Home | History | Annotate | Download | only in vulkan
      1 /*
      2  * Copyright  2015 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21  * IN THE SOFTWARE.
     22  */
     23 
     24 #include <assert.h>
     25 #include <stdbool.h>
     26 
     27 #include "anv_private.h"
     28 #include "vk_format_info.h"
     29 #include "vk_util.h"
     30 
     31 #include "common/gen_l3_config.h"
     32 #include "genxml/gen_macros.h"
     33 #include "genxml/genX_pack.h"
     34 
     35 static void
     36 emit_lrm(struct anv_batch *batch,
     37          uint32_t reg, struct anv_bo *bo, uint32_t offset)
     38 {
     39    anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
     40       lrm.RegisterAddress  = reg;
     41       lrm.MemoryAddress    = (struct anv_address) { bo, offset };
     42    }
     43 }
     44 
     45 static void
     46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
     47 {
     48    anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
     49       lri.RegisterOffset   = reg;
     50       lri.DataDWord        = imm;
     51    }
     52 }
     53 
     54 #if GEN_IS_HASWELL || GEN_GEN >= 8
     55 static void
     56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
     57 {
     58    anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
     59       lrr.SourceRegisterAddress        = src;
     60       lrr.DestinationRegisterAddress   = dst;
     61    }
     62 }
     63 #endif
     64 
     65 void
     66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
     67 {
     68    struct anv_device *device = cmd_buffer->device;
     69 
     70    /* Emit a render target cache flush.
     71     *
     72     * This isn't documented anywhere in the PRM.  However, it seems to be
     73     * necessary prior to changing the surface state base adress.  Without
     74     * this, we get GPU hangs when using multi-level command buffers which
     75     * clear depth, reset state base address, and then go render stuff.
     76     */
     77    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
     78       pc.DCFlushEnable = true;
     79       pc.RenderTargetCacheFlushEnable = true;
     80       pc.CommandStreamerStallEnable = true;
     81    }
     82 
     83    anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
     84       sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
     85       sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
     86       sba.GeneralStateBaseAddressModifyEnable = true;
     87 
     88       sba.SurfaceStateBaseAddress =
     89          anv_cmd_buffer_surface_base_address(cmd_buffer);
     90       sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
     91       sba.SurfaceStateBaseAddressModifyEnable = true;
     92 
     93       sba.DynamicStateBaseAddress =
     94          (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
     95       sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
     96       sba.DynamicStateBaseAddressModifyEnable = true;
     97 
     98       sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
     99       sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
    100       sba.IndirectObjectBaseAddressModifyEnable = true;
    101 
    102       sba.InstructionBaseAddress =
    103          (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
    104       sba.InstructionMemoryObjectControlState = GENX(MOCS);
    105       sba.InstructionBaseAddressModifyEnable = true;
    106 
    107 #  if (GEN_GEN >= 8)
    108       /* Broadwell requires that we specify a buffer size for a bunch of
    109        * these fields.  However, since we will be growing the BO's live, we
    110        * just set them all to the maximum.
    111        */
    112       sba.GeneralStateBufferSize                = 0xfffff;
    113       sba.GeneralStateBufferSizeModifyEnable    = true;
    114       sba.DynamicStateBufferSize                = 0xfffff;
    115       sba.DynamicStateBufferSizeModifyEnable    = true;
    116       sba.IndirectObjectBufferSize              = 0xfffff;
    117       sba.IndirectObjectBufferSizeModifyEnable  = true;
    118       sba.InstructionBufferSize                 = 0xfffff;
    119       sba.InstructionBuffersizeModifyEnable     = true;
    120 #  endif
    121    }
    122 
    123    /* After re-setting the surface state base address, we have to do some
    124     * cache flusing so that the sampler engine will pick up the new
    125     * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
    126     * Shared Function > 3D Sampler > State > State Caching (page 96):
    127     *
    128     *    Coherency with system memory in the state cache, like the texture
    129     *    cache is handled partially by software. It is expected that the
    130     *    command stream or shader will issue Cache Flush operation or
    131     *    Cache_Flush sampler message to ensure that the L1 cache remains
    132     *    coherent with system memory.
    133     *
    134     *    [...]
    135     *
    136     *    Whenever the value of the Dynamic_State_Base_Addr,
    137     *    Surface_State_Base_Addr are altered, the L1 state cache must be
    138     *    invalidated to ensure the new surface or sampler state is fetched
    139     *    from system memory.
    140     *
    141     * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
    142     * which, according the PIPE_CONTROL instruction documentation in the
    143     * Broadwell PRM:
    144     *
    145     *    Setting this bit is independent of any other bit in this packet.
    146     *    This bit controls the invalidation of the L1 and L2 state caches
    147     *    at the top of the pipe i.e. at the parsing time.
    148     *
    149     * Unfortunately, experimentation seems to indicate that state cache
    150     * invalidation through a PIPE_CONTROL does nothing whatsoever in
    151     * regards to surface state and binding tables.  In stead, it seems that
    152     * invalidating the texture cache is what is actually needed.
    153     *
    154     * XXX:  As far as we have been able to determine through
    155     * experimentation, shows that flush the texture cache appears to be
    156     * sufficient.  The theory here is that all of the sampling/rendering
    157     * units cache the binding table in the texture cache.  However, we have
    158     * yet to be able to actually confirm this.
    159     */
    160    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
    161       pc.TextureCacheInvalidationEnable = true;
    162       pc.ConstantCacheInvalidationEnable = true;
    163       pc.StateCacheInvalidationEnable = true;
    164    }
    165 }
    166 
    167 static void
    168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
    169                         struct anv_state state,
    170                         struct anv_bo *bo, uint32_t offset)
    171 {
    172    const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
    173 
    174    VkResult result =
    175       anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
    176                          state.offset + isl_dev->ss.addr_offset, bo, offset);
    177    if (result != VK_SUCCESS)
    178       anv_batch_set_error(&cmd_buffer->batch, result);
    179 }
    180 
    181 static void
    182 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
    183                       const struct anv_image_view *image_view,
    184                       const uint32_t plane,
    185                       struct anv_surface_state state)
    186 {
    187    const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
    188    const struct anv_image *image = image_view->image;
    189    uint32_t image_plane = image_view->planes[plane].image_plane;
    190 
    191    add_surface_state_reloc(cmd_buffer, state.state,
    192                            image->planes[image_plane].bo, state.address);
    193 
    194    if (state.aux_address) {
    195       VkResult result =
    196          anv_reloc_list_add(&cmd_buffer->surface_relocs,
    197                             &cmd_buffer->pool->alloc,
    198                             state.state.offset + isl_dev->ss.aux_addr_offset,
    199                             image->planes[image_plane].bo, state.aux_address);
    200       if (result != VK_SUCCESS)
    201          anv_batch_set_error(&cmd_buffer->batch, result);
    202    }
    203 }
    204 
    205 static bool
    206 color_is_zero_one(VkClearColorValue value, enum isl_format format)
    207 {
    208    if (isl_format_has_int_channel(format)) {
    209       for (unsigned i = 0; i < 4; i++) {
    210          if (value.int32[i] != 0 && value.int32[i] != 1)
    211             return false;
    212       }
    213    } else {
    214       for (unsigned i = 0; i < 4; i++) {
    215          if (value.float32[i] != 0.0f && value.float32[i] != 1.0f)
    216             return false;
    217       }
    218    }
    219 
    220    return true;
    221 }
    222 
    223 static void
    224 color_attachment_compute_aux_usage(struct anv_device * device,
    225                                    struct anv_cmd_state * cmd_state,
    226                                    uint32_t att, VkRect2D render_area,
    227                                    union isl_color_value *fast_clear_color)
    228 {
    229    struct anv_attachment_state *att_state = &cmd_state->attachments[att];
    230    struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
    231 
    232    assert(iview->n_planes == 1);
    233 
    234    if (iview->planes[0].isl.base_array_layer >=
    235        anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
    236                             iview->planes[0].isl.base_level)) {
    237       /* There is no aux buffer which corresponds to the level and layer(s)
    238        * being accessed.
    239        */
    240       att_state->aux_usage = ISL_AUX_USAGE_NONE;
    241       att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
    242       att_state->fast_clear = false;
    243       return;
    244    } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_MCS) {
    245       att_state->aux_usage = ISL_AUX_USAGE_MCS;
    246       att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
    247       att_state->fast_clear = false;
    248       return;
    249    } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E) {
    250       att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
    251       att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
    252    } else {
    253       att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
    254       /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
    255        *
    256        *    "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
    257        *    setting is only allowed if Surface Format supported for Fast
    258        *    Clear. In addition, if the surface is bound to the sampling
    259        *    engine, Surface Format must be supported for Render Target
    260        *    Compression for surfaces bound to the sampling engine."
    261        *
    262        * In other words, we can only sample from a fast-cleared image if it
    263        * also supports color compression.
    264        */
    265       if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
    266          att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
    267 
    268          /* While fast-clear resolves and partial resolves are fairly cheap in the
    269           * case where you render to most of the pixels, full resolves are not
    270           * because they potentially involve reading and writing the entire
    271           * framebuffer.  If we can't texture with CCS_E, we should leave it off and
    272           * limit ourselves to fast clears.
    273           */
    274          if (cmd_state->pass->attachments[att].first_subpass_layout ==
    275              VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
    276             anv_perf_warn(device->instance, iview->image,
    277                           "Not temporarily enabling CCS_E.");
    278          }
    279       } else {
    280          att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
    281       }
    282    }
    283 
    284    assert(iview->image->planes[0].aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
    285 
    286    att_state->clear_color_is_zero_one =
    287       color_is_zero_one(att_state->clear_value.color, iview->planes[0].isl.format);
    288    att_state->clear_color_is_zero =
    289       att_state->clear_value.color.uint32[0] == 0 &&
    290       att_state->clear_value.color.uint32[1] == 0 &&
    291       att_state->clear_value.color.uint32[2] == 0 &&
    292       att_state->clear_value.color.uint32[3] == 0;
    293 
    294    if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
    295       /* Start off assuming fast clears are possible */
    296       att_state->fast_clear = true;
    297 
    298       /* Potentially, we could do partial fast-clears but doing so has crazy
    299        * alignment restrictions.  It's easier to just restrict to full size
    300        * fast clears for now.
    301        */
    302       if (render_area.offset.x != 0 ||
    303           render_area.offset.y != 0 ||
    304           render_area.extent.width != iview->extent.width ||
    305           render_area.extent.height != iview->extent.height)
    306          att_state->fast_clear = false;
    307 
    308       /* On Broadwell and earlier, we can only handle 0/1 clear colors */
    309       if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
    310          att_state->fast_clear = false;
    311 
    312       /* We allow fast clears when all aux layers of the miplevel are targeted.
    313        * See add_fast_clear_state_buffer() for more information. Also, because
    314        * we only either do a fast clear or a normal clear and not both, this
    315        * complies with the gen7 restriction of not fast-clearing multiple
    316        * layers.
    317        */
    318       if (cmd_state->framebuffer->layers !=
    319           anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
    320                                iview->planes[0].isl.base_level)) {
    321          att_state->fast_clear = false;
    322          if (GEN_GEN == 7) {
    323             anv_perf_warn(device->instance, iview->image,
    324                           "Not fast-clearing the first layer in "
    325                           "a multi-layer fast clear.");
    326          }
    327       }
    328 
    329       /* We only allow fast clears in the GENERAL layout if the auxiliary
    330        * buffer is always enabled and the fast-clear value is all 0's. See
    331        * add_fast_clear_state_buffer() for more information.
    332        */
    333       if (cmd_state->pass->attachments[att].first_subpass_layout ==
    334           VK_IMAGE_LAYOUT_GENERAL &&
    335           (!att_state->clear_color_is_zero ||
    336            iview->image->planes[0].aux_usage == ISL_AUX_USAGE_NONE)) {
    337          att_state->fast_clear = false;
    338       }
    339 
    340       if (att_state->fast_clear) {
    341          memcpy(fast_clear_color->u32, att_state->clear_value.color.uint32,
    342                 sizeof(fast_clear_color->u32));
    343       }
    344    } else {
    345       att_state->fast_clear = false;
    346    }
    347 }
    348 
    349 static bool
    350 need_input_attachment_state(const struct anv_render_pass_attachment *att)
    351 {
    352    if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
    353       return false;
    354 
    355    /* We only allocate input attachment states for color surfaces. Compression
    356     * is not yet enabled for depth textures and stencil doesn't allow
    357     * compression so we can just use the texture surface state from the view.
