // Split the preheader, so that we know that there is a safe place to insert
    604   // the switch.
    605   BasicBlock *OldPH = L.getLoopPreheader();
    606   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
    607   OldPH->getTerminator()->eraseFromParent();
    608 
    609   // Now add the unswitched switch.
    610   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
    611 
    612   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
    613   // First, we split any exit blocks with remaining in-loop predecessors. Then
    614   // we update the PHIs in one of two ways depending on if there was a split.
    615   // We walk in reverse so that we split in the same order as the cases
    616   // appeared. This is purely for convenience of reading the resulting IR, but
    617   // it doesn't cost anything really.
    618   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
    619   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
    620   // Handle the default exit if necessary.
    621   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
    622   // ranges aren't quite powerful enough yet.
    623   if (DefaultExitBB) {
    624     if (pred_empty(DefaultExitBB)) {
    625       UnswitchedExitBBs.insert(DefaultExitBB);
    626       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
    627     } else {
    628       auto *SplitBB =
    629           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
    630       rewritePHINodesForExitAndUnswitchedBlocks(
    631           *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
    632       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
    633     }
    634   }
    635   // Note that we must use a reference in the for loop so that we update the
    636   // container.
    637   for (auto &CasePair : reverse(ExitCases)) {
    638     // Grab a reference to the exit block in the pair so that we can update it.
    639     BasicBlock *ExitBB = CasePair.second;
    640 
    641     // If this case is the last edge into the exit block, we can simply reuse it
    642     // as it will no longer be a loop exit. No mapping necessary.
    643     if (pred_empty(ExitBB)) {
    644       // Only rewrite once.
    645       if (UnswitchedExitBBs.insert(ExitBB).second)
    646         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
    647       continue;
    648     }
    649 
    650     // Otherwise we need to split the exit block so that we retain an exit
    651     // block from the loop and a target for the unswitched condition.
    652     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
    653     if (!SplitExitBB) {
    654       // If this is the first time we see this, do the split and remember it.
    655       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
    656       rewritePHINodesForExitAndUnswitchedBlocks(
    657           *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
    658     }
    659     // Update the case pair to point to the split block.
    660     CasePair.second = SplitExitBB;
    661   }
    662 
    663   // Now add the unswitched cases. We do this in reverse order as we built them
    664   // in reverse order.
    665   for (auto CasePair : reverse(ExitCases)) {
    666     ConstantInt *CaseVal = CasePair.first;
    667     BasicBlock *UnswitchedBB = CasePair.second;
    668 
    669     NewSI->addCase(CaseVal, UnswitchedBB);
    670   }
    671 
    672   // If the default was unswitched, re-point it and add explicit cases for
    673   // entering the loop.
    674   if (DefaultExitBB) {
    675     NewSI->setDefaultDest(DefaultExitBB);
    676 
    677     // We removed all the exit cases, so we just copy the cases to the
    678     // unswitched switch.
    679     for (auto Case : SI.cases())
    680       NewSI->addCase(Case.getCaseValue(), NewPH);
    681   }
    682 
    683   // If we ended up with a common successor for every path through the switch
    684   // after unswitching, rewrite it to an unconditional branch to make it easy
    685   // to recognize. Otherwise we potentially have to recognize the default case
    686   // pointing at unreachable and other complexity.
    687   if (CommonSuccBB) {
    688     BasicBlock *BB = SI.getParent();
    689     // We may have had multiple edges to this common successor block, so remove
    690     // them as predecessors. We skip the first one, either the default or the
    691     // actual first case.
    692     bool SkippedFirst = DefaultExitBB == nullptr;
    693     for (auto Case : SI.cases()) {
    694       assert(Case.getCaseSuccessor() == CommonSuccBB &&
    695              "Non-common successor!");
    696       (void)Case;
    697       if (!SkippedFirst) {
    698         SkippedFirst = true;
    699         continue;
    700       }
    701       CommonSuccBB->removePredecessor(BB,
    702                                       /*DontDeleteUselessPHIs*/ true);
    703     }
    704     // Now nuke the switch and replace it with a direct branch.
    705     SI.eraseFromParent();
    706     BranchInst::Create(CommonSuccBB, BB);
    707   } else if (DefaultExitBB) {
    708     assert(SI.getNumCases() > 0 &&
    709            "If we had no cases we'd have a common successor!");
    710     // Move the last case to the default successor. This is valid as if the
    711     // default got unswitched it cannot be reached. This has the advantage of
    712     // being simple and keeping the number of edges from this switch to
    713     // successors the same, and avoiding any PHI update complexity.
    714     auto LastCaseI = std::prev(SI.case_end());
    715     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
    716     SI.removeCase(LastCaseI);
    717   }
    718 
    719   // Walk the unswitched exit blocks and the unswitched split blocks and update
    720   // the dominator tree based on the CFG edits. While we are walking unordered
    721   // containers here, the API for applyUpdates takes an unordered list of
    722   // updates and requires them to not contain duplicates.
    723   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
    724   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
    725     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
    726     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
    727   }
    728   for (auto SplitUnswitchedPair : SplitExitBBMap) {
    729     auto *UnswitchedBB = SplitUnswitchedPair.second;
    730     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB});
    731     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
    732   }
    733   DT.applyUpdates(DTUpdates);
    734   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
    735 
    736   // We may have changed the nesting relationship for this loop so hoist it to
    737   // its correct parent if needed.
    738   hoistLoopToNewParent(L, *NewPH, DT, LI);
    739 
    740   ++NumTrivial;
    741   ++NumSwitches;
    742   return true;
    743 }
    744 
    745 /// This routine scans the loop to find a branch or switch which occurs before
    746 /// any side effects occur. These can potentially be unswitched without
    747 /// duplicating the loop. If a branch or switch is successfully unswitched the
    748 /// scanning continues to see if subsequent branches or switches have become
    749 /// trivial. Once all trivial candidates have been unswitched, this routine
    750 /// returns.
    751 ///
    752 /// The return value indicates whether anything was unswitched (and therefore
    753 /// changed).
    754 ///
    755 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
    756 /// invalidated by this.
    757 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
    758                                          LoopInfo &LI, ScalarEvolution *SE) {
    759   bool Changed = false;
    760 
    761   // If loop header has only one reachable successor we should keep looking for
    762   // trivial condition candidates in the successor as well. An alternative is
    763   // to constant fold conditions and merge successors into loop header (then we
    764   // only need to check header's terminator). The reason for not doing this in
    765   // LoopUnswitch pass is that it could potentially break LoopPassManager's
    766   // invariants. Folding dead branches could either eliminate the current loop
    767   // or make other loops unreachable. LCSSA form might also not be preserved
    768   // after deleting branches. The following code keeps traversing loop header's
    769   // successors until it finds the trivial condition candidate (condition that
    770   // is not a constant). Since unswitching generates branches with constant
    771   // conditions, this scenario could be very common in practice.
    772   BasicBlock *CurrentBB = L.getHeader();
    773   SmallPtrSet<BasicBlock *, 8> Visited;
    774   Visited.insert(CurrentBB);
    775   do {
    776     // Check if there are any side-effecting instructions (e.g. stores, calls,
    777     // volatile loads) in the part of the loop that the code *would* execute
    778     // without unswitching.
    779     if (llvm::any_of(*CurrentBB,
    780                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
    781       return Changed;
    782 
    783     TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
    784 
    785     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
    786       // Don't bother trying to unswitch past a switch with a constant
    787       // condition. This should be removed prior to running this pass by
    788       // simplify-cfg.
    789       if (isa<Constant>(SI->getCondition()))
    790         return Changed;
    791 
    792       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE))
    793         // Couldn't unswitch this one so we're done.
    794         return Changed;
    795 
    796       // Mark that we managed to unswitch something.
    797       Changed = true;
    798 
    799       // If unswitching turned the terminator into an unconditional branch then
    800       // we can continue. The unswitching logic specifically works to fold any
    801       // cases it can into an unconditional branch to make it easier to
    802       // recognize here.
    803       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
    804       if (!BI || BI->isConditional())
    805         return Changed;
    806 
    807       CurrentBB = BI->getSuccessor(0);
    808       continue;
    809     }
    810 
    811     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
    812     if (!BI)
    813       // We do not understand other terminator instructions.
    814       return Changed;
    815 
    816     // Don't bother trying to unswitch past an unconditional branch or a branch
    817     // with a constant value. These should be removed by simplify-cfg prior to
    818     // running this pass.
    819     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
    820       return Changed;
    821 
    822     // Found a trivial condition candidate: non-foldable conditional branch. If
    823     // we fail to unswitch this, we can't do anything else that is trivial.
    824     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE))
    825       return Changed;
    826 
    827     // Mark that we managed to unswitch something.
    828     Changed = true;
    829 
    830     // If we only unswitched some of the conditions feeding the branch, we won't
    831     // have collapsed it to a single successor.
    832     BI = cast<BranchInst>(CurrentBB->getTerminator());
    833     if (BI->isConditional())
    834       return Changed;
    835 
    836     // Follow the newly unconditional branch into its successor.
    837     CurrentBB = BI->getSuccessor(0);
    838 
    839     // When continuing, if we exit the loop or reach a previous visited block,
    840     // then we can not reach any trivial condition candidates (unfoldable
    841     // branch instructions or switch instructions) and no unswitch can happen.
    842   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
    843 
    844   return Changed;
    845 }
    846 
    847 /// Build the cloned blocks for an unswitched copy of the given loop.
    848 ///
    849 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
    850 /// after the split block (`SplitBB`) that will be used to select between the
    851 /// cloned and original loop.
    852 ///
    853 /// This routine handles cloning all of the necessary loop blocks and exit
    854 /// blocks including rewriting their instructions and the relevant PHI nodes.