    358     */
    359    return vk_format_is_color(att->format);
    360 }
    361 
    362 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
    363  * the initial layout is undefined, the HiZ buffer and depth buffer will
    364  * represent the same data at the end of this operation.
    365  */
    366 static void
    367 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
    368                         const struct anv_image *image,
    369                         VkImageLayout initial_layout,
    370                         VkImageLayout final_layout)
    371 {
    372    assert(image);
    373 
    374    /* A transition is a no-op if HiZ is not enabled, or if the initial and
    375     * final layouts are equal.
    376     *
    377     * The undefined layout indicates that the user doesn't care about the data
    378     * that's currently in the buffer. Therefore, a data-preserving resolve
    379     * operation is not needed.
    380     */
    381    if (image->planes[0].aux_usage != ISL_AUX_USAGE_HIZ || initial_layout == final_layout)
    382       return;
    383 
    384    const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
    385       anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
    386                               VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
    387    const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
    388       anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
    389                               VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
    390 
    391    enum blorp_hiz_op hiz_op;
    392    if (hiz_enabled && !enable_hiz) {
    393       hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
    394    } else if (!hiz_enabled && enable_hiz) {
    395       hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
    396    } else {
    397       assert(hiz_enabled == enable_hiz);
    398       /* If the same buffer will be used, no resolves are necessary. */
    399       hiz_op = BLORP_HIZ_OP_NONE;
    400    }
    401 
    402    if (hiz_op != BLORP_HIZ_OP_NONE)
    403       anv_gen8_hiz_op_resolve(cmd_buffer, image, hiz_op);
    404 }
    405 
    406 #define MI_PREDICATE_SRC0  0x2400
    407 #define MI_PREDICATE_SRC1  0x2408
    408 
    409 /* Manages the state of an color image subresource to ensure resolves are
    410  * performed properly.
    411  */
    412 static void
    413 genX(set_image_needs_resolve)(struct anv_cmd_buffer *cmd_buffer,
    414                         const struct anv_image *image,
    415                         VkImageAspectFlagBits aspect,
    416                         unsigned level, bool needs_resolve)
    417 {
    418    assert(cmd_buffer && image);
    419    assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
    420    assert(level < anv_image_aux_levels(image, aspect));
    421 
    422    /* The HW docs say that there is no way to guarantee the completion of
    423     * the following command. We use it nevertheless because it shows no
    424     * issues in testing is currently being used in the GL driver.
    425     */
    426    anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
    427       sdi.Address = anv_image_get_needs_resolve_addr(cmd_buffer->device,
    428                                                      image, aspect, level);
    429       sdi.ImmediateData = needs_resolve;
    430    }
    431 }
    432 
    433 static void
    434 genX(load_needs_resolve_predicate)(struct anv_cmd_buffer *cmd_buffer,
    435                                    const struct anv_image *image,
    436                                    VkImageAspectFlagBits aspect,
    437                                    unsigned level)
    438 {
    439    assert(cmd_buffer && image);
    440    assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
    441    assert(level < anv_image_aux_levels(image, aspect));
    442 
    443    const struct anv_address resolve_flag_addr =
    444       anv_image_get_needs_resolve_addr(cmd_buffer->device,
    445                                        image, aspect, level);
    446 
    447    /* Make the pending predicated resolve a no-op if one is not needed.
    448     * predicate = do_resolve = resolve_flag != 0;
    449     */
    450    emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1    , 0);
    451    emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
    452    emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0    , 0);
    453    emit_lrm(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4,
    454             resolve_flag_addr.bo, resolve_flag_addr.offset);
    455    anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
    456       mip.LoadOperation    = LOAD_LOADINV;
    457       mip.CombineOperation = COMBINE_SET;
    458       mip.CompareOperation = COMPARE_SRCS_EQUAL;
    459    }
    460 }
    461 
    462 static void
    463 init_fast_clear_state_entry(struct anv_cmd_buffer *cmd_buffer,
    464                             const struct anv_image *image,
    465                             VkImageAspectFlagBits aspect,
    466                             unsigned level)
    467 {
    468    assert(cmd_buffer && image);
    469    assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
    470    assert(level < anv_image_aux_levels(image, aspect));
    471 
    472    uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
    473    enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
    474 
    475    /* The resolve flag should updated to signify that fast-clear/compression
    476     * data needs to be removed when leaving the undefined layout. Such data
    477     * may need to be removed if it would cause accesses to the color buffer
    478     * to return incorrect data. The fast clear data in CCS_D buffers should
    479     * be removed because CCS_D isn't enabled all the time.
    480     */
    481    genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level,
    482                                  aux_usage == ISL_AUX_USAGE_NONE);
    483 
    484    /* The fast clear value dword(s) will be copied into a surface state object.
    485     * Ensure that the restrictions of the fields in the dword(s) are followed.
    486     *
    487     * CCS buffers on SKL+ can have any value set for the clear colors.
    488     */
    489    if (image->samples == 1 && GEN_GEN >= 9)
    490       return;
    491 
    492    /* Other combinations of auxiliary buffers and platforms require specific
    493     * values in the clear value dword(s).
    494     */
    495    struct anv_address addr =
    496       anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
    497    unsigned i = 0;
    498    for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) {
    499       anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
    500          sdi.Address = addr;
    501 
    502          if (GEN_GEN >= 9) {
    503             /* MCS buffers on SKL+ can only have 1/0 clear colors. */
    504             assert(aux_usage == ISL_AUX_USAGE_MCS);
    505             sdi.ImmediateData = 0;
    506          } else if (GEN_VERSIONx10 >= 75) {
    507             /* Pre-SKL, the dword containing the clear values also contains
    508              * other fields, so we need to initialize those fields to match the
    509              * values that would be in a color attachment.
    510              */
    511             assert(i == 0);
    512             sdi.ImmediateData = ISL_CHANNEL_SELECT_RED   << 25 |
    513                                 ISL_CHANNEL_SELECT_GREEN << 22 |
    514                                 ISL_CHANNEL_SELECT_BLUE  << 19 |
    515                                 ISL_CHANNEL_SELECT_ALPHA << 16;
    516          }  else if (GEN_VERSIONx10 == 70) {
    517             /* On IVB, the dword containing the clear values also contains
    518              * other fields that must be zero or can be zero.
    519              */
    520             assert(i == 0);
    521             sdi.ImmediateData = 0;
    522          }
    523       }
    524 
    525       addr.offset += 4;
    526    }
    527 }
    528 
    529 /* Copy the fast-clear value dword(s) between a surface state object and an
    530  * image's fast clear state buffer.
    531  */
    532 static void
    533 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
    534                              struct anv_state surface_state,
    535                              const struct anv_image *image,
    536                              VkImageAspectFlagBits aspect,
    537                              unsigned level,
    538                              bool copy_from_surface_state)
    539 {
    540    assert(cmd_buffer && image);
    541    assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
    542    assert(level < anv_image_aux_levels(image, aspect));
    543 
    544    struct anv_bo *ss_bo =
    545       &cmd_buffer->device->surface_state_pool.block_pool.bo;
    546    uint32_t ss_clear_offset = surface_state.offset +
    547       cmd_buffer->device->isl_dev.ss.clear_value_offset;
    548    const struct anv_address entry_addr =
    549       anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect, level);
    550    unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
    551 
    552    if (copy_from_surface_state) {
    553       genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
    554                                  ss_bo, ss_clear_offset, copy_size);
    555    } else {
    556       genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
    557                                  entry_addr.bo, entry_addr.offset, copy_size);
    558 
    559       /* Updating a surface state object may require that the state cache be
    560        * invalidated. From the SKL PRM, Shared Functions -> State -> State
    561        * Caching:
    562        *
    563        *    Whenever the RENDER_SURFACE_STATE object in memory pointed to by
    564        *    the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
    565        *    modified [...], the L1 state cache must be invalidated to ensure
    566        *    the new surface or sampler state is fetched from system memory.
    567        *
    568        * In testing, SKL doesn't actually seem to need this, but HSW does.
    569        */
    570       cmd_buffer->state.pending_pipe_bits |=
    571          ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
    572    }
    573 }
    574 
    575 /**
    576  * @brief Transitions a color buffer from one layout to another.
    577  *
    578  * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
    579  * more information.
    580  *
    581  * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
    582  * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
    583  *                    this represents the maximum layers to transition at each
    584  *                    specified miplevel.
    585  */
    586 static void
    587 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
    588                         const struct anv_image *image,
    589                         VkImageAspectFlagBits aspect,
    590                         const uint32_t base_level, uint32_t level_count,
    591                         uint32_t base_layer, uint32_t layer_count,
    592                         VkImageLayout initial_layout,
    593                         VkImageLayout final_layout)
    594 {
    595    /* Validate the inputs. */
    596    assert(cmd_buffer);
    597    assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
    598    /* These values aren't supported for simplicity's sake. */
    599    assert(level_count != VK_REMAINING_MIP_LEVELS &&
    600           layer_count != VK_REMAINING_ARRAY_LAYERS);
    601    /* Ensure the subresource range is valid. */
    602    uint64_t last_level_num = base_level + level_count;
    603    const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
    604    UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
    605    assert((uint64_t)base_layer + layer_count  <= image_layers);
    606    assert(last_level_num <= image->levels);
    607    /* The spec disallows these final layouts. */
    608    assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
    609           final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
    610 
    611    /* No work is necessary if the layout stays the same or if this subresource
    612     * range lacks auxiliary data.
    613     */
    614    if (initial_layout == final_layout)
    615       return;
    616 
    617    uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
    618 
    619    if (image->planes[plane].shadow_surface.isl.size > 0 &&
    620        final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
    621       /* This surface is a linear compressed image with a tiled shadow surface
    622        * for texturing.  The client is about to use it in READ_ONLY_OPTIMAL so
    623        * we need to ensure the shadow copy is up-to-date.
    624        */
    625       assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
    626       assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
    627       assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
    628       assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
    629       assert(plane == 0);
    630       anv_image_copy_to_shadow(cmd_buffer, image,
    631                                base_level, level_count,
    632                                base_layer, layer_count);
    633    }
    634 
    635    if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
    636       return;
    637 
    638    /* A transition of a 3D subresource works on all slices at a time. */
    639    if (image->type == VK_IMAGE_TYPE_3D) {
    640       base_layer = 0;
    641       layer_count = anv_minify(image->extent.depth, base_level);
    642    }
    643 
    644    /* We're interested in the subresource range subset that has aux data. */
    645    level_count = MIN2(level_count, anv_image_aux_levels(image, aspect) - base_level);
    646    layer_count = MIN2(layer_count,
    647                       anv_image_aux_layers(image, aspect, base_level) - base_layer);
    648    last_level_num = base_level + level_count;
    649 
    650    /* Record whether or not the layout is undefined. Pre-initialized images
    651     * with auxiliary buffers have a non-linear layout and are thus undefined.
    652     */
    653    assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
    654    const bool undef_layout = initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
    655                              initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
    656 
    657    /* Do preparatory work before the resolve operation or return early if no
    658     * resolve is actually needed.
    659     */
    660    if (undef_layout) {
    661       /* A subresource in the undefined layout may have been aliased and
    662        * populated with any arrangement of bits. Therefore, we must initialize
    663        * the related aux buffer and clear buffer entry with desirable values.
    664        *
    665        * Initialize the relevant clear buffer entries.
    666        */
    667       for (unsigned level = base_level; level < last_level_num; level++)
    668          init_fast_clear_state_entry(cmd_buffer, image, aspect, level);
    669 
    670       /* Initialize the aux buffers to enable correct rendering. This operation
    671        * requires up to two steps: one to rid the aux buffer of data that may
    672        * cause GPU hangs, and another to ensure that writes done without aux
    673        * will be visible to reads done with aux.
    674        *
    675        * Having an aux buffer with invalid data is possible for CCS buffers
    676        * SKL+ and for MCS buffers with certain sample counts (2x and 8x). One
    677        * easy way to get to a valid state is to fast-clear the specified range.