    855 /// Any loop blocks or exit blocks which are dominated by a different successor
    856 /// than the one for this clone of the loop blocks can be trivially skipped. We
    857 /// use the `DominatingSucc` map to determine whether a block satisfies that
    858 /// property with a simple map lookup.
    859 ///
    860 /// It also correctly creates the unconditional branch in the cloned
    861 /// unswitched parent block to only point at the unswitched successor.
    862 ///
    863 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
    864 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
    865 /// the cloned blocks (and their loops) are left without full `LoopInfo`
    866 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
    867 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
    868 /// instead the caller must recompute an accurate DT. It *does* correctly
    869 /// update the `AssumptionCache` provided in `AC`.
    870 static BasicBlock *buildClonedLoopBlocks(
    871     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
    872     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
    873     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
    874     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
    875     ValueToValueMapTy &VMap,
    876     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
    877     DominatorTree &DT, LoopInfo &LI) {
    878   SmallVector<BasicBlock *, 4> NewBlocks;
    879   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
    880 
    881   // We will need to clone a bunch of blocks, wrap up the clone operation in
    882   // a helper.
    883   auto CloneBlock = [&](BasicBlock *OldBB) {
    884     // Clone the basic block and insert it before the new preheader.
    885     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
    886     NewBB->moveBefore(LoopPH);
    887 
    888     // Record this block and the mapping.
    889     NewBlocks.push_back(NewBB);
    890     VMap[OldBB] = NewBB;
    891 
    892     return NewBB;
    893   };
    894 
    895   // We skip cloning blocks when they have a dominating succ that is not the
    896   // succ we are cloning for.
    897   auto SkipBlock = [&](BasicBlock *BB) {
    898     auto It = DominatingSucc.find(BB);
    899     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
    900   };
    901 
    902   // First, clone the preheader.
    903   auto *ClonedPH = CloneBlock(LoopPH);
    904 
    905   // Then clone all the loop blocks, skipping the ones that aren't necessary.
    906   for (auto *LoopBB : L.blocks())
    907     if (!SkipBlock(LoopBB))
    908       CloneBlock(LoopBB);
    909 
    910   // Split all the loop exit edges so that when we clone the exit blocks, if
    911   // any of the exit blocks are *also* a preheader for some other loop, we
    912   // don't create multiple predecessors entering the loop header.
    913   for (auto *ExitBB : ExitBlocks) {
    914     if (SkipBlock(ExitBB))
    915       continue;
    916 
    917     // When we are going to clone an exit, we don't need to clone all the
    918     // instructions in the exit block and we want to ensure we have an easy
    919     // place to merge the CFG, so split the exit first. This is always safe to
    920     // do because there cannot be any non-loop predecessors of a loop exit in
    921     // loop simplified form.
    922     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
    923 
    924     // Rearrange the names to make it easier to write test cases by having the
    925     // exit block carry the suffix rather than the merge block carrying the
    926     // suffix.
    927     MergeBB->takeName(ExitBB);
    928     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
    929 
    930     // Now clone the original exit block.
    931     auto *ClonedExitBB = CloneBlock(ExitBB);
    932     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
    933            "Exit block should have been split to have one successor!");
    934     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
    935            "Cloned exit block has the wrong successor!");
    936 
    937     // Remap any cloned instructions and create a merge phi node for them.
    938     for (auto ZippedInsts : llvm::zip_first(
    939              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
    940              llvm::make_range(ClonedExitBB->begin(),
    941                               std::prev(ClonedExitBB->end())))) {
    942       Instruction &I = std::get<0>(ZippedInsts);
    943       Instruction &ClonedI = std::get<1>(ZippedInsts);
    944 
    945       // The only instructions in the exit block should be PHI nodes and
    946       // potentially a landing pad.
    947       assert(
    948           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
    949           "Bad instruction in exit block!");
    950       // We should have a value map between the instruction and its clone.
    951       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
    952 
    953       auto *MergePN =
    954           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
    955                           &*MergeBB->getFirstInsertionPt());
    956       I.replaceAllUsesWith(MergePN);
    957       MergePN->addIncoming(&I, ExitBB);
    958       MergePN->addIncoming(&ClonedI, ClonedExitBB);
    959     }
    960   }
    961 
    962   // Rewrite the instructions in the cloned blocks to refer to the instructions
    963   // in the cloned blocks. We have to do this as a second pass so that we have
    964   // everything available. Also, we have inserted new instructions which may
    965   // include assume intrinsics, so we update the assumption cache while
    966   // processing this.
    967   for (auto *ClonedBB : NewBlocks)
    968     for (Instruction &I : *ClonedBB) {
    969       RemapInstruction(&I, VMap,
    970                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
    971       if (auto *II = dyn_cast<IntrinsicInst>(&I))
    972         if (II->getIntrinsicID() == Intrinsic::assume)
    973           AC.registerAssumption(II);
    974     }
    975 
    976   // Update any PHI nodes in the cloned successors of the skipped blocks to not
    977   // have spurious incoming values.
    978   for (auto *LoopBB : L.blocks())
    979     if (SkipBlock(LoopBB))
    980       for (auto *SuccBB : successors(LoopBB))
    981         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
    982           for (PHINode &PN : ClonedSuccBB->phis())
    983             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
    984 
    985   // Remove the cloned parent as a predecessor of any successor we ended up
    986   // cloning other than the unswitched one.
    987   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
    988   for (auto *SuccBB : successors(ParentBB)) {
    989     if (SuccBB == UnswitchedSuccBB)
    990       continue;
    991 
    992     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
    993     if (!ClonedSuccBB)
    994       continue;
    995 
    996     ClonedSuccBB->removePredecessor(ClonedParentBB,
    997                                     /*DontDeleteUselessPHIs*/ true);
    998   }
    999 
   1000   // Replace the cloned branch with an unconditional branch to the cloned
   1001   // unswitched successor.
   1002   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
   1003   ClonedParentBB->getTerminator()->eraseFromParent();
   1004   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
   1005 
   1006   // If there are duplicate entries in the PHI nodes because of multiple edges
   1007   // to the unswitched successor, we need to nuke all but one as we replaced it
   1008   // with a direct branch.
   1009   for (PHINode &PN : ClonedSuccBB->phis()) {
   1010     bool Found = false;
   1011     // Loop over the incoming operands backwards so we can easily delete as we
   1012     // go without invalidating the index.
   1013     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
   1014       if (PN.getIncomingBlock(i) != ClonedParentBB)
   1015         continue;
   1016       if (!Found) {
   1017         Found = true;
   1018         continue;
   1019       }
   1020       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
   1021     }
   1022   }
   1023 
   1024   // Record the domtree updates for the new blocks.
   1025   SmallPtrSet<BasicBlock *, 4> SuccSet;
   1026   for (auto *ClonedBB : NewBlocks) {
   1027     for (auto *SuccBB : successors(ClonedBB))
   1028       if (SuccSet.insert(SuccBB).second)
   1029         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
   1030     SuccSet.clear();
   1031   }
   1032 
   1033   return ClonedPH;
   1034 }
   1035 
   1036 /// Recursively clone the specified loop and all of its children.
   1037 ///
   1038 /// The target parent loop for the clone should be provided, or can be null if
   1039 /// the clone is a top-level loop. While cloning, all the blocks are mapped
   1040 /// with the provided value map. The entire original loop must be present in
   1041 /// the value map. The cloned loop is returned.
   1042 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
   1043                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
   1044   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
   1045     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
   1046     ClonedL.reserveBlocks(OrigL.getNumBlocks());
   1047     for (auto *BB : OrigL.blocks()) {
   1048       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
   1049       ClonedL.addBlockEntry(ClonedBB);
   1050       if (LI.getLoopFor(BB) == &OrigL)
   1051         LI.changeLoopFor(ClonedBB, &ClonedL);
   1052     }
   1053   };
   1054 
   1055   // We specially handle the first loop because it may get cloned into
   1056   // a different parent and because we most commonly are cloning leaf loops.
   1057   Loop *ClonedRootL = LI.AllocateLoop();
   1058   if (RootParentL)
   1059     RootParentL->addChildLoop(ClonedRootL);
   1060   else
   1061     LI.addTopLevelLoop(ClonedRootL);
   1062   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
   1063 
   1064   if (OrigRootL.empty())
   1065     return ClonedRootL;
   1066 
   1067   // If we have a nest, we can quickly clone the entire loop nest using an
   1068   // iterative approach because it is a tree. We keep the cloned parent in the
   1069   // data structure to avoid repeatedly querying through a map to find it.
   1070   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
   1071   // Build up the loops to clone in reverse order as we'll clone them from the
   1072   // back.
   1073   for (Loop *ChildL : llvm::reverse(OrigRootL))
   1074     LoopsToClone.push_back({ClonedRootL, ChildL});
   1075   do {
   1076     Loop *ClonedParentL, *L;
   1077     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
   1078     Loop *ClonedL = LI.AllocateLoop();
   1079     ClonedParentL->addChildLoop(ClonedL);
   1080     AddClonedBlocksToLoop(*L, *ClonedL);
   1081     for (Loop *ChildL : llvm::reverse(*L))
   1082       LoopsToClone.push_back({ClonedL, ChildL});
   1083   } while (!LoopsToClone.empty());
   1084 
   1085   return ClonedRootL;
   1086 }
   1087 
   1088 /// Build the cloned loops of an original loop from unswitching.
   1089 ///
   1090 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
   1091 /// operation. We need to re-verify that there even is a loop (as the backedge
   1092 /// may not have been cloned), and even if there are remaining backedges the
   1093 /// backedge set may be different. However, we know that each child loop is
   1094 /// undisturbed, we only need to find where to place each child loop within
   1095 /// either any parent loop or within a cloned version of the original loop.
   1096 ///
   1097 /// Because child loops may end up cloned outside of any cloned version of the
   1098 /// original loop, multiple cloned sibling loops may be created. All of them
   1099 /// are returned so that the newly introduced loop nest roots can be
   1100 /// identified.
   1101 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
   1102                              const ValueToValueMapTy &VMap, LoopInfo &LI,
   1103                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
   1104   Loop *ClonedL = nullptr;
   1105 
   1106   auto *OrigPH = OrigL.getLoopPreheader();
   1107   auto *OrigHeader = OrigL.getHeader();
   1108 
   1109   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
   1110   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
   1111 
   1112   // We need to know the loops of the cloned exit blocks to even compute the
   1113   // accurate parent loop. If we only clone exits to some parent of the
   1114   // original parent, we want to clone into that outer loop. We also keep track
   1115   // of the loops that our cloned exit blocks participate in.
   1116   Loop *ParentL = nullptr;
   1117   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
   1118   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
   1119   ClonedExitsInLoops.reserve(ExitBlocks.size());
   1120   for (auto *ExitBB : ExitBlocks)
   1121     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
   1122       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
   1123         ExitLoopMap[ClonedExitBB] = ExitL;
   1124         ClonedExitsInLoops.push_back(ClonedExitBB);
   1125         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
   1126           ParentL = ExitL;
   1127       }
   1128   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
   1129           ParentL->contains(OrigL.getParentLoop())) &&
   1130          "The computed parent loop should always contain (or be) the parent of "
   1131          "the original loop.");
   1132 
   1133   // We build the set of blocks dominated by the cloned header from the set of
   1134   // cloned blocks out of the original loop. While not all of these will
   1135   // necessarily be in the cloned loop, it is enough to establish that they
   1136   // aren't in unreachable cycles, etc.
   1137   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
   1138   for (auto *BB : OrigL.blocks())
   1139     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
   1140       ClonedLoopBlocks.insert(ClonedBB);
   1141 
   1142   // Rebuild the set of blocks that will end up in the cloned loop. We may have
   1143   // skipped cloning some region of this loop which can in turn skip some of
   1144   // the backedges so we have to rebuild the blocks in the loop based on the
   1145   // backedges that remain after cloning.
   1146   SmallVector<BasicBlock *, 16> Worklist;
   1147   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
   1148   for (auto *Pred : predecessors(ClonedHeader)) {
   1149     // The only possible non-loop header predecessor is the preheader because
   1150     // we know we cloned the loop in simplified form.
   1151     if (Pred == ClonedPH)
   1152       continue;
   1153 
   1154     // Because the loop was in simplified form, the only non-loop predecessor
   1155     // should be the preheader.
   1156     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
   1157                                            "header other than the preheader "
   1158                                            "that is not part of the loop!");
   1159 
   1160     // Insert this block into the loop set and on the first visit (and if it
   1161     // isn't the header we're currently walking) put it into the worklist to
   1162     // recurse through.
   1163     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
   1164       Worklist.push_back(Pred);
   1165   }
   1166 
   1167   // If we had any backedges then there *is* a cloned loop. Put the header into
   1168   // the loop set and then walk the worklist backwards to find all the blocks
   1169   // that remain within the loop after cloning.
   1170   if (!BlocksInClonedLoop.empty()) {
   1171     BlocksInClonedLoop.insert(ClonedHeader);
   1172 
   1173     while (!Worklist.empty()) {
   1174       BasicBlock *BB = Worklist.pop_back_val();
   1175       assert(BlocksInClonedLoop.count(BB) &&
   1176              "Didn't put block into the loop set!");
   1177 
   1178       // Insert any predecessors that are in the possible set into the cloned
   1179       // set, and if the insert is successful, add them to the worklist. Note
   1180       // that we filter on the blocks that are definitely reachable via the
   1181       // backedge to the loop header so we may prune out dead code within the
   1182       // cloned loop.
   1183       for (auto *Pred : predecessors(BB))
   1184         if (ClonedLoopBlocks.count(Pred) &&
   1185             BlocksInClonedLoop.insert(Pred).second)
   1186           Worklist.push_back(Pred);
   1187     }
   1188 
   1189     ClonedL = LI.AllocateLoop();
   1190     if (ParentL) {
   1191       ParentL->addBasicBlockToLoop(ClonedPH, LI);
   1192       ParentL->addChildLoop(ClonedL);
   1193     } else {
   1194       LI.addTopLevelLoop(ClonedL);
   1195     }
   1196     NonChildClonedLoops.push_back(ClonedL);
   1197 
   1198     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
   1199     // We don't want to just add the cloned loop blocks based on how we
   1200     // discovered them. The original order of blocks was carefully built in
   1201     // a way that doesn't rely on predecessor ordering. Rather than re-invent
   1202     // that logic, we just re-walk the original blocks (and those of the child
   1203     // loops) and filter them as we add them into the cloned loop.
   1204     for (auto *BB : OrigL.blocks()) {
   1205       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
   1206       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
   1207         continue;
   1208 
   1209       // Directly add the blocks that are only in this loop.
   1210       if (LI.getLoopFor(BB) == &OrigL) {
   1211         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
   1212         continue;
   1213       }
   1214 
   1215       // We want to manually add it to this loop and parents.
   1216       // Registering it with LoopInfo will happen when we clone the top
   1217       // loop for this block.
   1218       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
   1219         PL->addBlockEntry(ClonedBB);
   1220     }
   1221 
   1222     // Now add each child loop whose header remains within the cloned loop. All
   1223     // of the blocks within the loop must satisfy the same constraints as the
   1224     // header so once we pass the header checks we can just clone the entire
   1225     // child loop nest.
   1226     for (Loop *ChildL : OrigL) {
   1227       auto *ClonedChildHeader =
   1228           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
   1229       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
   1230         continue;
   1231 
   1232 #ifndef NDEBUG
   1233       // We should never have a cloned child loop header but fail to have
   1234       // all of the blocks for that child loop.
   1235       for (auto *ChildLoopBB : ChildL->blocks())
   1236         assert(BlocksInClonedLoop.count(
   1237                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
   1238                "Child cloned loop has a header within the cloned outer "
   1239                "loop but not all of its blocks!");
   1240 #endif
   1241 
   1242       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
   1243     }
   1244   }
   1245 
   1246   // Now that we've handled all the components of the original loop that were
   1247   // cloned into a new loop, we still need to handle anything from the original
   1248   // loop that wasn't in a cloned loop.
   1249 
   1250   // Figure out what blocks are left to place within any loop nest containing
   1251   // the unswitched loop. If we never formed a loop, the cloned PH is one of
   1252   // them.
   1253   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
   1254   if (BlocksInClonedLoop.empty())
   1255     UnloopedBlockSet.insert(ClonedPH);
   1256   for (auto *ClonedBB : ClonedLoopBlocks)
   1257     if (!BlocksInClonedLoop.count(ClonedBB))
   1258       UnloopedBlockSet.insert(ClonedBB);
   1259 
   1260   // Copy the cloned exits and sort them in ascending loop depth, we'll work
   1261   // backwards across these to process them inside out. The order shouldn't
   1262   // matter as we're just trying to build up the map from inside-out; we use
   1263   // the map in a more stably ordered way below.
   1264   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
   1265   llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(),
   1266              [&](BasicBlock *LHS, BasicBlock *RHS) {
   1267                return ExitLoopMap.lookup(LHS)->getLoopDepth() <
   1268                       ExitLoopMap.lookup(RHS)->getLoopDepth();
   1269              });
   1270 
   1271   // Populate the existing ExitLoopMap with everything reachable from each
   1272   // exit, starting from the inner most exit.
   1273   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
   1274     assert(Worklist.empty() && "Didn't clear worklist!");
   1275 
   1276     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
   1277     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
   1278 
   1279     // Walk the CFG back until we hit the cloned PH adding everything reachable
   1280     // and in the unlooped set to this exit block's loop.
   1281     Worklist.push_back(ExitBB);
   1282     do {
   1283       BasicBlock *BB = Worklist.pop_back_val();
   1284       // We can stop recursing at the cloned preheader (if we get there).
   1285       if (BB == ClonedPH)
   1286         continue;
   1287 
   1288       for (BasicBlock *PredBB : predecessors(BB)) {
   1289         // If this pred has already been moved to our set or is part of some
   1290         // (inner) loop, no update needed.
   1291         if (!UnloopedBlockSet.erase(PredBB)) {
   1292           assert(
   1293               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
   1294               "Predecessor not mapped to a loop!");
   1295           continue;
   1296         }
   1297 
   1298         // We just insert into the loop set here. We'll add these blocks to the
   1299         // exit loop after we build up the set in an order that doesn't rely on
   1300         // predecessor order (which in turn relies on use list order).
   1301         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
   1302         (void)Inserted;
   1303         assert(Inserted && "Should only visit an unlooped block once!");
   1304 
   1305         // And recurse through to its predecessors.
   1306         Worklist.push_back(PredBB);
   1307       }
   1308     } while (!Worklist.empty());
   1309   }
   1310 
   1311   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
   1312   // blocks to their outer loops, walk the cloned blocks and the cloned exits
   1313   // in their original order adding them to the correct loop.
   1314 
   1315   // We need a stable insertion order. We use the order of the original loop
   1316   // order and map into the correct parent loop.
   1317   for (auto *BB : llvm::concat<BasicBlock *const>(
   1318            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
   1319     if (Loop *OuterL = ExitLoopMap.lookup(BB))
   1320       OuterL->addBasicBlockToLoop(BB, LI);
   1321 
   1322 #ifndef NDEBUG
   1323   for (auto &BBAndL : ExitLoopMap) {
   1324     auto *BB = BBAndL.first;
   1325     auto *OuterL = BBAndL.second;
   1326     assert(LI.getLoopFor(BB) == OuterL &&
   1327            "Failed to put all blocks into outer loops!");
   1328   }
   1329 #endif
   1330 
   1331   // Now that all the blocks are placed into the correct containing loop in the
   1332   // absence of child loops, find all the potentially cloned child loops and
   1333   // clone them into whatever outer loop we placed their header into.