    678        *
    679        * Even for MCS buffers that have sample counts that don't require
    680        * certain bits to be reserved (4x and 8x), we're unsure if the hardware
    681        * will be okay with the sample mappings given by the undefined buffer.
    682        * We don't have any data to show that this is a problem, but we want to
    683        * avoid causing difficult-to-debug problems.
    684        */
    685       if ((GEN_GEN >= 9 && image->samples == 1) || image->samples > 1) {
    686          if (image->samples == 4 || image->samples == 16) {
    687             anv_perf_warn(cmd_buffer->device->instance, image,
    688                           "Doing a potentially unnecessary fast-clear to "
    689                           "define an MCS buffer.");
    690          }
    691 
    692          anv_image_fast_clear(cmd_buffer, image, aspect,
    693                               base_level, level_count,
    694                               base_layer, layer_count);
    695       }
    696       /* At this point, some elements of the CCS buffer may have the fast-clear
    697        * bit-arrangement. As the user writes to a subresource, we need to have
    698        * the associated CCS elements enter the ambiguated state. This enables
    699        * reads (implicit or explicit) to reflect the user-written data instead
    700        * of the clear color. The only time such elements will not change their
    701        * state as described above, is in a final layout that doesn't have CCS
    702        * enabled. In this case, we must force the associated CCS buffers of the
    703        * specified range to enter the ambiguated state in advance.
    704        */
    705       if (image->samples == 1 &&
    706           image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E &&
    707           final_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
    708          /* The CCS_D buffer may not be enabled in the final layout. Continue
    709           * executing this function to perform a resolve.
    710           */
    711           anv_perf_warn(cmd_buffer->device->instance, image,
    712                         "Performing an additional resolve for CCS_D layout "
    713                         "transition. Consider always leaving it on or "
    714                         "performing an ambiguation pass.");
    715       } else {
    716          /* Writes in the final layout will be aware of the auxiliary buffer.
    717           * In addition, the clear buffer entries and the auxiliary buffers
    718           * have been populated with values that will result in correct
    719           * rendering.
    720           */
    721          return;
    722       }
    723    } else if (initial_layout != VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
    724       /* Resolves are only necessary if the subresource may contain blocks
    725        * fast-cleared to values unsupported in other layouts. This only occurs
    726        * if the initial layout is COLOR_ATTACHMENT_OPTIMAL.
    727        */
    728       return;
    729    } else if (image->samples > 1) {
    730       /* MCS buffers don't need resolving. */
    731       return;
    732    }
    733 
    734    /* Perform a resolve to synchronize data between the main and aux buffer.
    735     * Before we begin, we must satisfy the cache flushing requirement specified
    736     * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
    737     *
    738     *    Any transition from any value in {Clear, Render, Resolve} to a
    739     *    different value in {Clear, Render, Resolve} requires end of pipe
    740     *    synchronization.
    741     *
    742     * We perform a flush of the write cache before and after the clear and
    743     * resolve operations to meet this requirement.
    744     *
    745     * Unlike other drawing, fast clear operations are not properly
    746     * synchronized. The first PIPE_CONTROL here likely ensures that the
    747     * contents of the previous render or clear hit the render target before we
    748     * resolve and the second likely ensures that the resolve is complete before
    749     * we do any more rendering or clearing.
    750     */
    751    cmd_buffer->state.pending_pipe_bits |=
    752       ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
    753 
    754    for (uint32_t level = base_level; level < last_level_num; level++) {
    755 
    756       /* The number of layers changes at each 3D miplevel. */
    757       if (image->type == VK_IMAGE_TYPE_3D) {
    758          layer_count = MIN2(layer_count, anv_image_aux_layers(image, aspect, level));
    759       }
    760 
    761       genX(load_needs_resolve_predicate)(cmd_buffer, image, aspect, level);
    762 
    763       anv_ccs_resolve(cmd_buffer, image, aspect, level, base_layer, layer_count,
    764                       image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E ?
    765                       BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL :
    766                       BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
    767 
    768       genX(set_image_needs_resolve)(cmd_buffer, image, aspect, level, false);
    769    }
    770 
    771    cmd_buffer->state.pending_pipe_bits |=
    772       ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
    773 }
    774 
    775 /**
    776  * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
    777  */
    778 static VkResult
    779 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
    780                                    struct anv_render_pass *pass,
    781                                    const VkRenderPassBeginInfo *begin)
    782 {
    783    const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
    784    struct anv_cmd_state *state = &cmd_buffer->state;
    785 
    786    vk_free(&cmd_buffer->pool->alloc, state->attachments);
    787 
    788    if (pass->attachment_count > 0) {
    789       state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
    790                                     pass->attachment_count *
    791                                          sizeof(state->attachments[0]),
    792                                     8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
    793       if (state->attachments == NULL) {
    794          /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
    795          return anv_batch_set_error(&cmd_buffer->batch,
    796                                     VK_ERROR_OUT_OF_HOST_MEMORY);
    797       }
    798    } else {
    799       state->attachments = NULL;
    800    }
    801 
    802    /* Reserve one for the NULL state. */
    803    unsigned num_states = 1;
    804    for (uint32_t i = 0; i < pass->attachment_count; ++i) {
    805       if (vk_format_is_color(pass->attachments[i].format))
    806          num_states++;
    807 
    808       if (need_input_attachment_state(&pass->attachments[i]))
    809          num_states++;
    810    }
    811 
    812    const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
    813    state->render_pass_states =
    814       anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
    815                              num_states * ss_stride, isl_dev->ss.align);
    816 
    817    struct anv_state next_state = state->render_pass_states;
    818    next_state.alloc_size = isl_dev->ss.size;
    819 
    820    state->null_surface_state = next_state;
    821    next_state.offset += ss_stride;
    822    next_state.map += ss_stride;
    823 
    824    for (uint32_t i = 0; i < pass->attachment_count; ++i) {
    825       if (vk_format_is_color(pass->attachments[i].format)) {
    826          state->attachments[i].color.state = next_state;
    827          next_state.offset += ss_stride;
    828          next_state.map += ss_stride;
    829       }
    830 
    831       if (need_input_attachment_state(&pass->attachments[i])) {
    832          state->attachments[i].input.state = next_state;
    833          next_state.offset += ss_stride;
    834          next_state.map += ss_stride;
    835       }
    836    }
    837    assert(next_state.offset == state->render_pass_states.offset +
    838                                state->render_pass_states.alloc_size);
    839 
    840    if (begin) {
    841       ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
    842       assert(pass->attachment_count == framebuffer->attachment_count);
    843 
    844       isl_null_fill_state(isl_dev, state->null_surface_state.map,
    845                           isl_extent3d(framebuffer->width,
    846                                        framebuffer->height,
    847                                        framebuffer->layers));
    848 
    849       for (uint32_t i = 0; i < pass->attachment_count; ++i) {
    850          struct anv_render_pass_attachment *att = &pass->attachments[i];
    851          VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
    852          VkImageAspectFlags clear_aspects = 0;
    853 
    854          if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
    855             /* color attachment */
    856             if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
    857                clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
    858             }
    859          } else {
    860             /* depthstencil attachment */
    861             if ((att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
    862                 att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
    863                clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
    864             }
    865             if ((att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
    866                 att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
    867                clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
    868             }
    869          }
    870 
    871          state->attachments[i].current_layout = att->initial_layout;
    872          state->attachments[i].pending_clear_aspects = clear_aspects;
    873          if (clear_aspects)
    874             state->attachments[i].clear_value = begin->pClearValues[i];
    875 
    876          struct anv_image_view *iview = framebuffer->attachments[i];
    877          anv_assert(iview->vk_format == att->format);
    878 
    879          union isl_color_value clear_color = { .u32 = { 0, } };
    880          if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
    881             anv_assert(iview->n_planes == 1);
    882             assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
    883             color_attachment_compute_aux_usage(cmd_buffer->device,
    884                                                state, i, begin->renderArea,
    885                                                &clear_color);
    886 
    887             anv_image_fill_surface_state(cmd_buffer->device,
    888                                          iview->image,
    889                                          VK_IMAGE_ASPECT_COLOR_BIT,
    890                                          &iview->planes[0].isl,
    891                                          ISL_SURF_USAGE_RENDER_TARGET_BIT,
    892                                          state->attachments[i].aux_usage,
    893                                          &clear_color,
    894                                          0,
    895                                          &state->attachments[i].color,
    896                                          NULL);
    897 
    898             add_image_view_relocs(cmd_buffer, iview, 0,
    899                                   state->attachments[i].color);
    900          } else {
    901             /* This field will be initialized after the first subpass
    902              * transition.
    903              */
    904             state->attachments[i].aux_usage = ISL_AUX_USAGE_NONE;
    905 
    906             state->attachments[i].input_aux_usage = ISL_AUX_USAGE_NONE;
    907          }
    908 
    909          if (need_input_attachment_state(&pass->attachments[i])) {
    910             anv_image_fill_surface_state(cmd_buffer->device,
    911                                          iview->image,
    912                                          VK_IMAGE_ASPECT_COLOR_BIT,
    913                                          &iview->planes[0].isl,
    914                                          ISL_SURF_USAGE_TEXTURE_BIT,
    915                                          state->attachments[i].input_aux_usage,
    916                                          &clear_color,
    917                                          0,
    918                                          &state->attachments[i].input,
    919                                          NULL);
    920 
    921             add_image_view_relocs(cmd_buffer, iview, 0,
    922                                   state->attachments[i].input);
    923          }
    924       }
    925    }
    926 
    927    return VK_SUCCESS;
    928 }
    929 
    930 VkResult
    931 genX(BeginCommandBuffer)(
    932     VkCommandBuffer                             commandBuffer,
    933     const VkCommandBufferBeginInfo*             pBeginInfo)
    934 {
    935    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
    936 
    937    /* If this is the first vkBeginCommandBuffer, we must *initialize* the
    938     * command buffer's state. Otherwise, we must *reset* its state. In both
    939     * cases we reset it.
    940     *
    941     * From the Vulkan 1.0 spec:
    942     *
    943     *    If a command buffer is in the executable state and the command buffer
    944     *    was allocated from a command pool with the
    945     *    VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
    946     *    vkBeginCommandBuffer implicitly resets the command buffer, behaving
    947     *    as if vkResetCommandBuffer had been called with
    948     *    VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
    949     *    the command buffer in the recording state.
    950     */
    951    anv_cmd_buffer_reset(cmd_buffer);
    952 
    953    cmd_buffer->usage_flags = pBeginInfo->flags;
    954 
    955    assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
    956           !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
    957 
    958    genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
    959 
    960    /* We sometimes store vertex data in the dynamic state buffer for blorp
    961     * operations and our dynamic state stream may re-use data from previous
    962     * command buffers.  In order to prevent stale cache data, we flush the VF
    963     * cache.  We could do this on every blorp call but that's not really
    964     * needed as all of the data will get written by the CPU prior to the GPU
    965     * executing anything.  The chances are fairly high that they will use
    966     * blorp at least once per primary command buffer so it shouldn't be
    967     * wasted.
    968     */
    969    if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
    970       cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
    971 
    972    /* We send an "Indirect State Pointers Disable" packet at
    973     * EndCommandBuffer, so all push contant packets are ignored during a
    974     * context restore. Documentation says after that command, we need to
    975     * emit push constants again before any rendering operation. So we
    976     * flag them dirty here to make sure they get emitted.
    977     */
    978    if (GEN_GEN == 10)
    979       cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
    980 
    981    VkResult result = VK_SUCCESS;
    982    if (cmd_buffer->usage_flags &
    983        VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
    984       assert(pBeginInfo->pInheritanceInfo);
    985       cmd_buffer->state.pass =
    986          anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
    987       cmd_buffer->state.subpass =
    988          &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
    989 
    990       /* This is optional in the inheritance info. */
    991       cmd_buffer->state.framebuffer =
    992          anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
    993 
    994       result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
    995                                                   cmd_buffer->state.pass, NULL);
    996 
    997       /* Record that HiZ is enabled if we can. */
    998       if (cmd_buffer->state.framebuffer) {
    999          const struct anv_image_view * const iview =
   1000             anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
   1001 
   1002          if (iview) {
   1003             VkImageLayout layout =
   1004                 cmd_buffer->state.subpass->depth_stencil_attachment.layout;
   1005 
   1006             enum isl_aux_usage aux_usage =
   1007                anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
   1008                                        VK_IMAGE_ASPECT_DEPTH_BIT, layout);
   1009 
   1010             cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
   1011          }
   1012       }
   1013 
   1014       cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
   1015    }
   1016 
   1017    return result;
   1018 }
   1019 
   1020 /* From the PRM, Volume 2a:
   1021  *
   1022  *    "Indirect State Pointers Disable
   1023  *
   1024  *    At the completion of the post-sync operation associated with this pipe
   1025  *    control packet, the indirect state pointers in the hardware are
   1026  *    considered invalid; the indirect pointers are not saved in the context.
   1027  *    If any new indirect state commands are executed in the command stream
   1028  *    while the pipe control is pending, the new indirect state commands are
   1029  *    preserved.
   1030  *
   1031  *    [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
   1032  *    restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
   1033  *    commands are only considered as Indirect State Pointers. Once ISP is
   1034  *    issued in a context, SW must initialize by programming push constant
   1035  *    commands for all the shaders (at least to zero length) before attempting
   1036  *    any rendering operation for the same context."
   1037  *
   1038  * 3DSTATE_CONSTANT_* packets are restored during a context restore,
   1039  * even though they point to a BO that has been already unreferenced at
   1040  * the end of the previous batch buffer. This has been fine so far since
   1041  * we are protected by these scratch page (every address not covered by
   1042  * a BO should be pointing to the scratch page). But on CNL, it is
   1043  * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
   1044  * instruction.
   1045  *
   1046  * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
   1047  * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
   1048  * context restore, so the mentioned hang doesn't happen. However,
   1049  * software must program push constant commands for all stages prior to
   1050  * rendering anything. So we flag them dirty in BeginCommandBuffer.
   1051  */
   1052 static void
   1053 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
   1054 {
   1055    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
   1056          pc.IndirectStatePointersDisable = true;
   1057          pc.CommandStreamerStallEnable = true;
   1058    }
   1059 }
   1060 
   1061 VkResult
   1062 genX(EndCommandBuffer)(
   1063     VkCommandBuffer                             commandBuffer)
   1064 {
   1065    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   1066 
   1067    if (anv_batch_has_error(&cmd_buffer->batch))
   1068       return cmd_buffer->batch.status;
   1069 
   1070    /* We want every command buffer to start with the PMA fix in a known state,
   1071     * so we disable it at the end of the command buffer.
   1072     */
   1073    genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
   1074 
   1075    genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
   1076 
   1077    if (GEN_GEN == 10)
   1078       emit_isp_disable(cmd_buffer);
   1079 
   1080    anv_cmd_buffer_end_batch_buffer(cmd_buffer);
   1081 
   1082    return VK_SUCCESS;
   1083 }
   1084 
   1085 void
   1086 genX(CmdExecuteCommands)(
   1087     VkCommandBuffer                             commandBuffer,
   1088     uint32_t                                    commandBufferCount,
   1089     const VkCommandBuffer*                      pCmdBuffers)
   1090 {
   1091    ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
   1092 
   1093    assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
   1094 
   1095    if (anv_batch_has_error(&primary->batch))
   1096       return;
   1097 
   1098    /* The secondary command buffers will assume that the PMA fix is disabled
   1099     * when they begin executing.  Make sure this is true.
   1100     */
   1101    genX(cmd_buffer_enable_pma_fix)(primary, false);
   1102 
   1103    /* The secondary command buffer doesn't know which textures etc. have been
   1104     * flushed prior to their execution.  Apply those flushes now.
   1105     */
   1106    genX(cmd_buffer_apply_pipe_flushes)(primary);
   1107 
   1108    for (uint32_t i = 0; i < commandBufferCount; i++) {
   1109       ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
   1110 
   1111       assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
   1112       assert(!anv_batch_has_error(&secondary->batch));
   1113 
   1114       if (secondary->usage_flags &
   1115           VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
   1116          /* If we're continuing a render pass from the primary, we need to
   1117           * copy the surface states for the current subpass into the storage
   1118           * we allocated for them in BeginCommandBuffer.
   1119           */
   1120          struct anv_bo *ss_bo =
   1121             &primary->device->surface_state_pool.block_pool.bo;
   1122          struct anv_state src_state = primary->state.render_pass_states;
   1123          struct anv_state dst_state = secondary->state.render_pass_states;
   1124          assert(src_state.alloc_size == dst_state.alloc_size);
   1125 
   1126          genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
   1127                                     ss_bo, src_state.offset,
   1128                                     src_state.alloc_size);
   1129       }
   1130 
   1131       anv_cmd_buffer_add_secondary(primary, secondary);
   1132    }
   1133 
   1134    /* The secondary may have selected a different pipeline (3D or compute) and
   1135     * may have changed the current L3$ configuration.  Reset our tracking
   1136     * variables to invalid values to ensure that we re-emit these in the case
   1137     * where we do any draws or compute dispatches from the primary after the
   1138     * secondary has returned.
   1139     */
   1140    primary->state.current_pipeline = UINT32_MAX;
   1141    primary->state.current_l3_config = NULL;
   1142 
   1143    /* Each of the secondary command buffers will use its own state base
   1144     * address.  We need to re-emit state base address for the primary after
   1145     * all of the secondaries are done.
   1146     *
   1147     * TODO: Maybe we want to make this a dirty bit to avoid extra state base
   1148     * address calls?
   1149     */
   1150    genX(cmd_buffer_emit_state_base_address)(primary);
   1151 }
   1152 
   1153 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT     0x00730000
   1154 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT     0x00d30000
   1155 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT     0x00610000
   1156 
   1157 /**
   1158  * Program the hardware to use the specified L3 configuration.
   1159  */
   1160 void
   1161 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
   1162                            const struct gen_l3_config *cfg)
   1163 {
   1164    assert(cfg);
   1165    if (cfg == cmd_buffer->state.current_l3_config)
   1166       return;
   1167 
   1168    if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
   1169       intel_logd("L3 config transition: ");
   1170       gen_dump_l3_config(cfg, stderr);
   1171    }
   1172 
   1173    const bool has_slm = cfg->n[GEN_L3P_SLM];
   1174 
   1175    /* According to the hardware docs, the L3 partitioning can only be changed
   1176     * while the pipeline is completely drained and the caches are flushed,
   1177     * which involves a first PIPE_CONTROL flush which stalls the pipeline...
   1178     */
   1179    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
   1180       pc.DCFlushEnable = true;
   1181       pc.PostSyncOperation = NoWrite;
   1182       pc.CommandStreamerStallEnable = true;
   1183    }
   1184 
   1185    /* ...followed by a second pipelined PIPE_CONTROL that initiates
   1186     * invalidation of the relevant caches.  Note that because RO invalidation
   1187     * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
   1188     * command is processed by the CS) we cannot combine it with the previous
   1189     * stalling flush as the hardware documentation suggests, because that
   1190     * would cause the CS to stall on previous rendering *after* RO
   1191     * invalidation and wouldn't prevent the RO caches from being polluted by
   1192     * concurrent rendering before the stall completes.  This intentionally
   1193     * doesn't implement the SKL+ hardware workaround suggesting to enable CS
   1194     * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
   1195     * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
   1196     * already guarantee that there is no concurrent GPGPU kernel execution
   1197     * (see SKL HSD 2132585).
   1198     */
   1199    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
   1200       pc.TextureCacheInvalidationEnable = true;
   1201       pc.ConstantCacheInvalidationEnable = true;
   1202       pc.InstructionCacheInvalidateEnable = true;
   1203       pc.StateCacheInvalidationEnable = true;
   1204       pc.PostSyncOperation = NoWrite;
   1205    }
   1206 
   1207    /* Now send a third stalling flush to make sure that invalidation is
   1208     * complete when the L3 configuration registers are modified.
   1209     */
   1210    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
   1211       pc.DCFlushEnable = true;
   1212       pc.PostSyncOperation = NoWrite;
   1213       pc.CommandStreamerStallEnable = true;
   1214    }
   1215 
   1216 #if GEN_GEN >= 8
   1217 
   1218    assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
   1219 
   1220    uint32_t l3cr;
   1221    anv_pack_struct(&l3cr, GENX(L3CNTLREG),
   1222                    .SLMEnable = has_slm,
   1223                    .URBAllocation = cfg->n[GEN_L3P_URB],
   1224                    .ROAllocation = cfg->n[GEN_L3P_RO],
   1225                    .DCAllocation = cfg->n[GEN_L3P_DC],
   1226                    .AllAllocation = cfg->n[GEN_L3P_ALL]);
   1227 
   1228    /* Set up the L3 partitioning. */
   1229    emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
   1230 
   1231 #else
   1232 
   1233    const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
   1234    const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
   1235                        cfg->n[GEN_L3P_ALL];
   1236    const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
   1237                       cfg->n[GEN_L3P_ALL];
   1238    const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
   1239                       cfg->n[GEN_L3P_ALL];
   1240 
   1241    assert(!cfg->n[GEN_L3P_ALL]);
   1242 
   1243    /* When enabled SLM only uses a portion of the L3 on half of the banks,
   1244     * the matching space on the remaining banks has to be allocated to a
   1245     * client (URB for all validated configurations) set to the
   1246     * lower-bandwidth 2-bank address hashing mode.
   1247     */
   1248    const struct gen_device_info *devinfo = &cmd_buffer->device->info;
   1249    const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
   1250    assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
   1251 
   1252    /* Minimum number of ways that can be allocated to the URB. */
   1253    MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
   1254    assert(cfg->n[GEN_L3P_URB] >= n0_urb);
   1255 
   1256    uint32_t l3sqcr1, l3cr2, l3cr3;
   1257    anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
   1258                    .ConvertDC_UC = !has_dc,
   1259                    .ConvertIS_UC = !has_is,
   1260                    .ConvertC_UC = !has_c,
   1261                    .ConvertT_UC = !has_t);
   1262    l3sqcr1 |=
   1263       GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
   1264       devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
   1265       IVB_L3SQCREG1_SQGHPCI_DEFAULT;
   1266 
   1267    anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
   1268                    .SLMEnable = has_slm,
   1269                    .URBLowBandwidth = urb_low_bw,
   1270                    .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
   1271 #if !GEN_IS_HASWELL
   1272                    .ALLAllocation = cfg->n[GEN_L3P_ALL],
   1273 #endif
   1274                    .ROAllocation = cfg->n[GEN_L3P_RO],
   1275                    .DCAllocation = cfg->n[GEN_L3P_DC]);
   1276 
   1277    anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
   1278                    .ISAllocation = cfg->n[GEN_L3P_IS],
   1279                    .ISLowBandwidth = 0,
   1280                    .CAllocation = cfg->n[GEN_L3P_C],
   1281                    .CLowBandwidth = 0,
   1282                    .TAllocation = cfg->n[GEN_L3P_T],
   1283                    .TLowBandwidth = 0);
   1284 
   1285    /* Set up the L3 partitioning. */
   1286    emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
   1287    emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
   1288    emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
   1289 
   1290 #if GEN_IS_HASWELL
   1291    if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
   1292       /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
   1293        * them disabled to avoid crashing the system hard.
   1294        */
   1295       uint32_t scratch1, chicken3;
   1296       anv_pack_struct(&scratch1, GENX(SCRATCH1),
   1297                       .L3AtomicDisable = !has_dc);
   1298       anv_pack_struct(&chicken3, GENX(CHICKEN3),
   1299                       .L3AtomicDisableMask = true,
   1300                       .L3AtomicDisable = !has_dc);
   1301       emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
   1302       emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
   1303    }
   1304 #endif
   1305 
   1306 #endif
   1307 
   1308    cmd_buffer->state.current_l3_config = cfg;
   1309 }
   1310 
   1311 void
   1312 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
   1313 {
   1314    enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
   1315 
   1316    /* Flushes are pipelined while invalidations are handled immediately.
   1317     * Therefore, if we're flushing anything then we need to schedule a stall
   1318     * before any invalidations can happen.
   1319     */
   1320    if (bits & ANV_PIPE_FLUSH_BITS)
   1321       bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
   1322 
   1323    /* If we're going to do an invalidate and we have a pending CS stall that
   1324     * has yet to be resolved, we do the CS stall now.