   1334   for (Loop *ChildL : OrigL) {
   1335     auto *ClonedChildHeader =
   1336         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
   1337     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
   1338       continue;
   1339 
   1340 #ifndef NDEBUG
   1341     for (auto *ChildLoopBB : ChildL->blocks())
   1342       assert(VMap.count(ChildLoopBB) &&
   1343              "Cloned a child loop header but not all of that loops blocks!");
   1344 #endif
   1345 
   1346     NonChildClonedLoops.push_back(cloneLoopNest(
   1347         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
   1348   }
   1349 }
   1350 
   1351 static void
   1352 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
   1353                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
   1354                        DominatorTree &DT) {
   1355   // Find all the dead clones, and remove them from their successors.
   1356   SmallVector<BasicBlock *, 16> DeadBlocks;
   1357   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
   1358     for (auto &VMap : VMaps)
   1359       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
   1360         if (!DT.isReachableFromEntry(ClonedBB)) {
   1361           for (BasicBlock *SuccBB : successors(ClonedBB))
   1362             SuccBB->removePredecessor(ClonedBB);
   1363           DeadBlocks.push_back(ClonedBB);
   1364         }
   1365 
   1366   // Drop any remaining references to break cycles.
   1367   for (BasicBlock *BB : DeadBlocks)
   1368     BB->dropAllReferences();
   1369   // Erase them from the IR.
   1370   for (BasicBlock *BB : DeadBlocks)
   1371     BB->eraseFromParent();
   1372 }
   1373 
   1374 static void
   1375 deleteDeadBlocksFromLoop(Loop &L,
   1376                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
   1377                          DominatorTree &DT, LoopInfo &LI) {
   1378   // Find all the dead blocks, and remove them from their successors.
   1379   SmallVector<BasicBlock *, 16> DeadBlocks;
   1380   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
   1381     if (!DT.isReachableFromEntry(BB)) {
   1382       for (BasicBlock *SuccBB : successors(BB))
   1383         SuccBB->removePredecessor(BB);
   1384       DeadBlocks.push_back(BB);
   1385     }
   1386 
   1387   SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(),
   1388                                              DeadBlocks.end());
   1389 
   1390   // Filter out the dead blocks from the exit blocks list so that it can be
   1391   // used in the caller.
   1392   llvm::erase_if(ExitBlocks,
   1393                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
   1394 
   1395   // Walk from this loop up through its parents removing all of the dead blocks.
   1396   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
   1397     for (auto *BB : DeadBlocks)
   1398       ParentL->getBlocksSet().erase(BB);
   1399     llvm::erase_if(ParentL->getBlocksVector(),
   1400                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
   1401   }
   1402 
   1403   // Now delete the dead child loops. This raw delete will clear them
   1404   // recursively.
   1405   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
   1406     if (!DeadBlockSet.count(ChildL->getHeader()))
   1407       return false;
   1408 
   1409     assert(llvm::all_of(ChildL->blocks(),
   1410                         [&](BasicBlock *ChildBB) {
   1411                           return DeadBlockSet.count(ChildBB);
   1412                         }) &&
   1413            "If the child loop header is dead all blocks in the child loop must "
   1414            "be dead as well!");
   1415     LI.destroy(ChildL);
   1416     return true;
   1417   });
   1418 
   1419   // Remove the loop mappings for the dead blocks and drop all the references
   1420   // from these blocks to others to handle cyclic references as we start
   1421   // deleting the blocks themselves.
   1422   for (auto *BB : DeadBlocks) {
   1423     // Check that the dominator tree has already been updated.
   1424     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
   1425     LI.changeLoopFor(BB, nullptr);
   1426     BB->dropAllReferences();
   1427   }
   1428 
   1429   // Actually delete the blocks now that they've been fully unhooked from the
   1430   // IR.
   1431   for (auto *BB : DeadBlocks)
   1432     BB->eraseFromParent();
   1433 }
   1434 
   1435 /// Recompute the set of blocks in a loop after unswitching.
   1436 ///
   1437 /// This walks from the original headers predecessors to rebuild the loop. We
   1438 /// take advantage of the fact that new blocks can't have been added, and so we
   1439 /// filter by the original loop's blocks. This also handles potentially
   1440 /// unreachable code that we don't want to explore but might be found examining
   1441 /// the predecessors of the header.
   1442 ///
   1443 /// If the original loop is no longer a loop, this will return an empty set. If
   1444 /// it remains a loop, all the blocks within it will be added to the set
   1445 /// (including those blocks in inner loops).
   1446 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
   1447                                                                  LoopInfo &LI) {
   1448   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
   1449 
   1450   auto *PH = L.getLoopPreheader();
   1451   auto *Header = L.getHeader();
   1452 
   1453   // A worklist to use while walking backwards from the header.
   1454   SmallVector<BasicBlock *, 16> Worklist;
   1455 
   1456   // First walk the predecessors of the header to find the backedges. This will
   1457   // form the basis of our walk.
   1458   for (auto *Pred : predecessors(Header)) {
   1459     // Skip the preheader.
   1460     if (Pred == PH)
   1461       continue;
   1462 
   1463     // Because the loop was in simplified form, the only non-loop predecessor
   1464     // is the preheader.
   1465     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
   1466                                "than the preheader that is not part of the "
   1467                                "loop!");
   1468 
   1469     // Insert this block into the loop set and on the first visit and, if it
   1470     // isn't the header we're currently walking, put it into the worklist to
   1471     // recurse through.
   1472     if (LoopBlockSet.insert(Pred).second && Pred != Header)
   1473       Worklist.push_back(Pred);
   1474   }
   1475 
   1476   // If no backedges were found, we're done.
   1477   if (LoopBlockSet.empty())
   1478     return LoopBlockSet;
   1479 
   1480   // We found backedges, recurse through them to identify the loop blocks.
   1481   while (!Worklist.empty()) {
   1482     BasicBlock *BB = Worklist.pop_back_val();
   1483     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
   1484 
   1485     // No need to walk past the header.
   1486     if (BB == Header)
   1487       continue;
   1488 
   1489     // Because we know the inner loop structure remains valid we can use the
   1490     // loop structure to jump immediately across the entire nested loop.
   1491     // Further, because it is in loop simplified form, we can directly jump
   1492     // to its preheader afterward.
   1493     if (Loop *InnerL = LI.getLoopFor(BB))
   1494       if (InnerL != &L) {
   1495         assert(L.contains(InnerL) &&
   1496                "Should not reach a loop *outside* this loop!");
   1497         // The preheader is the only possible predecessor of the loop so
   1498         // insert it into the set and check whether it was already handled.
   1499         auto *InnerPH = InnerL->getLoopPreheader();
   1500         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
   1501                                       "but not contain the inner loop "
   1502                                       "preheader!");
   1503         if (!LoopBlockSet.insert(InnerPH).second)
   1504           // The only way to reach the preheader is through the loop body
   1505           // itself so if it has been visited the loop is already handled.
   1506           continue;
   1507 
   1508         // Insert all of the blocks (other than those already present) into
   1509         // the loop set. We expect at least the block that led us to find the
   1510         // inner loop to be in the block set, but we may also have other loop
   1511         // blocks if they were already enqueued as predecessors of some other
   1512         // outer loop block.
   1513         for (auto *InnerBB : InnerL->blocks()) {
   1514           if (InnerBB == BB) {
   1515             assert(LoopBlockSet.count(InnerBB) &&
   1516                    "Block should already be in the set!");
   1517             continue;
   1518           }
   1519 
   1520           LoopBlockSet.insert(InnerBB);
   1521         }
   1522 
   1523         // Add the preheader to the worklist so we will continue past the
   1524         // loop body.
   1525         Worklist.push_back(InnerPH);
   1526         continue;
   1527       }
   1528 
   1529     // Insert any predecessors that were in the original loop into the new
   1530     // set, and if the insert is successful, add them to the worklist.
   1531     for (auto *Pred : predecessors(BB))
   1532       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
   1533         Worklist.push_back(Pred);
   1534   }
   1535 
   1536   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
   1537 
   1538   // We've found all the blocks participating in the loop, return our completed
   1539   // set.
   1540   return LoopBlockSet;
   1541 }
   1542 
   1543 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
   1544 ///
   1545 /// The removal may have removed some child loops entirely but cannot have
   1546 /// disturbed any remaining child loops. However, they may need to be hoisted
   1547 /// to the parent loop (or to be top-level loops). The original loop may be
   1548 /// completely removed.
   1549 ///
   1550 /// The sibling loops resulting from this update are returned. If the original
   1551 /// loop remains a valid loop, it will be the first entry in this list with all
   1552 /// of the newly sibling loops following it.
   1553 ///
   1554 /// Returns true if the loop remains a loop after unswitching, and false if it
   1555 /// is no longer a loop after unswitching (and should not continue to be
   1556 /// referenced).
   1557 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
   1558                                      LoopInfo &LI,
   1559                                      SmallVectorImpl<Loop *> &HoistedLoops) {
   1560   auto *PH = L.getLoopPreheader();
   1561 
   1562   // Compute the actual parent loop from the exit blocks. Because we may have
   1563   // pruned some exits the loop may be different from the original parent.
   1564   Loop *ParentL = nullptr;
   1565   SmallVector<Loop *, 4> ExitLoops;
   1566   SmallVector<BasicBlock *, 4> ExitsInLoops;
   1567   ExitsInLoops.reserve(ExitBlocks.size());
   1568   for (auto *ExitBB : ExitBlocks)
   1569     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
   1570       ExitLoops.push_back(ExitL);
   1571       ExitsInLoops.push_back(ExitBB);
   1572       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
   1573         ParentL = ExitL;
   1574     }
   1575 
   1576   // Recompute the blocks participating in this loop. This may be empty if it
   1577   // is no longer a loop.