   1325     */
   1326    if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
   1327        (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
   1328       bits |= ANV_PIPE_CS_STALL_BIT;
   1329       bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
   1330    }
   1331 
   1332    if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
   1333       anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
   1334          pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
   1335          pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
   1336          pipe.RenderTargetCacheFlushEnable =
   1337             bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
   1338 
   1339          pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
   1340          pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
   1341          pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
   1342 
   1343          /*
   1344           * According to the Broadwell documentation, any PIPE_CONTROL with the
   1345           * "Command Streamer Stall" bit set must also have another bit set,
   1346           * with five different options:
   1347           *
   1348           *  - Render Target Cache Flush
   1349           *  - Depth Cache Flush
   1350           *  - Stall at Pixel Scoreboard
   1351           *  - Post-Sync Operation
   1352           *  - Depth Stall
   1353           *  - DC Flush Enable
   1354           *
   1355           * I chose "Stall at Pixel Scoreboard" since that's what we use in
   1356           * mesa and it seems to work fine. The choice is fairly arbitrary.
   1357           */
   1358          if ((bits & ANV_PIPE_CS_STALL_BIT) &&
   1359              !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
   1360                        ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
   1361             pipe.StallAtPixelScoreboard = true;
   1362       }
   1363 
   1364       bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
   1365    }
   1366 
   1367    if (bits & ANV_PIPE_INVALIDATE_BITS) {
   1368       anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
   1369          pipe.StateCacheInvalidationEnable =
   1370             bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
   1371          pipe.ConstantCacheInvalidationEnable =
   1372             bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
   1373          pipe.VFCacheInvalidationEnable =
   1374             bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
   1375          pipe.TextureCacheInvalidationEnable =
   1376             bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
   1377          pipe.InstructionCacheInvalidateEnable =
   1378             bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
   1379       }
   1380 
   1381       bits &= ~ANV_PIPE_INVALIDATE_BITS;
   1382    }
   1383 
   1384    cmd_buffer->state.pending_pipe_bits = bits;
   1385 }
   1386 
   1387 void genX(CmdPipelineBarrier)(
   1388     VkCommandBuffer                             commandBuffer,
   1389     VkPipelineStageFlags                        srcStageMask,
   1390     VkPipelineStageFlags                        destStageMask,
   1391     VkBool32                                    byRegion,
   1392     uint32_t                                    memoryBarrierCount,
   1393     const VkMemoryBarrier*                      pMemoryBarriers,
   1394     uint32_t                                    bufferMemoryBarrierCount,
   1395     const VkBufferMemoryBarrier*                pBufferMemoryBarriers,
   1396     uint32_t                                    imageMemoryBarrierCount,
   1397     const VkImageMemoryBarrier*                 pImageMemoryBarriers)
   1398 {
   1399    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   1400 
   1401    /* XXX: Right now, we're really dumb and just flush whatever categories
   1402     * the app asks for.  One of these days we may make this a bit better
   1403     * but right now that's all the hardware allows for in most areas.
   1404     */
   1405    VkAccessFlags src_flags = 0;
   1406    VkAccessFlags dst_flags = 0;
   1407 
   1408    for (uint32_t i = 0; i < memoryBarrierCount; i++) {
   1409       src_flags |= pMemoryBarriers[i].srcAccessMask;
   1410       dst_flags |= pMemoryBarriers[i].dstAccessMask;
   1411    }
   1412 
   1413    for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
   1414       src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
   1415       dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
   1416    }
   1417 
   1418    for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
   1419       src_flags |= pImageMemoryBarriers[i].srcAccessMask;
   1420       dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
   1421       ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
   1422       const VkImageSubresourceRange *range =
   1423          &pImageMemoryBarriers[i].subresourceRange;
   1424 
   1425       if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
   1426          transition_depth_buffer(cmd_buffer, image,
   1427                                  pImageMemoryBarriers[i].oldLayout,
   1428                                  pImageMemoryBarriers[i].newLayout);
   1429       } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
   1430          VkImageAspectFlags color_aspects =
   1431             anv_image_expand_aspects(image, range->aspectMask);
   1432          uint32_t aspect_bit;
   1433 
   1434          anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
   1435             transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
   1436                                     range->baseMipLevel,
   1437                                     anv_get_levelCount(image, range),
   1438                                     range->baseArrayLayer,
   1439                                     anv_get_layerCount(image, range),
   1440                                     pImageMemoryBarriers[i].oldLayout,
   1441                                     pImageMemoryBarriers[i].newLayout);
   1442          }
   1443       }
   1444    }
   1445 
   1446    cmd_buffer->state.pending_pipe_bits |=
   1447       anv_pipe_flush_bits_for_access_flags(src_flags) |
   1448       anv_pipe_invalidate_bits_for_access_flags(dst_flags);
   1449 }
   1450 
   1451 static void
   1452 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
   1453 {
   1454    VkShaderStageFlags stages =
   1455       cmd_buffer->state.gfx.base.pipeline->active_stages;
   1456 
   1457    /* In order to avoid thrash, we assume that vertex and fragment stages
   1458     * always exist.  In the rare case where one is missing *and* the other
   1459     * uses push concstants, this may be suboptimal.  However, avoiding stalls
   1460     * seems more important.
   1461     */
   1462    stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
   1463 
   1464    if (stages == cmd_buffer->state.push_constant_stages)
   1465       return;
   1466 
   1467 #if GEN_GEN >= 8
   1468    const unsigned push_constant_kb = 32;
   1469 #elif GEN_IS_HASWELL
   1470    const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
   1471 #else
   1472    const unsigned push_constant_kb = 16;
   1473 #endif
   1474 
   1475    const unsigned num_stages =
   1476       _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
   1477    unsigned size_per_stage = push_constant_kb / num_stages;
   1478 
   1479    /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
   1480     * units of 2KB.  Incidentally, these are the same platforms that have
   1481     * 32KB worth of push constant space.
   1482     */
   1483    if (push_constant_kb == 32)
   1484       size_per_stage &= ~1u;
   1485 
   1486    uint32_t kb_used = 0;
   1487    for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
   1488       unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
   1489       anv_batch_emit(&cmd_buffer->batch,
   1490                      GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
   1491          alloc._3DCommandSubOpcode  = 18 + i;
   1492          alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
   1493          alloc.ConstantBufferSize   = push_size;
   1494       }
   1495       kb_used += push_size;
   1496    }
   1497 
   1498    anv_batch_emit(&cmd_buffer->batch,
   1499                   GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
   1500       alloc.ConstantBufferOffset = kb_used;
   1501       alloc.ConstantBufferSize = push_constant_kb - kb_used;
   1502    }
   1503 
   1504    cmd_buffer->state.push_constant_stages = stages;
   1505 
   1506    /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
   1507     *
   1508     *    "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
   1509     *    the next 3DPRIMITIVE command after programming the
   1510     *    3DSTATE_PUSH_CONSTANT_ALLOC_VS"
   1511     *
   1512     * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
   1513     * pipeline setup, we need to dirty push constants.
   1514     */
   1515    cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
   1516 }
   1517 
   1518 static const struct anv_descriptor *
   1519 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
   1520                            const struct anv_pipeline_binding *binding)
   1521 {
   1522    assert(binding->set < MAX_SETS);
   1523    const struct anv_descriptor_set *set =
   1524       pipe_state->descriptors[binding->set];
   1525    const uint32_t offset =
   1526       set->layout->binding[binding->binding].descriptor_index;
   1527    return &set->descriptors[offset + binding->index];
   1528 }
   1529 
   1530 static uint32_t
   1531 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
   1532                            const struct anv_pipeline *pipeline,
   1533                            const struct anv_pipeline_binding *binding)
   1534 {
   1535    assert(binding->set < MAX_SETS);
   1536    const struct anv_descriptor_set *set =
   1537       pipe_state->descriptors[binding->set];
   1538 
   1539    uint32_t dynamic_offset_idx =
   1540       pipeline->layout->set[binding->set].dynamic_offset_start +
   1541       set->layout->binding[binding->binding].dynamic_offset_index +
   1542       binding->index;
   1543 
   1544    return pipe_state->dynamic_offsets[dynamic_offset_idx];
   1545 }
   1546 
   1547 static VkResult
   1548 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
   1549                    gl_shader_stage stage,
   1550                    struct anv_state *bt_state)
   1551 {
   1552    struct anv_subpass *subpass = cmd_buffer->state.subpass;
   1553    struct anv_cmd_pipeline_state *pipe_state;
   1554    struct anv_pipeline *pipeline;
   1555    uint32_t bias, state_offset;
   1556 
   1557    switch (stage) {
   1558    case  MESA_SHADER_COMPUTE:
   1559       pipe_state = &cmd_buffer->state.compute.base;
   1560       bias = 1;
   1561       break;
   1562    default:
   1563       pipe_state = &cmd_buffer->state.gfx.base;
   1564       bias = 0;
   1565       break;
   1566    }
   1567    pipeline = pipe_state->pipeline;
   1568 
   1569    if (!anv_pipeline_has_stage(pipeline, stage)) {
   1570       *bt_state = (struct anv_state) { 0, };
   1571       return VK_SUCCESS;
   1572    }
   1573 
   1574    struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
   1575    if (bias + map->surface_count == 0) {
   1576       *bt_state = (struct anv_state) { 0, };
   1577       return VK_SUCCESS;
   1578    }
   1579 
   1580    *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
   1581                                                   bias + map->surface_count,
   1582                                                   &state_offset);
   1583    uint32_t *bt_map = bt_state->map;
   1584 
   1585    if (bt_state->map == NULL)
   1586       return VK_ERROR_OUT_OF_DEVICE_MEMORY;
   1587 
   1588    if (stage == MESA_SHADER_COMPUTE &&
   1589        get_cs_prog_data(pipeline)->uses_num_work_groups) {
   1590       struct anv_bo *bo = cmd_buffer->state.compute.num_workgroups.bo;
   1591       uint32_t bo_offset = cmd_buffer->state.compute.num_workgroups.offset;
   1592 
   1593       struct anv_state surface_state;
   1594       surface_state =
   1595          anv_cmd_buffer_alloc_surface_state(cmd_buffer);
   1596 
   1597       const enum isl_format format =
   1598          anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
   1599       anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
   1600                                     format, bo_offset, 12, 1);
   1601 
   1602       bt_map[0] = surface_state.offset + state_offset;
   1603       add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
   1604    }
   1605 
   1606    if (map->surface_count == 0)
   1607       goto out;
   1608 
   1609    if (map->image_count > 0) {
   1610       VkResult result =
   1611          anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
   1612       if (result != VK_SUCCESS)
   1613          return result;
   1614 
   1615       cmd_buffer->state.push_constants_dirty |= 1 << stage;
   1616    }
   1617 
   1618    uint32_t image = 0;
   1619    for (uint32_t s = 0; s < map->surface_count; s++) {
   1620       struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
   1621 
   1622       struct anv_state surface_state;
   1623 
   1624       if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
   1625          /* Color attachment binding */
   1626          assert(stage == MESA_SHADER_FRAGMENT);
   1627          assert(binding->binding == 0);
   1628          if (binding->index < subpass->color_count) {
   1629             const unsigned att =
   1630                subpass->color_attachments[binding->index].attachment;
   1631 
   1632             /* From the Vulkan 1.0.46 spec:
   1633              *
   1634              *    "If any color or depth/stencil attachments are
   1635              *    VK_ATTACHMENT_UNUSED, then no writes occur for those
   1636              *    attachments."
   1637              */
   1638             if (att == VK_ATTACHMENT_UNUSED) {
   1639                surface_state = cmd_buffer->state.null_surface_state;
   1640             } else {
   1641                surface_state = cmd_buffer->state.attachments[att].color.state;
   1642             }
   1643          } else {
   1644             surface_state = cmd_buffer->state.null_surface_state;
   1645          }
   1646 
   1647          bt_map[bias + s] = surface_state.offset + state_offset;
   1648          continue;
   1649       }
   1650 
   1651       const struct anv_descriptor *desc =
   1652          anv_descriptor_for_binding(pipe_state, binding);
   1653 
   1654       switch (desc->type) {
   1655       case VK_DESCRIPTOR_TYPE_SAMPLER:
   1656          /* Nothing for us to do here */
   1657          continue;
   1658 
   1659       case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
   1660       case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
   1661          struct anv_surface_state sstate =
   1662             (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
   1663             desc->image_view->planes[binding->plane].general_sampler_surface_state :
   1664             desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
   1665          surface_state = sstate.state;
   1666          assert(surface_state.alloc_size);
   1667          add_image_view_relocs(cmd_buffer, desc->image_view,
   1668                                binding->plane, sstate);
   1669          break;
   1670       }
   1671       case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
   1672          assert(stage == MESA_SHADER_FRAGMENT);
   1673          if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
   1674             /* For depth and stencil input attachments, we treat it like any
   1675              * old texture that a user may have bound.
   1676              */
   1677             struct anv_surface_state sstate =
   1678                (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
   1679                desc->image_view->planes[binding->plane].general_sampler_surface_state :
   1680                desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
   1681             surface_state = sstate.state;
   1682             assert(surface_state.alloc_size);
   1683             add_image_view_relocs(cmd_buffer, desc->image_view,
   1684                                   binding->plane, sstate);
   1685          } else {
   1686             /* For color input attachments, we create the surface state at
   1687              * vkBeginRenderPass time so that we can include aux and clear
   1688              * color information.
   1689              */
   1690             assert(binding->input_attachment_index < subpass->input_count);
   1691             const unsigned subpass_att = binding->input_attachment_index;
   1692             const unsigned att = subpass->input_attachments[subpass_att].attachment;
   1693             surface_state = cmd_buffer->state.attachments[att].input.state;
   1694          }
   1695          break;
   1696 
   1697       case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
   1698          struct anv_surface_state sstate = (binding->write_only)
   1699             ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
   1700             : desc->image_view->planes[binding->plane].storage_surface_state;
   1701          surface_state = sstate.state;
   1702          assert(surface_state.alloc_size);
   1703          add_image_view_relocs(cmd_buffer, desc->image_view,
   1704                                binding->plane, sstate);
   1705 
   1706          struct brw_image_param *image_param =
   1707             &cmd_buffer->state.push_constants[stage]->images[image++];
   1708 
   1709          *image_param = desc->image_view->planes[binding->plane].storage_image_param;
   1710          image_param->surface_idx = bias + s;
   1711          break;
   1712       }
   1713 
   1714       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
   1715       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
   1716       case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
   1717          surface_state = desc->buffer_view->surface_state;
   1718          assert(surface_state.alloc_size);
   1719          add_surface_state_reloc(cmd_buffer, surface_state,
   1720                                  desc->buffer_view->bo,
   1721                                  desc->buffer_view->offset);
   1722          break;
   1723 
   1724       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
   1725       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
   1726          /* Compute the offset within the buffer */
   1727          uint32_t dynamic_offset =
   1728             dynamic_offset_for_binding(pipe_state, pipeline, binding);
   1729          uint64_t offset = desc->offset + dynamic_offset;
   1730          /* Clamp to the buffer size */
   1731          offset = MIN2(offset, desc->buffer->size);
   1732          /* Clamp the range to the buffer size */
   1733          uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
   1734 
   1735          surface_state =
   1736             anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
   1737          enum isl_format format =
   1738             anv_isl_format_for_descriptor_type(desc->type);
   1739 
   1740          anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
   1741                                        format, offset, range, 1);
   1742          add_surface_state_reloc(cmd_buffer, surface_state,
   1743                                  desc->buffer->bo,
   1744                                  desc->buffer->offset + offset);
   1745          break;
   1746       }
   1747 
   1748       case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
   1749          surface_state = (binding->write_only)
   1750             ? desc->buffer_view->writeonly_storage_surface_state
   1751             : desc->buffer_view->storage_surface_state;
   1752          assert(surface_state.alloc_size);
   1753          add_surface_state_reloc(cmd_buffer, surface_state,
   1754                                  desc->buffer_view->bo,
   1755                                  desc->buffer_view->offset);
   1756 
   1757          struct brw_image_param *image_param =
   1758             &cmd_buffer->state.push_constants[stage]->images[image++];
   1759 
   1760          *image_param = desc->buffer_view->storage_image_param;
   1761          image_param->surface_idx = bias + s;
   1762          break;
   1763 
   1764       default:
   1765          assert(!"Invalid descriptor type");
   1766          continue;
   1767       }
   1768 
   1769       bt_map[bias + s] = surface_state.offset + state_offset;
   1770    }
   1771    assert(image == map->image_count);
   1772 
   1773  out:
   1774    anv_state_flush(cmd_buffer->device, *bt_state);
   1775 
   1776    return VK_SUCCESS;
   1777 }
   1778 
   1779 static VkResult
   1780 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
   1781               gl_shader_stage stage,
   1782               struct anv_state *state)
   1783 {
   1784    struct anv_cmd_pipeline_state *pipe_state =
   1785       stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
   1786                                      &cmd_buffer->state.gfx.base;
   1787    struct anv_pipeline *pipeline = pipe_state->pipeline;
   1788 
   1789    if (!anv_pipeline_has_stage(pipeline, stage)) {
   1790       *state = (struct anv_state) { 0, };
   1791       return VK_SUCCESS;
   1792    }
   1793 
   1794    struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
   1795    if (map->sampler_count == 0) {
   1796       *state = (struct anv_state) { 0, };
   1797       return VK_SUCCESS;
   1798    }
   1799 
   1800    uint32_t size = map->sampler_count * 16;
   1801    *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
   1802 
   1803    if (state->map == NULL)
   1804       return VK_ERROR_OUT_OF_DEVICE_MEMORY;
   1805 
   1806    for (uint32_t s = 0; s < map->sampler_count; s++) {
   1807       struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
   1808       const struct anv_descriptor *desc =
   1809          anv_descriptor_for_binding(pipe_state, binding);
   1810 
   1811       if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
   1812           desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
   1813          continue;
   1814 
   1815       struct anv_sampler *sampler = desc->sampler;
   1816 
   1817       /* This can happen if we have an unfilled slot since TYPE_SAMPLER
   1818        * happens to be zero.
   1819        */
   1820       if (sampler == NULL)
   1821          continue;
   1822 
   1823       memcpy(state->map + (s * 16),
   1824              sampler->state[binding->plane], sizeof(sampler->state[0]));
   1825    }
   1826 
   1827    anv_state_flush(cmd_buffer->device, *state);
   1828 
   1829    return VK_SUCCESS;
   1830 }
   1831 
   1832 static uint32_t
   1833 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
   1834 {
   1835    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
   1836 
   1837    VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
   1838                               pipeline->active_stages;
   1839 
   1840    VkResult result = VK_SUCCESS;
   1841    anv_foreach_stage(s, dirty) {
   1842       result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
   1843       if (result != VK_SUCCESS)
   1844          break;
   1845       result = emit_binding_table(cmd_buffer, s,
   1846                                   &cmd_buffer->state.binding_tables[s]);
   1847       if (result != VK_SUCCESS)
   1848          break;
   1849    }
   1850 
   1851    if (result != VK_SUCCESS) {
   1852       assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
   1853 
   1854       result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
   1855       if (result != VK_SUCCESS)
   1856          return 0;
   1857 
   1858       /* Re-emit state base addresses so we get the new surface state base
   1859        * address before we start emitting binding tables etc.
   1860        */
   1861       genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
   1862 
   1863       /* Re-emit all active binding tables */
   1864       dirty |= pipeline->active_stages;
   1865       anv_foreach_stage(s, dirty) {
   1866          result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
   1867          if (result != VK_SUCCESS) {
   1868             anv_batch_set_error(&cmd_buffer->batch, result);
   1869             return 0;
   1870          }
   1871          result = emit_binding_table(cmd_buffer, s,
   1872                                      &cmd_buffer->state.binding_tables[s]);
   1873          if (result != VK_SUCCESS) {
   1874             anv_batch_set_error(&cmd_buffer->batch, result);
   1875             return 0;
   1876          }
   1877       }
   1878    }
   1879 
   1880    cmd_buffer->state.descriptors_dirty &= ~dirty;
   1881 
   1882    return dirty;
   1883 }
   1884 
   1885 static void
   1886 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
   1887                                     uint32_t stages)
   1888 {
   1889    static const uint32_t sampler_state_opcodes[] = {
   1890       [MESA_SHADER_VERTEX]                      = 43,
   1891       [MESA_SHADER_TESS_CTRL]                   = 44, /* HS */
   1892       [MESA_SHADER_TESS_EVAL]                   = 45, /* DS */
   1893       [MESA_SHADER_GEOMETRY]                    = 46,
   1894       [MESA_SHADER_FRAGMENT]                    = 47,
   1895       [MESA_SHADER_COMPUTE]                     = 0,
   1896    };
   1897 
   1898    static const uint32_t binding_table_opcodes[] = {
   1899       [MESA_SHADER_VERTEX]                      = 38,
   1900       [MESA_SHADER_TESS_CTRL]                   = 39,
   1901       [MESA_SHADER_TESS_EVAL]                   = 40,
   1902       [MESA_SHADER_GEOMETRY]                    = 41,
   1903       [MESA_SHADER_FRAGMENT]                    = 42,
   1904       [MESA_SHADER_COMPUTE]                     = 0,
   1905    };
   1906 
   1907    anv_foreach_stage(s, stages) {
   1908       assert(s < ARRAY_SIZE(binding_table_opcodes));
   1909       assert(binding_table_opcodes[s] > 0);
   1910 
   1911       if (cmd_buffer->state.samplers[s].alloc_size > 0) {
   1912          anv_batch_emit(&cmd_buffer->batch,
   1913                         GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
   1914             ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
   1915             ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
   1916          }
   1917       }
   1918 
   1919       /* Always emit binding table pointers if we're asked to, since on SKL
   1920        * this is what flushes push constants. */
   1921       anv_batch_emit(&cmd_buffer->batch,
   1922                      GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
   1923          btp._3DCommandSubOpcode = binding_table_opcodes[s];
   1924          btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
   1925       }
   1926    }
   1927 }
   1928 
   1929 static void
   1930 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
   1931                                 VkShaderStageFlags dirty_stages)
   1932 {
   1933    const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
   1934    const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
   1935 
   1936    static const uint32_t push_constant_opcodes[] = {
   1937       [MESA_SHADER_VERTEX]                      = 21,
   1938       [MESA_SHADER_TESS_CTRL]                   = 25, /* HS */
   1939       [MESA_SHADER_TESS_EVAL]                   = 26, /* DS */
   1940       [MESA_SHADER_GEOMETRY]                    = 22,
   1941       [MESA_SHADER_FRAGMENT]                    = 23,
   1942       [MESA_SHADER_COMPUTE]                     = 0,
   1943    };
   1944 
   1945    VkShaderStageFlags flushed = 0;
   1946 
   1947    anv_foreach_stage(stage, dirty_stages) {
   1948       assert(stage < ARRAY_SIZE(push_constant_opcodes));
   1949       assert(push_constant_opcodes[stage] > 0);
   1950 
   1951       anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
   1952          c._3DCommandSubOpcode = push_constant_opcodes[stage];
   1953 
   1954          if (anv_pipeline_has_stage(pipeline, stage)) {
   1955 #if GEN_GEN >= 8 || GEN_IS_HASWELL
   1956             const struct brw_stage_prog_data *prog_data =
   1957                pipeline->shaders[stage]->prog_data;
   1958             const struct anv_pipeline_bind_map *bind_map =
   1959                &pipeline->shaders[stage]->bind_map;
   1960 
   1961             /* The Skylake PRM contains the following restriction:
   1962              *
   1963              *    "The driver must ensure The following case does not occur
   1964              *     without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
   1965              *     buffer 3 read length equal to zero committed followed by a
   1966              *     3DSTATE_CONSTANT_* with buffer 0 read length not equal to
   1967              *     zero committed."
   1968              *
   1969              * To avoid this, we program the buffers in the highest slots.
   1970              * This way, slot 0 is only used if slot 3 is also used.