   1578   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
   1579 
   1580   // If we still have a loop, we need to re-set the loop's parent as the exit
   1581   // block set changing may have moved it within the loop nest. Note that this
   1582   // can only happen when this loop has a parent as it can only hoist the loop
   1583   // *up* the nest.
   1584   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
   1585     // Remove this loop's (original) blocks from all of the intervening loops.
   1586     for (Loop *IL = L.getParentLoop(); IL != ParentL;
   1587          IL = IL->getParentLoop()) {
   1588       IL->getBlocksSet().erase(PH);
   1589       for (auto *BB : L.blocks())
   1590         IL->getBlocksSet().erase(BB);
   1591       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
   1592         return BB == PH || L.contains(BB);
   1593       });
   1594     }
   1595 
   1596     LI.changeLoopFor(PH, ParentL);
   1597     L.getParentLoop()->removeChildLoop(&L);
   1598     if (ParentL)
   1599       ParentL->addChildLoop(&L);
   1600     else
   1601       LI.addTopLevelLoop(&L);
   1602   }
   1603 
   1604   // Now we update all the blocks which are no longer within the loop.
   1605   auto &Blocks = L.getBlocksVector();
   1606   auto BlocksSplitI =
   1607       LoopBlockSet.empty()
   1608           ? Blocks.begin()
   1609           : std::stable_partition(
   1610                 Blocks.begin(), Blocks.end(),
   1611                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
   1612 
   1613   // Before we erase the list of unlooped blocks, build a set of them.
   1614   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
   1615   if (LoopBlockSet.empty())
   1616     UnloopedBlocks.insert(PH);
   1617 
   1618   // Now erase these blocks from the loop.
   1619   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
   1620     L.getBlocksSet().erase(BB);
   1621   Blocks.erase(BlocksSplitI, Blocks.end());
   1622 
   1623   // Sort the exits in ascending loop depth, we'll work backwards across these
   1624   // to process them inside out.
   1625   std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
   1626                    [&](BasicBlock *LHS, BasicBlock *RHS) {
   1627                      return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
   1628                    });
   1629 
   1630   // We'll build up a set for each exit loop.
   1631   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
   1632   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
   1633 
   1634   auto RemoveUnloopedBlocksFromLoop =
   1635       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
   1636         for (auto *BB : UnloopedBlocks)
   1637           L.getBlocksSet().erase(BB);
   1638         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
   1639           return UnloopedBlocks.count(BB);
   1640         });
   1641       };
   1642 
   1643   SmallVector<BasicBlock *, 16> Worklist;
   1644   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
   1645     assert(Worklist.empty() && "Didn't clear worklist!");
   1646     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
   1647 
   1648     // Grab the next exit block, in decreasing loop depth order.
   1649     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
   1650     Loop &ExitL = *LI.getLoopFor(ExitBB);
   1651     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
   1652 
   1653     // Erase all of the unlooped blocks from the loops between the previous
   1654     // exit loop and this exit loop. This works because the ExitInLoops list is
   1655     // sorted in increasing order of loop depth and thus we visit loops in
   1656     // decreasing order of loop depth.
   1657     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
   1658       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
   1659 
   1660     // Walk the CFG back until we hit the cloned PH adding everything reachable
   1661     // and in the unlooped set to this exit block's loop.
   1662     Worklist.push_back(ExitBB);
   1663     do {
   1664       BasicBlock *BB = Worklist.pop_back_val();
   1665       // We can stop recursing at the cloned preheader (if we get there).
   1666       if (BB == PH)
   1667         continue;
   1668 
   1669       for (BasicBlock *PredBB : predecessors(BB)) {
   1670         // If this pred has already been moved to our set or is part of some
   1671         // (inner) loop, no update needed.
   1672         if (!UnloopedBlocks.erase(PredBB)) {
   1673           assert((NewExitLoopBlocks.count(PredBB) ||
   1674                   ExitL.contains(LI.getLoopFor(PredBB))) &&
   1675                  "Predecessor not in a nested loop (or already visited)!");
   1676           continue;
   1677         }
   1678 
   1679         // We just insert into the loop set here. We'll add these blocks to the
   1680         // exit loop after we build up the set in a deterministic order rather
   1681         // than the predecessor-influenced visit order.
   1682         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
   1683         (void)Inserted;
   1684         assert(Inserted && "Should only visit an unlooped block once!");
   1685 
   1686         // And recurse through to its predecessors.
   1687         Worklist.push_back(PredBB);
   1688       }
   1689     } while (!Worklist.empty());
   1690 
   1691     // If blocks in this exit loop were directly part of the original loop (as
   1692     // opposed to a child loop) update the map to point to this exit loop. This
   1693     // just updates a map and so the fact that the order is unstable is fine.
   1694     for (auto *BB : NewExitLoopBlocks)
   1695       if (Loop *BBL = LI.getLoopFor(BB))
   1696         if (BBL == &L || !L.contains(BBL))
   1697           LI.changeLoopFor(BB, &ExitL);
   1698 
   1699     // We will remove the remaining unlooped blocks from this loop in the next
   1700     // iteration or below.
   1701     NewExitLoopBlocks.clear();
   1702   }
   1703 
   1704   // Any remaining unlooped blocks are no longer part of any loop unless they
   1705   // are part of some child loop.
   1706   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
   1707     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
   1708   for (auto *BB : UnloopedBlocks)
   1709     if (Loop *BBL = LI.getLoopFor(BB))
   1710       if (BBL == &L || !L.contains(BBL))
   1711         LI.changeLoopFor(BB, nullptr);
   1712 
   1713   // Sink all the child loops whose headers are no longer in the loop set to
   1714   // the parent (or to be top level loops). We reach into the loop and directly
   1715   // update its subloop vector to make this batch update efficient.
   1716   auto &SubLoops = L.getSubLoopsVector();
   1717   auto SubLoopsSplitI =
   1718       LoopBlockSet.empty()
   1719           ? SubLoops.begin()
   1720           : std::stable_partition(
   1721                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
   1722                   return LoopBlockSet.count(SubL->getHeader());
   1723                 });
   1724   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
   1725     HoistedLoops.push_back(HoistedL);
   1726     HoistedL->setParentLoop(nullptr);
   1727 
   1728     // To compute the new parent of this hoisted loop we look at where we
   1729     // placed the preheader above. We can't lookup the header itself because we
   1730     // retained the mapping from the header to the hoisted loop. But the
   1731     // preheader and header should have the exact same new parent computed
   1732     // based on the set of exit blocks from the original loop as the preheader
   1733     // is a predecessor of the header and so reached in the reverse walk. And
   1734     // because the loops were all in simplified form the preheader of the
   1735     // hoisted loop can't be part of some *other* loop.
   1736     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
   1737       NewParentL->addChildLoop(HoistedL);
   1738     else
   1739       LI.addTopLevelLoop(HoistedL);
   1740   }
   1741   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
   1742 
   1743   // Actually delete the loop if nothing remained within it.
   1744   if (Blocks.empty()) {
   1745     assert(SubLoops.empty() &&
   1746            "Failed to remove all subloops from the original loop!");
   1747     if (Loop *ParentL = L.getParentLoop())
   1748       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
   1749     else
   1750       LI.removeLoop(llvm::find(LI, &L));
   1751     LI.destroy(&L);
   1752     return false;
   1753   }
   1754 
   1755   return true;
   1756 }
   1757 
   1758 /// Helper to visit a dominator subtree, invoking a callable on each node.
   1759 ///
   1760 /// Returning false at any point will stop walking past that node of the tree.
   1761 template <typename CallableT>
   1762 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
   1763   SmallVector<DomTreeNode *, 4> DomWorklist;
   1764   DomWorklist.push_back(DT[BB]);
   1765 #ifndef NDEBUG
   1766   SmallPtrSet<DomTreeNode *, 4> Visited;
   1767   Visited.insert(DT[BB]);
   1768 #endif
   1769   do {
   1770     DomTreeNode *N = DomWorklist.pop_back_val();
   1771 
   1772     // Visit this node.
   1773     if (!Callable(N->getBlock()))
   1774       continue;
   1775 
   1776     // Accumulate the child nodes.
   1777     for (DomTreeNode *ChildN : *N) {
   1778       assert(Visited.insert(ChildN).second &&
   1779              "Cannot visit a node twice when walking a tree!");
   1780       DomWorklist.push_back(ChildN);
   1781     }
   1782   } while (!DomWorklist.empty());
   1783 }
   1784 
   1785 static bool unswitchNontrivialInvariants(
   1786     Loop &L, TerminatorInst &TI, ArrayRef<Value *> Invariants,
   1787     DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
   1788     function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
   1789     ScalarEvolution *SE) {
   1790   auto *ParentBB = TI.getParent();
   1791   BranchInst *BI = dyn_cast<BranchInst>(&TI);
   1792   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
   1793 
   1794   // We can only unswitch switches, conditional branches with an invariant
   1795   // condition, or combining invariant conditions with an instruction.
   1796   assert((SI || BI->isConditional()) &&
   1797          "Can only unswitch switches and conditional branch!");
   1798   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
   1799   if (FullUnswitch)
   1800     assert(Invariants.size() == 1 &&
   1801            "Cannot have other invariants with full unswitching!");
   1802   else
   1803     assert(isa<Instruction>(BI->getCondition()) &&
   1804            "Partial unswitching requires an instruction as the condition!");
   1805 
   1806   // Constant and BBs tracking the cloned and continuing successor. When we are
   1807   // unswitching the entire condition, this can just be trivially chosen to
   1808   // unswitch towards `true`. However, when we are unswitching a set of
   1809   // invariants combined with `and` or `or`, the combining operation determines
   1810   // the best direction to unswitch: we want to unswitch the direction that will
   1811   // collapse the branch.