   1971              */
   1972             int n = 3;
   1973 
   1974             for (int i = 3; i >= 0; i--) {
   1975                const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
   1976                if (range->length == 0)
   1977                   continue;
   1978 
   1979                const unsigned surface =
   1980                   prog_data->binding_table.ubo_start + range->block;
   1981 
   1982                assert(surface <= bind_map->surface_count);
   1983                const struct anv_pipeline_binding *binding =
   1984                   &bind_map->surface_to_descriptor[surface];
   1985 
   1986                const struct anv_descriptor *desc =
   1987                   anv_descriptor_for_binding(&gfx_state->base, binding);
   1988 
   1989                struct anv_address read_addr;
   1990                uint32_t read_len;
   1991                if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
   1992                   read_len = MIN2(range->length,
   1993                      DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
   1994                   read_addr = (struct anv_address) {
   1995                      .bo = desc->buffer_view->bo,
   1996                      .offset = desc->buffer_view->offset +
   1997                                range->start * 32,
   1998                   };
   1999                } else {
   2000                   assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
   2001 
   2002                   uint32_t dynamic_offset =
   2003                      dynamic_offset_for_binding(&gfx_state->base,
   2004                                                 pipeline, binding);
   2005                   uint32_t buf_offset =
   2006                      MIN2(desc->offset + dynamic_offset, desc->buffer->size);
   2007                   uint32_t buf_range =
   2008                      MIN2(desc->range, desc->buffer->size - buf_offset);
   2009 
   2010                   read_len = MIN2(range->length,
   2011                      DIV_ROUND_UP(buf_range, 32) - range->start);
   2012                   read_addr = (struct anv_address) {
   2013                      .bo = desc->buffer->bo,
   2014                      .offset = desc->buffer->offset + buf_offset +
   2015                                range->start * 32,
   2016                   };
   2017                }
   2018 
   2019                if (read_len > 0) {
   2020                   c.ConstantBody.Buffer[n] = read_addr;
   2021                   c.ConstantBody.ReadLength[n] = read_len;
   2022                   n--;
   2023                }
   2024             }
   2025 
   2026             struct anv_state state =
   2027                anv_cmd_buffer_push_constants(cmd_buffer, stage);
   2028 
   2029             if (state.alloc_size > 0) {
   2030                c.ConstantBody.Buffer[n] = (struct anv_address) {
   2031                   .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
   2032                   .offset = state.offset,
   2033                };
   2034                c.ConstantBody.ReadLength[n] =
   2035                   DIV_ROUND_UP(state.alloc_size, 32);
   2036             }
   2037 #else
   2038             /* For Ivy Bridge, the push constants packets have a different
   2039              * rule that would require us to iterate in the other direction
   2040              * and possibly mess around with dynamic state base address.
   2041              * Don't bother; just emit regular push constants at n = 0.
   2042              */
   2043             struct anv_state state =
   2044                anv_cmd_buffer_push_constants(cmd_buffer, stage);
   2045 
   2046             if (state.alloc_size > 0) {
   2047                c.ConstantBody.Buffer[0].offset = state.offset,
   2048                c.ConstantBody.ReadLength[0] =
   2049                   DIV_ROUND_UP(state.alloc_size, 32);
   2050             }
   2051 #endif
   2052          }
   2053       }
   2054 
   2055       flushed |= mesa_to_vk_shader_stage(stage);
   2056    }
   2057 
   2058    cmd_buffer->state.push_constants_dirty &= ~flushed;
   2059 }
   2060 
   2061 void
   2062 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
   2063 {
   2064    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
   2065    uint32_t *p;
   2066 
   2067    uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
   2068 
   2069    assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
   2070 
   2071    genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
   2072 
   2073    genX(flush_pipeline_select_3d)(cmd_buffer);
   2074 
   2075    if (vb_emit) {
   2076       const uint32_t num_buffers = __builtin_popcount(vb_emit);
   2077       const uint32_t num_dwords = 1 + num_buffers * 4;
   2078 
   2079       p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
   2080                           GENX(3DSTATE_VERTEX_BUFFERS));
   2081       uint32_t vb, i = 0;
   2082       for_each_bit(vb, vb_emit) {
   2083          struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
   2084          uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
   2085 
   2086          struct GENX(VERTEX_BUFFER_STATE) state = {
   2087             .VertexBufferIndex = vb,
   2088 
   2089 #if GEN_GEN >= 8
   2090             .MemoryObjectControlState = GENX(MOCS),
   2091 #else
   2092             .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
   2093             /* Our implementation of VK_KHR_multiview uses instancing to draw
   2094              * the different views.  If the client asks for instancing, we
   2095              * need to use the Instance Data Step Rate to ensure that we
   2096              * repeat the client's per-instance data once for each view.
   2097              */
   2098             .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
   2099             .VertexBufferMemoryObjectControlState = GENX(MOCS),
   2100 #endif
   2101 
   2102             .AddressModifyEnable = true,
   2103             .BufferPitch = pipeline->binding_stride[vb],
   2104             .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
   2105 
   2106 #if GEN_GEN >= 8
   2107             .BufferSize = buffer->size - offset
   2108 #else
   2109             .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
   2110 #endif
   2111          };
   2112 
   2113          GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
   2114          i++;
   2115       }
   2116    }
   2117 
   2118    cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
   2119 
   2120    if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
   2121       anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
   2122 
   2123       /* The exact descriptor layout is pulled from the pipeline, so we need
   2124        * to re-emit binding tables on every pipeline change.
   2125        */
   2126       cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
   2127 
   2128       /* If the pipeline changed, we may need to re-allocate push constant
   2129        * space in the URB.
   2130        */
   2131       cmd_buffer_alloc_push_constants(cmd_buffer);
   2132    }
   2133 
   2134 #if GEN_GEN <= 7
   2135    if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
   2136        cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
   2137       /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
   2138        *
   2139        *    "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
   2140        *    stall needs to be sent just prior to any 3DSTATE_VS,
   2141        *    3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
   2142        *    3DSTATE_BINDING_TABLE_POINTER_VS,
   2143        *    3DSTATE_SAMPLER_STATE_POINTER_VS command.  Only one
   2144        *    PIPE_CONTROL needs to be sent before any combination of VS
   2145        *    associated 3DSTATE."
   2146        */
   2147       anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
   2148          pc.DepthStallEnable  = true;
   2149          pc.PostSyncOperation = WriteImmediateData;
   2150          pc.Address           =
   2151             (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
   2152       }
   2153    }
   2154 #endif
   2155 
   2156    /* Render targets live in the same binding table as fragment descriptors */
   2157    if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
   2158       cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
   2159 
   2160    /* We emit the binding tables and sampler tables first, then emit push
   2161     * constants and then finally emit binding table and sampler table
   2162     * pointers.  It has to happen in this order, since emitting the binding
   2163     * tables may change the push constants (in case of storage images). After
   2164     * emitting push constants, on SKL+ we have to emit the corresponding
   2165     * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
   2166     */
   2167    uint32_t dirty = 0;
   2168    if (cmd_buffer->state.descriptors_dirty)
   2169       dirty = flush_descriptor_sets(cmd_buffer);
   2170 
   2171    if (dirty || cmd_buffer->state.push_constants_dirty) {
   2172       /* Because we're pushing UBOs, we have to push whenever either
   2173        * descriptors or push constants is dirty.
   2174        */
   2175       dirty |= cmd_buffer->state.push_constants_dirty;
   2176       dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
   2177       cmd_buffer_flush_push_constants(cmd_buffer, dirty);
   2178    }
   2179 
   2180    if (dirty)
   2181       cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
   2182 
   2183    if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
   2184       gen8_cmd_buffer_emit_viewport(cmd_buffer);
   2185 
   2186    if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
   2187                                   ANV_CMD_DIRTY_PIPELINE)) {
   2188       gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
   2189                                           pipeline->depth_clamp_enable);
   2190    }
   2191 
   2192    if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
   2193       gen7_cmd_buffer_emit_scissor(cmd_buffer);
   2194 
   2195    genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
   2196 
   2197    genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
   2198 }
   2199 
   2200 static void
   2201 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
   2202                struct anv_bo *bo, uint32_t offset,
   2203                uint32_t size, uint32_t index)
   2204 {
   2205    uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
   2206                                  GENX(3DSTATE_VERTEX_BUFFERS));
   2207 
   2208    GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
   2209       &(struct GENX(VERTEX_BUFFER_STATE)) {
   2210          .VertexBufferIndex = index,
   2211          .AddressModifyEnable = true,
   2212          .BufferPitch = 0,
   2213 #if (GEN_GEN >= 8)
   2214          .MemoryObjectControlState = GENX(MOCS),
   2215          .BufferStartingAddress = { bo, offset },
   2216          .BufferSize = size
   2217 #else
   2218          .VertexBufferMemoryObjectControlState = GENX(MOCS),
   2219          .BufferStartingAddress = { bo, offset },
   2220          .EndAddress = { bo, offset + size },
   2221 #endif
   2222       });
   2223 }
   2224 
   2225 static void
   2226 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
   2227                              struct anv_bo *bo, uint32_t offset)
   2228 {
   2229    emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
   2230 }
   2231 
   2232 static void
   2233 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
   2234                           uint32_t base_vertex, uint32_t base_instance)
   2235 {
   2236    struct anv_state id_state =
   2237       anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
   2238 
   2239    ((uint32_t *)id_state.map)[0] = base_vertex;
   2240    ((uint32_t *)id_state.map)[1] = base_instance;
   2241 
   2242    anv_state_flush(cmd_buffer->device, id_state);
   2243 
   2244    emit_base_vertex_instance_bo(cmd_buffer,
   2245       &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
   2246 }
   2247 
   2248 static void
   2249 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
   2250 {
   2251    struct anv_state state =
   2252       anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
   2253 
   2254    ((uint32_t *)state.map)[0] = draw_index;
   2255 
   2256    anv_state_flush(cmd_buffer->device, state);
   2257 
   2258    emit_vertex_bo(cmd_buffer,
   2259                   &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
   2260                   state.offset, 4, ANV_DRAWID_VB_INDEX);
   2261 }
   2262 
   2263 void genX(CmdDraw)(
   2264     VkCommandBuffer                             commandBuffer,
   2265     uint32_t                                    vertexCount,
   2266     uint32_t                                    instanceCount,
   2267     uint32_t                                    firstVertex,
   2268     uint32_t                                    firstInstance)
   2269 {
   2270    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   2271    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
   2272    const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
   2273 
   2274    if (anv_batch_has_error(&cmd_buffer->batch))
   2275       return;
   2276 
   2277    genX(cmd_buffer_flush_state)(cmd_buffer);
   2278 
   2279    if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
   2280       emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
   2281    if (vs_prog_data->uses_drawid)
   2282       emit_draw_index(cmd_buffer, 0);
   2283 
   2284    /* Our implementation of VK_KHR_multiview uses instancing to draw the
   2285     * different views.  We need to multiply instanceCount by the view count.
   2286     */
   2287    instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
   2288 
   2289    anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
   2290       prim.VertexAccessType         = SEQUENTIAL;
   2291       prim.PrimitiveTopologyType    = pipeline->topology;
   2292       prim.VertexCountPerInstance   = vertexCount;
   2293       prim.StartVertexLocation      = firstVertex;
   2294       prim.InstanceCount            = instanceCount;
   2295       prim.StartInstanceLocation    = firstInstance;
   2296       prim.BaseVertexLocation       = 0;
   2297    }
   2298 }
   2299 
   2300 void genX(CmdDrawIndexed)(
   2301     VkCommandBuffer                             commandBuffer,
   2302     uint32_t                                    indexCount,
   2303     uint32_t                                    instanceCount,
   2304     uint32_t                                    firstIndex,
   2305     int32_t                                     vertexOffset,
   2306     uint32_t                                    firstInstance)
   2307 {
   2308    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   2309    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
   2310    const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
   2311 
   2312    if (anv_batch_has_error(&cmd_buffer->batch))
   2313       return;
   2314 
   2315    genX(cmd_buffer_flush_state)(cmd_buffer);
   2316 
   2317    if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
   2318       emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
   2319    if (vs_prog_data->uses_drawid)
   2320       emit_draw_index(cmd_buffer, 0);
   2321 
   2322    /* Our implementation of VK_KHR_multiview uses instancing to draw the
   2323     * different views.  We need to multiply instanceCount by the view count.