   1812   bool Direction = true;
   1813   int ClonedSucc = 0;
   1814   if (!FullUnswitch) {
   1815     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
   1816       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
   1817                  Instruction::And &&
   1818              "Only `or` and `and` instructions can combine invariants being "
   1819              "unswitched.");
   1820       Direction = false;
   1821       ClonedSucc = 1;
   1822     }
   1823   }
   1824 
   1825   BasicBlock *RetainedSuccBB =
   1826       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
   1827   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
   1828   if (BI)
   1829     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
   1830   else
   1831     for (auto Case : SI->cases())
   1832       if (Case.getCaseSuccessor() != RetainedSuccBB)
   1833         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
   1834 
   1835   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
   1836          "Should not unswitch the same successor we are retaining!");
   1837 
   1838   // The branch should be in this exact loop. Any inner loop's invariant branch
   1839   // should be handled by unswitching that inner loop. The caller of this
   1840   // routine should filter out any candidates that remain (but were skipped for
   1841   // whatever reason).
   1842   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
   1843 
   1844   SmallVector<BasicBlock *, 4> ExitBlocks;
   1845   L.getUniqueExitBlocks(ExitBlocks);
   1846 
   1847   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
   1848   // don't know how to split those exit blocks.
   1849   // FIXME: We should teach SplitBlock to handle this and remove this
   1850   // restriction.
   1851   for (auto *ExitBB : ExitBlocks)
   1852     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
   1853       return false;
   1854 
   1855   // Compute the parent loop now before we start hacking on things.
   1856   Loop *ParentL = L.getParentLoop();
   1857 
   1858   // Compute the outer-most loop containing one of our exit blocks. This is the
   1859   // furthest up our loopnest which can be mutated, which we will use below to
   1860   // update things.
   1861   Loop *OuterExitL = &L;
   1862   for (auto *ExitBB : ExitBlocks) {
   1863     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
   1864     if (!NewOuterExitL) {
   1865       // We exited the entire nest with this block, so we're done.
   1866       OuterExitL = nullptr;
   1867       break;
   1868     }
   1869     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
   1870       OuterExitL = NewOuterExitL;
   1871   }
   1872 
   1873   // At this point, we're definitely going to unswitch something so invalidate
   1874   // any cached information in ScalarEvolution for the outer most loop
   1875   // containing an exit block and all nested loops.
   1876   if (SE) {
   1877     if (OuterExitL)
   1878       SE->forgetLoop(OuterExitL);
   1879     else
   1880       SE->forgetTopmostLoop(&L);
   1881   }
   1882 
   1883   // If the edge from this terminator to a successor dominates that successor,
   1884   // store a map from each block in its dominator subtree to it. This lets us
   1885   // tell when cloning for a particular successor if a block is dominated by
   1886   // some *other* successor with a single data structure. We use this to
   1887   // significantly reduce cloning.
   1888   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
   1889   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
   1890            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
   1891     if (SuccBB->getUniquePredecessor() ||
   1892         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
   1893           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
   1894         }))
   1895       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
   1896         DominatingSucc[BB] = SuccBB;
   1897         return true;
   1898       });
   1899 
   1900   // Split the preheader, so that we know that there is a safe place to insert
   1901   // the conditional branch. We will change the preheader to have a conditional
   1902   // branch on LoopCond. The original preheader will become the split point
   1903   // between the unswitched versions, and we will have a new preheader for the
   1904   // original loop.
   1905   BasicBlock *SplitBB = L.getLoopPreheader();
   1906   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
   1907 
   1908   // Keep track of the dominator tree updates needed.
   1909   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
   1910 
   1911   // Clone the loop for each unswitched successor.
   1912   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
   1913   VMaps.reserve(UnswitchedSuccBBs.size());
   1914   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
   1915   for (auto *SuccBB : UnswitchedSuccBBs) {
   1916     VMaps.emplace_back(new ValueToValueMapTy());
   1917     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
   1918         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
   1919         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI);
   1920   }
   1921 
   1922   // The stitching of the branched code back together depends on whether we're
   1923   // doing full unswitching or not with the exception that we always want to
   1924   // nuke the initial terminator placed in the split block.
   1925   SplitBB->getTerminator()->eraseFromParent();
   1926   if (FullUnswitch) {
   1927     // First we need to unhook the successor relationship as we'll be replacing
   1928     // the terminator with a direct branch. This is much simpler for branches
   1929     // than switches so we handle those first.
   1930     if (BI) {
   1931       // Remove the parent as a predecessor of the unswitched successor.
   1932       assert(UnswitchedSuccBBs.size() == 1 &&
   1933              "Only one possible unswitched block for a branch!");
   1934       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
   1935       UnswitchedSuccBB->removePredecessor(ParentBB,
   1936                                           /*DontDeleteUselessPHIs*/ true);
   1937       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
   1938     } else {
   1939       // Note that we actually want to remove the parent block as a predecessor
   1940       // of *every* case successor. The case successor is either unswitched,
   1941       // completely eliminating an edge from the parent to that successor, or it
   1942       // is a duplicate edge to the retained successor as the retained successor
   1943       // is always the default successor and as we'll replace this with a direct
   1944       // branch we no longer need the duplicate entries in the PHI nodes.
   1945       assert(SI->getDefaultDest() == RetainedSuccBB &&
   1946              "Not retaining default successor!");
   1947       for (auto &Case : SI->cases())
   1948         Case.getCaseSuccessor()->removePredecessor(
   1949             ParentBB,
   1950             /*DontDeleteUselessPHIs*/ true);
   1951 
   1952       // We need to use the set to populate domtree updates as even when there
   1953       // are multiple cases pointing at the same successor we only want to
   1954       // remove and insert one edge in the domtree.
   1955       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
   1956         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
   1957     }
   1958 
   1959     // Now that we've unhooked the successor relationship, splice the terminator
   1960     // from the original loop to the split.
   1961     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
   1962 
   1963     // Now wire up the terminator to the preheaders.
   1964     if (BI) {
   1965       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
   1966       BI->setSuccessor(ClonedSucc, ClonedPH);
   1967       BI->setSuccessor(1 - ClonedSucc, LoopPH);
   1968       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
   1969     } else {
   1970       assert(SI && "Must either be a branch or switch!");
   1971 
   1972       // Walk the cases and directly update their successors.
   1973       SI->setDefaultDest(LoopPH);
   1974       for (auto &Case : SI->cases())
   1975         if (Case.getCaseSuccessor() == RetainedSuccBB)
   1976           Case.setSuccessor(LoopPH);
   1977         else
   1978           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
   1979 
   1980       // We need to use the set to populate domtree updates as even when there
   1981       // are multiple cases pointing at the same successor we only want to
   1982       // remove and insert one edge in the domtree.
   1983       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
   1984         DTUpdates.push_back(
   1985             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
   1986     }
   1987 
   1988     // Create a new unconditional branch to the continuing block (as opposed to
   1989     // the one cloned).
   1990     BranchInst::Create(RetainedSuccBB, ParentBB);
   1991   } else {
   1992     assert(BI && "Only branches have partial unswitching.");
   1993     assert(UnswitchedSuccBBs.size() == 1 &&
   1994            "Only one possible unswitched block for a branch!");
   1995     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
   1996     // When doing a partial unswitch, we have to do a bit more work to build up
   1997     // the branch in the split block.
   1998     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
   1999                                           *ClonedPH, *LoopPH);
   2000     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
   2001   }
   2002 
   2003   // Apply the updates accumulated above to get an up-to-date dominator tree.
   2004   DT.applyUpdates(DTUpdates);
   2005 
   2006   // Now that we have an accurate dominator tree, first delete the dead cloned
   2007   // blocks so that we can accurately build any cloned loops. It is important to
   2008   // not delete the blocks from the original loop yet because we still want to
   2009   // reference the original loop to understand the cloned loop's structure.
   2010   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT);
   2011 
   2012   // Build the cloned loop structure itself. This may be substantially
   2013   // different from the original structure due to the simplified CFG. This also
   2014   // handles inserting all the cloned blocks into the correct loops.
   2015   SmallVector<Loop *, 4> NonChildClonedLoops;
   2016   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
   2017     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
   2018 
   2019   // Now that our cloned loops have been built, we can update the original loop.
   2020   // First we delete the dead blocks from it and then we rebuild the loop
   2021   // structure taking these deletions into account.
   2022   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI);
   2023   SmallVector<Loop *, 4> HoistedLoops;
   2024   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
   2025 
   2026   // This transformation has a high risk of corrupting the dominator tree, and
   2027   // the below steps to rebuild loop structures will result in hard to debug
   2028   // errors in that case so verify that the dominator tree is sane first.
   2029   // FIXME: Remove this when the bugs stop showing up and rely on existing
   2030   // verification steps.
   2031   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
   2032 
   2033   if (BI) {
   2034     // If we unswitched a branch which collapses the condition to a known
   2035     // constant we want to replace all the uses of the invariants within both
   2036     // the original and cloned blocks. We do this here so that we can use the
   2037     // now updated dominator tree to identify which side the users are on.
   2038     assert(UnswitchedSuccBBs.size() == 1 &&
   2039            "Only one possible unswitched block for a branch!");
   2040     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
   2041     ConstantInt *UnswitchedReplacement =
   2042         Direction ? ConstantInt::getTrue(BI->getContext())
   2043                   : ConstantInt::getFalse(BI->getContext());
   2044     ConstantInt *ContinueReplacement =
   2045         Direction ? ConstantInt::getFalse(BI->getContext())
   2046                   : ConstantInt::getTrue(BI->getContext());
   2047     for (Value *Invariant : Invariants)
   2048       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
   2049            UI != UE;) {
   2050         // Grab the use and walk past it so we can clobber it in the use list.
   2051         Use *U = &*UI++;
   2052         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
   2053         if (!UserI)
   2054           continue;
   2055 
   2056         // Replace it with the 'continue' side if in the main loop body, and the
   2057         // unswitched if in the cloned blocks.
   2058         if (DT.dominates(LoopPH, UserI->getParent()))
   2059           U->set(ContinueReplacement);
   2060         else if (DT.dominates(ClonedPH, UserI->getParent()))
   2061           U->set(UnswitchedReplacement);
   2062       }
   2063   }
   2064 
   2065   // We can change which blocks are exit blocks of all the cloned sibling
   2066   // loops, the current loop, and any parent loops which shared exit blocks
   2067   // with the current loop. As a consequence, we need to re-form LCSSA for
   2068   // them. But we shouldn't need to re-form LCSSA for any child loops.
   2069   // FIXME: This could be made more efficient by tracking which exit blocks are
   2070   // new, and focusing on them, but that isn't likely to be necessary.
   2071   //
   2072   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
   2073   // loop nest and update every loop that could have had its exits changed. We
   2074   // also need to cover any intervening loops. We add all of these loops to
   2075   // a list and sort them by loop depth to achieve this without updating
   2076   // unnecessary loops.
   2077   auto UpdateLoop = [&](Loop &UpdateL) {
   2078 #ifndef NDEBUG
   2079     UpdateL.verifyLoop();
   2080     for (Loop *ChildL : UpdateL) {
   2081       ChildL->verifyLoop();
   2082       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
   2083              "Perturbed a child loop's LCSSA form!");
   2084     }
   2085 #endif
   2086     // First build LCSSA for this loop so that we can preserve it when
   2087     // forming dedicated exits. We don't want to perturb some other loop's
   2088     // LCSSA while doing that CFG edit.
   2089     formLCSSA(UpdateL, DT, &LI, nullptr);
   2090 
   2091     // For loops reached by this loop's original exit blocks we may
   2092     // introduced new, non-dedicated exits. At least try to re-form dedicated
   2093     // exits for these loops. This may fail if they couldn't have dedicated
   2094     // exits to start with.
   2095     formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true);
   2096   };
   2097 
   2098   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
   2099   // and we can do it in any order as they don't nest relative to each other.
   2100   //
   2101   // Also check if any of the loops we have updated have become top-level loops
   2102   // as that will necessitate widening the outer loop scope.
   2103   for (Loop *UpdatedL :
   2104        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
   2105     UpdateLoop(*UpdatedL);
   2106     if (!UpdatedL->getParentLoop())
   2107       OuterExitL = nullptr;
   2108   }
   2109   if (IsStillLoop) {
   2110     UpdateLoop(L);
   2111     if (!L.getParentLoop())
   2112       OuterExitL = nullptr;
   2113   }
   2114 
   2115   // If the original loop had exit blocks, walk up through the outer most loop
   2116   // of those exit blocks to update LCSSA and form updated dedicated exits.
   2117   if (OuterExitL != &L)
   2118     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
   2119          OuterL = OuterL->getParentLoop())
   2120       UpdateLoop(*OuterL);
   2121 
   2122 #ifndef NDEBUG
   2123   // Verify the entire loop structure to catch any incorrect updates before we
   2124   // progress in the pass pipeline.
   2125   LI.verify(DT);
   2126 #endif
   2127 
   2128   // Now that we've unswitched something, make callbacks to report the changes.
   2129   // For that we need to merge together the updated loops and the cloned loops
   2130   // and check whether the original loop survived.
   2131   SmallVector<Loop *, 4> SibLoops;
   2132   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
   2133     if (UpdatedL->getParentLoop() == ParentL)
   2134       SibLoops.push_back(UpdatedL);
   2135   UnswitchCB(IsStillLoop, SibLoops);
   2136 
   2137   ++NumBranches;
   2138   return true;
   2139 }
   2140 
   2141 /// Recursively compute the cost of a dominator subtree based on the per-block
   2142 /// cost map provided.
   2143 ///
   2144 /// The recursive computation is memozied into the provided DT-indexed cost map
   2145 /// to allow querying it for most nodes in the domtree without it becoming
   2146 /// quadratic.
   2147 static int
   2148 computeDomSubtreeCost(DomTreeNode &N,
   2149                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
   2150                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
   2151   // Don't accumulate cost (or recurse through) blocks not in our block cost
   2152   // map and thus not part of the duplication cost being considered.
   2153   auto BBCostIt = BBCostMap.find(N.getBlock());
   2154   if (BBCostIt == BBCostMap.end())
   2155     return 0;
   2156 
   2157   // Lookup this node to see if we already computed its cost.
   2158   auto DTCostIt = DTCostMap.find(&N);
   2159   if (DTCostIt != DTCostMap.end())
   2160     return DTCostIt->second;
   2161 
   2162   // If not, we have to compute it. We can't use insert above and update
   2163   // because computing the cost may insert more things into the map.
   2164   int Cost = std::accumulate(
   2165       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
   2166         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
   2167       });
   2168   bool Inserted = DTCostMap.insert({&N, Cost}).second;
   2169   (void)Inserted;
   2170   assert(Inserted && "Should not insert a node while visiting children!");
   2171   return Cost;
   2172 }
   2173 
   2174 static bool
   2175 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
   2176                       AssumptionCache &AC, TargetTransformInfo &TTI,
   2177                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
   2178                       ScalarEvolution *SE) {
   2179   // Collect all invariant conditions within this loop (as opposed to an inner
   2180   // loop which would be handled when visiting that inner loop).
   2181   SmallVector<std::pair<TerminatorInst *, TinyPtrVector<Value *>>, 4>
   2182       UnswitchCandidates;
   2183   for (auto *BB : L.blocks()) {
   2184     if (LI.getLoopFor(BB) != &L)
   2185       continue;
   2186 
   2187     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   2188       // We can only consider fully loop-invariant switch conditions as we need
   2189       // to completely eliminate the switch after unswitching.
   2190       if (!isa<Constant>(SI->getCondition()) &&
   2191           L.isLoopInvariant(SI->getCondition()))
   2192         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
   2193       continue;
   2194     }
   2195 
   2196     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
   2197     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
   2198         BI->getSuccessor(0) == BI->getSuccessor(1))
   2199       continue;
   2200 
   2201     if (L.isLoopInvariant(BI->getCondition())) {
   2202       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
   2203       continue;
   2204     }
   2205 
   2206     Instruction &CondI = *cast<Instruction>(BI->getCondition());
   2207     if (CondI.getOpcode() != Instruction::And &&
   2208       CondI.getOpcode() != Instruction::Or)
   2209       continue;
   2210 
   2211     TinyPtrVector<Value *> Invariants =
   2212         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
   2213     if (Invariants.empty())
   2214       continue;
   2215 
   2216     UnswitchCandidates.push_back({BI, std::move(Invariants)});
   2217   }
   2218 
   2219   // If we didn't find any candidates, we're done.
   2220   if (UnswitchCandidates.empty())
   2221     return false;
   2222 
   2223   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
   2224   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
   2225   // irreducible control flow into reducible control flow and introduce new
   2226   // loops "out of thin air". If we ever discover important use cases for doing
   2227   // this, we can add support to loop unswitch, but it is a lot of complexity
   2228   // for what seems little or no real world benefit.
   2229   LoopBlocksRPO RPOT(&L);
   2230   RPOT.perform(&LI);
   2231   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
   2232     return false;
   2233 
   2234   LLVM_DEBUG(
   2235       dbgs() << "Considering " << UnswitchCandidates.size()
   2236              << " non-trivial loop invariant conditions for unswitching.\n");
   2237 
   2238   // Given that unswitching these terminators will require duplicating parts of
   2239   // the loop, so we need to be able to model that cost. Compute the ephemeral
   2240   // values and set up a data structure to hold per-BB costs. We cache each
   2241   // block's cost so that we don't recompute this when considering different
   2242   // subsets of the loop for duplication during unswitching.
   2243   SmallPtrSet<const Value *, 4> EphValues;
   2244   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
   2245   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
   2246 
   2247   // Compute the cost of each block, as well as the total loop cost. Also, bail
   2248   // out if we see instructions which are incompatible with loop unswitching
   2249   // (convergent, noduplicate, or cross-basic-block tokens).
   2250   // FIXME: We might be able to safely handle some of these in non-duplicated
   2251   // regions.
   2252   int LoopCost = 0;
   2253   for (auto *BB : L.blocks()) {
   2254     int Cost = 0;
   2255     for (auto &I : *BB) {
   2256       if (EphValues.count(&I))
   2257         continue;
   2258 
   2259       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
   2260         return false;
   2261       if (auto CS = CallSite(&I))
   2262         if (CS.isConvergent() || CS.cannotDuplicate())
   2263           return false;
   2264 
   2265       Cost += TTI.getUserCost(&I);
   2266     }
   2267     assert(Cost >= 0 && "Must not have negative costs!");
   2268     LoopCost += Cost;
   2269     assert(LoopCost >= 0 && "Must not have negative loop costs!");
   2270     BBCostMap[BB] = Cost;
   2271   }
   2272   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
   2273 
   2274   // Now we find the best candidate by searching for the one with the following
   2275   // properties in order:
   2276   //
   2277   // 1) An unswitching cost below the threshold
   2278   // 2) The smallest number of duplicated unswitch candidates (to avoid
   2279   //    creating redundant subsequent unswitching)
   2280   // 3) The smallest cost after unswitching.
   2281   //
   2282   // We prioritize reducing fanout of unswitch candidates provided the cost
   2283   // remains below the threshold because this has a multiplicative effect.
   2284   //
   2285   // This requires memoizing each dominator subtree to avoid redundant work.
   2286   //
   2287   // FIXME: Need to actually do the number of candidates part above.
   2288   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
   2289   // Given a terminator which might be unswitched, computes the non-duplicated
   2290   // cost for that terminator.
   2291   auto ComputeUnswitchedCost = [&](TerminatorInst &TI, bool FullUnswitch) {
   2292     BasicBlock &BB = *TI.getParent();
   2293     SmallPtrSet<BasicBlock *, 4> Visited;
   2294 
   2295     int Cost = LoopCost;
   2296     for (BasicBlock *SuccBB : successors(&BB)) {
   2297       // Don't count successors more than once.
   2298       if (!Visited.insert(SuccBB).second)
   2299         continue;
   2300 
   2301       // If this is a partial unswitch candidate, then it must be a conditional
   2302       // branch with a condition of either `or` or `and`. In that case, one of
   2303       // the successors is necessarily duplicated, so don't even try to remove
   2304       // its cost.
   2305       if (!FullUnswitch) {
   2306         auto &BI = cast<BranchInst>(TI);
   2307         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
   2308             Instruction::And) {
   2309           if (SuccBB == BI.getSuccessor(1))
   2310             continue;
   2311         } else {
   2312           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
   2313                      Instruction::Or &&
   2314                  "Only `and` and `or` conditions can result in a partial "
   2315                  "unswitch!");
   2316           if (SuccBB == BI.getSuccessor(0))
   2317             continue;
   2318         }
   2319       }
   2320 
   2321       // This successor's domtree will not need to be duplicated after
   2322       // unswitching if the edge to the successor dominates it (and thus the
   2323       // entire tree). This essentially means there is no other path into this
   2324       // subtree and so it will end up live in only one clone of the loop.
   2325       if (SuccBB->getUniquePredecessor() ||
   2326           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
   2327             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
   2328           })) {
   2329         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
   2330         assert(Cost >= 0 &&
   2331                "Non-duplicated cost should never exceed total loop cost!");
   2332       }
   2333     }
   2334 
   2335     // Now scale the cost by the number of unique successors minus one. We
   2336     // subtract one because there is already at least one copy of the entire
   2337     // loop. This is computing the new cost of unswitching a condition.
   2338     assert(Visited.size() > 1 &&
   2339            "Cannot unswitch a condition without multiple distinct successors!");
   2340     return Cost * (Visited.size() - 1);
   2341   };
   2342   TerminatorInst *BestUnswitchTI = nullptr;
   2343   int BestUnswitchCost;
   2344   ArrayRef<Value *> BestUnswitchInvariants;
   2345   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
   2346     TerminatorInst &TI = *TerminatorAndInvariants.first;
   2347     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
   2348     BranchInst *BI = dyn_cast<BranchInst>(&TI);
   2349     int CandidateCost = ComputeUnswitchedCost(
   2350         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
   2351                                      Invariants[0] == BI->getCondition()));
   2352     LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
   2353                       << " for unswitch candidate: " << TI << "\n");
   2354     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
   2355       BestUnswitchTI = &TI;
   2356       BestUnswitchCost = CandidateCost;
   2357       BestUnswitchInvariants = Invariants;
   2358     }
   2359   }
   2360 
   2361   if (BestUnswitchCost >= UnswitchThreshold) {
   2362     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
   2363                       << BestUnswitchCost << "\n");
   2364     return false;
   2365   }
   2366 
   2367   LLVM_DEBUG(dbgs() << "  Trying to unswitch non-trivial (cost = "
   2368                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
   2369                     << "\n");
   2370   return unswitchNontrivialInvariants(
   2371       L, *BestUnswitchTI, BestUnswitchInvariants, DT, LI, AC, UnswitchCB, SE);
   2372 }
   2373 
   2374 /// Unswitch control flow predicated on loop invariant conditions.
   2375 ///
   2376 /// This first hoists all branches or switches which are trivial (IE, do not
   2377 /// require duplicating any part of the loop) out of the loop body. It then
   2378 /// looks at other loop invariant control flows and tries to unswitch those as
   2379 /// well by cloning the loop if the result is small enough.
   2380 ///
   2381 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
   2382 /// updated based on the unswitch.
   2383 ///
   2384 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
   2385 /// true, we will attempt to do non-trivial unswitching as well as trivial
   2386 /// unswitching.
   2387 ///
   2388 /// The `UnswitchCB` callback provided will be run after unswitching is
   2389 /// complete, with the first parameter set to `true` if the provided loop
   2390 /// remains a loop, and a list of new sibling loops created.
   2391 ///
   2392 /// If `SE` is non-null, we will update that analysis based on the unswitching
   2393 /// done.
   2394 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
   2395                          AssumptionCache &AC, TargetTransformInfo &TTI,
   2396                          bool NonTrivial,
   2397                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
   2398                          ScalarEvolution *SE) {
   2399   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
   2400          "Loops must be in LCSSA form before unswitching.");
   2401   bool Changed = false;
   2402 
   2403   // Must be in loop simplified form: we need a preheader and dedicated exits.
   2404   if (!L.isLoopSimplifyForm())
   2405     return false;
   2406 
   2407   // Try trivial unswitch first before loop over other basic blocks in the loop.
   2408   if (unswitchAllTrivialConditions(L, DT, LI, SE)) {
   2409     // If we unswitched successfully we will want to clean up the loop before
   2410     // processing it further so just mark it as unswitched and return.
   2411     UnswitchCB(/*CurrentLoopValid*/ true, {});
   2412     return true;
   2413   }
   2414 
   2415   // If we're not doing non-trivial unswitching, we're done. We both accept
   2416   // a parameter but also check a local flag that can be used for testing
   2417   // a debugging.
   2418   if (!NonTrivial && !EnableNonTrivialUnswitch)
   2419     return false;
   2420 
   2421   // For non-trivial unswitching, because it often creates new loops, we rely on
   2422   // the pass manager to iterate on the loops rather than trying to immediately
   2423   // reach a fixed point. There is no substantial advantage to iterating
   2424   // internally, and if any of the new loops are simplified enough to contain
   2425   // trivial unswitching we want to prefer those.
   2426 
   2427   // Try to unswitch the best invariant condition. We prefer this full unswitch to
   2428   // a partial unswitch when possible below the threshold.
   2429   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE))
   2430     return true;
   2431 
   2432   // No other opportunities to unswitch.
   2433   return Changed;
   2434 }
   2435 
   2436 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
   2437                                               LoopStandardAnalysisResults &AR,
   2438                                               LPMUpdater &U) {
   2439   Function &F = *L.getHeader()->getParent();
   2440   (void)F;
   2441 
   2442   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
   2443                     << "\n");
   2444 
   2445   // Save the current loop name in a variable so that we can report it even
   2446   // after it has been deleted.
   2447   std::string LoopName = L.getName();
   2448 
   2449   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
   2450                                         ArrayRef<Loop *> NewLoops) {
   2451     // If we did a non-trivial unswitch, we have added new (cloned) loops.
   2452     if (!NewLoops.empty())
   2453       U.addSiblingLoops(NewLoops);
   2454 
   2455     // If the current loop remains valid, we should revisit it to catch any
   2456     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
   2457     if (CurrentLoopValid)
   2458       U.revisitCurrentLoop();
   2459     else
   2460       U.markLoopAsDeleted(L, LoopName);
   2461   };
   2462 
   2463   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
   2464                     &AR.SE))
   2465     return PreservedAnalyses::all();
   2466 
   2467   // Historically this pass has had issues with the dominator tree so verify it
   2468   // in asserts builds.
   2469   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
   2470   return getLoopPassPreservedAnalyses();
   2471 }
   2472 
   2473 namespace {
   2474 
   2475 class SimpleLoopUnswitchLegacyPass : public LoopPass {
   2476   bool NonTrivial;
   2477 
   2478 public:
   2479   static char ID; // Pass ID, replacement for typeid
   2480 
   2481   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
   2482       : LoopPass(ID), NonTrivial(NonTrivial) {
   2483     initializeSimpleLoopUnswitchLegacyPassPass(
   2484         *PassRegistry::getPassRegistry());
   2485   }
   2486 
   2487   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
   2488 
   2489   void getAnalysisUsage(AnalysisUsage &AU) const override {
   2490     AU.addRequired<AssumptionCacheTracker>();
   2491     AU.addRequired<TargetTransformInfoWrapperPass>();
   2492     getLoopAnalysisUsage(AU);
   2493   }
   2494 };
   2495 
   2496 } // end anonymous namespace
   2497 
   2498 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
   2499   if (skipLoop(L))
   2500     return false;
   2501 
   2502   Function &F = *L->getHeader()->getParent();
   2503 
   2504   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
   2505                     << "\n");
   2506 
   2507   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   2508   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   2509   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   2510   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
   2511 
   2512   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
   2513   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
   2514 
   2515   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
   2516                                ArrayRef<Loop *> NewLoops) {
   2517     // If we did a non-trivial unswitch, we have added new (cloned) loops.
   2518     for (auto *NewL : NewLoops)
   2519       LPM.addLoop(*NewL);
   2520 
   2521     // If the current loop remains valid, re-add it to the queue. This is
   2522     // a little wasteful as we'll finish processing the current loop as well,
   2523     // but it is the best we can do in the old PM.
   2524     if (CurrentLoopValid)
   2525       LPM.addLoop(*L);
   2526     else
   2527       LPM.markLoopAsDeleted(*L);
   2528   };
   2529 
   2530   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE);
   2531 
   2532   // If anything was unswitched, also clear any cached information about this
   2533   // loop.
   2534   LPM.deleteSimpleAnalysisLoop(L);
   2535 
   2536   // Historically this pass has had issues with the dominator tree so verify it
   2537   // in asserts builds.
   2538   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
   2539 
   2540   return Changed;
   2541 }
   2542 
   2543 char SimpleLoopUnswitchLegacyPass::ID = 0;
   2544 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
   2545                       "Simple unswitch loops", false, false)
   2546 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   2547 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   2548 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
   2549 INITIALIZE_PASS_DEPENDENCY(LoopPass)
   2550 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
   2551 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
   2552                     "Simple unswitch loops", false, false)
   2553 
   2554 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
   2555   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
   2556 }
   2557