   2324     */
   2325    instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
   2326 
   2327    anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
   2328       prim.VertexAccessType         = RANDOM;
   2329       prim.PrimitiveTopologyType    = pipeline->topology;
   2330       prim.VertexCountPerInstance   = indexCount;
   2331       prim.StartVertexLocation      = firstIndex;
   2332       prim.InstanceCount            = instanceCount;
   2333       prim.StartInstanceLocation    = firstInstance;
   2334       prim.BaseVertexLocation       = vertexOffset;
   2335    }
   2336 }
   2337 
   2338 /* Auto-Draw / Indirect Registers */
   2339 #define GEN7_3DPRIM_END_OFFSET          0x2420
   2340 #define GEN7_3DPRIM_START_VERTEX        0x2430
   2341 #define GEN7_3DPRIM_VERTEX_COUNT        0x2434
   2342 #define GEN7_3DPRIM_INSTANCE_COUNT      0x2438
   2343 #define GEN7_3DPRIM_START_INSTANCE      0x243C
   2344 #define GEN7_3DPRIM_BASE_VERTEX         0x2440
   2345 
   2346 /* MI_MATH only exists on Haswell+ */
   2347 #if GEN_IS_HASWELL || GEN_GEN >= 8
   2348 
   2349 static uint32_t
   2350 mi_alu(uint32_t opcode, uint32_t op1, uint32_t op2)
   2351 {
   2352    struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
   2353       .ALUOpcode = opcode,
   2354       .Operand1 = op1,
   2355       .Operand2 = op2,
   2356    };
   2357 
   2358    uint32_t dw;
   2359    GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
   2360 
   2361    return dw;
   2362 }
   2363 
   2364 #define CS_GPR(n) (0x2600 + (n) * 8)
   2365 
   2366 /* Emit dwords to multiply GPR0 by N */
   2367 static void
   2368 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
   2369 {
   2370    VK_OUTARRAY_MAKE(out, dw, dw_count);
   2371 
   2372 #define append_alu(opcode, operand1, operand2) \
   2373    vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
   2374 
   2375    assert(N > 0);
   2376    unsigned top_bit = 31 - __builtin_clz(N);
   2377    for (int i = top_bit - 1; i >= 0; i--) {
   2378       /* We get our initial data in GPR0 and we write the final data out to
   2379        * GPR0 but we use GPR1 as our scratch register.
   2380        */
   2381       unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
   2382       unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
   2383 
   2384       /* Shift the current value left by 1 */
   2385       append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
   2386       append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
   2387       append_alu(MI_ALU_ADD, 0, 0);
   2388 
   2389       if (N & (1 << i)) {
   2390          /* Store ACCU to R1 and add R0 to R1 */
   2391          append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
   2392          append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
   2393          append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
   2394          append_alu(MI_ALU_ADD, 0, 0);
   2395       }
   2396 
   2397       append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
   2398    }
   2399 
   2400 #undef append_alu
   2401 }
   2402 
   2403 static void
   2404 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
   2405 {
   2406    uint32_t num_dwords;
   2407    build_alu_multiply_gpr0(NULL, &num_dwords, N);
   2408 
   2409    uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
   2410    build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
   2411 }
   2412 
   2413 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
   2414 
   2415 static void
   2416 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
   2417                          struct anv_buffer *buffer, uint64_t offset,
   2418                          bool indexed)
   2419 {
   2420    struct anv_batch *batch = &cmd_buffer->batch;
   2421    struct anv_bo *bo = buffer->bo;
   2422    uint32_t bo_offset = buffer->offset + offset;
   2423 
   2424    emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
   2425 
   2426    unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
   2427    if (view_count > 1) {
   2428 #if GEN_IS_HASWELL || GEN_GEN >= 8
   2429       emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
   2430       emit_mul_gpr0(batch, view_count);
   2431       emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
   2432 #else
   2433       anv_finishme("Multiview + indirect draw requires MI_MATH; "
   2434                    "MI_MATH is not supported on Ivy Bridge");
   2435       emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
   2436 #endif
   2437    } else {
   2438       emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
   2439    }
   2440 
   2441    emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
   2442 
   2443    if (indexed) {
   2444       emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
   2445       emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
   2446    } else {
   2447       emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
   2448       emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
   2449    }
   2450 }
   2451 
   2452 void genX(CmdDrawIndirect)(
   2453     VkCommandBuffer                             commandBuffer,
   2454     VkBuffer                                    _buffer,
   2455     VkDeviceSize                                offset,
   2456     uint32_t                                    drawCount,
   2457     uint32_t                                    stride)
   2458 {
   2459    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   2460    ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
   2461    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
   2462    const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
   2463 
   2464    if (anv_batch_has_error(&cmd_buffer->batch))
   2465       return;
   2466 
   2467    genX(cmd_buffer_flush_state)(cmd_buffer);
   2468 
   2469    for (uint32_t i = 0; i < drawCount; i++) {
   2470       struct anv_bo *bo = buffer->bo;
   2471       uint32_t bo_offset = buffer->offset + offset;
   2472 
   2473       if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
   2474          emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
   2475       if (vs_prog_data->uses_drawid)
   2476          emit_draw_index(cmd_buffer, i);
   2477 
   2478       load_indirect_parameters(cmd_buffer, buffer, offset, false);
   2479 
   2480       anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
   2481          prim.IndirectParameterEnable  = true;
   2482          prim.VertexAccessType         = SEQUENTIAL;
   2483          prim.PrimitiveTopologyType    = pipeline->topology;
   2484       }
   2485 
   2486       offset += stride;
   2487    }
   2488 }
   2489 
   2490 void genX(CmdDrawIndexedIndirect)(
   2491     VkCommandBuffer                             commandBuffer,
   2492     VkBuffer                                    _buffer,
   2493     VkDeviceSize                                offset,
   2494     uint32_t                                    drawCount,
   2495     uint32_t                                    stride)
   2496 {
   2497    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   2498    ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
   2499    struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
   2500    const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
   2501 
   2502    if (anv_batch_has_error(&cmd_buffer->batch))
   2503       return;
   2504 
   2505    genX(cmd_buffer_flush_state)(cmd_buffer);
   2506 
   2507    for (uint32_t i = 0; i < drawCount; i++) {
   2508       struct anv_bo *bo = buffer->bo;
   2509       uint32_t bo_offset = buffer->offset + offset;
   2510 
   2511       /* TODO: We need to stomp base vertex to 0 somehow */
   2512       if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
   2513          emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
   2514       if (vs_prog_data->uses_drawid)
   2515          emit_draw_index(cmd_buffer, i);
   2516 
   2517       load_indirect_parameters(cmd_buffer, buffer, offset, true);
   2518 
   2519       anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
   2520          prim.IndirectParameterEnable  = true;
   2521          prim.VertexAccessType         = RANDOM;
   2522          prim.PrimitiveTopologyType    = pipeline->topology;
   2523       }
   2524 
   2525       offset += stride;
   2526    }
   2527 }
   2528 
   2529 static VkResult
   2530 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
   2531 {
   2532    struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
   2533    struct anv_state surfaces = { 0, }, samplers = { 0, };
   2534    VkResult result;
   2535 
   2536    result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
   2537    if (result != VK_SUCCESS) {
   2538       assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
   2539 
   2540       result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
   2541       if (result != VK_SUCCESS)
   2542          return result;
   2543 
   2544       /* Re-emit state base addresses so we get the new surface state base
   2545        * address before we start emitting binding tables etc.
   2546        */
   2547       genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
   2548 
   2549       result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
   2550       if (result != VK_SUCCESS) {
   2551          anv_batch_set_error(&cmd_buffer->batch, result);
   2552          return result;
   2553       }
   2554    }
   2555 
   2556    result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
   2557    if (result != VK_SUCCESS) {
   2558       anv_batch_set_error(&cmd_buffer->batch, result);
   2559       return result;
   2560    }
   2561 
   2562    uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
   2563    struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
   2564       .BindingTablePointer = surfaces.offset,
   2565       .SamplerStatePointer = samplers.offset,
   2566    };
   2567    GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
   2568 
   2569    struct anv_state state =
   2570       anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
   2571                                    pipeline->interface_descriptor_data,
   2572                                    GENX(INTERFACE_DESCRIPTOR_DATA_length),
   2573                                    64);
   2574 
   2575    uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
   2576    anv_batch_emit(&cmd_buffer->batch,
   2577                   GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
   2578       mid.InterfaceDescriptorTotalLength        = size;
   2579       mid.InterfaceDescriptorDataStartAddress   = state.offset;
   2580    }
   2581 
   2582    return VK_SUCCESS;
   2583 }
   2584 
   2585 void
   2586 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
   2587 {
   2588    struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
   2589    MAYBE_UNUSED VkResult result;
   2590 
   2591    assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
   2592 
   2593    genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
   2594 
   2595    genX(flush_pipeline_select_gpgpu)(cmd_buffer);
   2596 
   2597    if (cmd_buffer->state.compute.pipeline_dirty) {
   2598       /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
   2599        *
   2600        *    "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
   2601        *    the only bits that are changed are scoreboard related: Scoreboard
   2602        *    Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
   2603        *    these scoreboard related states, a MEDIA_STATE_FLUSH is
   2604        *    sufficient."
   2605        */
   2606       cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
   2607       genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
   2608 
   2609       anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
   2610    }
   2611 
   2612    if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
   2613        cmd_buffer->state.compute.pipeline_dirty) {
   2614       /* FIXME: figure out descriptors for gen7 */
   2615       result = flush_compute_descriptor_set(cmd_buffer);
   2616       if (result != VK_SUCCESS)
   2617          return;
   2618 
   2619       cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
   2620    }
   2621 
   2622    if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
   2623       struct anv_state push_state =
   2624          anv_cmd_buffer_cs_push_constants(cmd_buffer);
   2625 
   2626       if (push_state.alloc_size) {
   2627          anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
   2628             curbe.CURBETotalDataLength    = push_state.alloc_size;
   2629             curbe.CURBEDataStartAddress   = push_state.offset;
   2630          }
   2631       }
   2632    }
   2633 
   2634    cmd_buffer->state.compute.pipeline_dirty = false;
   2635 
   2636    genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
   2637 }
   2638 
   2639 #if GEN_GEN == 7
   2640 
   2641 static VkResult
   2642 verify_cmd_parser(const struct anv_device *device,
   2643                   int required_version,
   2644                   const char *function)
   2645 {
   2646    if (device->instance->physicalDevice.cmd_parser_version < required_version) {
   2647       return vk_errorf(device->instance, device->instance,
   2648                        VK_ERROR_FEATURE_NOT_PRESENT,
   2649                        "cmd parser version %d is required for %s",
   2650                        required_version, function);
   2651    } else {
   2652       return VK_SUCCESS;
   2653    }
   2654 }
   2655 
   2656 #endif
   2657 
   2658 void genX(CmdDispatch)(
   2659     VkCommandBuffer                             commandBuffer,
   2660     uint32_t                                    x,
   2661     uint32_t                                    y,
   2662     uint32_t                                    z)
   2663 {
   2664    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   2665    struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
   2666    const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
   2667 
   2668    if (anv_batch_has_error(&cmd_buffer->batch))
   2669       return;
   2670 
   2671    if (prog_data->uses_num_work_groups) {
   2672       struct anv_state state =
   2673          anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
   2674       uint32_t *sizes = state.map;
   2675       sizes[0] = x;
   2676       sizes[1] = y;
   2677       sizes[2] = z;
   2678       anv_state_flush(cmd_buffer->device, state);
   2679       cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
   2680          .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
   2681          .offset = state.offset,
   2682       };
   2683    }
   2684 
   2685    genX(cmd_buffer_flush_compute_state)(cmd_buffer);
   2686 
   2687    anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
   2688       ggw.SIMDSize                     = prog_data->simd_size / 16;
   2689       ggw.ThreadDepthCounterMaximum    = 0;
   2690       ggw.ThreadHeightCounterMaximum   = 0;
   2691       ggw.ThreadWidthCounterMaximum    = prog_data->threads - 1;
   2692       ggw.ThreadGroupIDXDimension      = x;
   2693       ggw.ThreadGroupIDYDimension      = y;
   2694       ggw.ThreadGroupIDZDimension      = z;
   2695       ggw.RightExecutionMask           = pipeline->cs_right_mask;
   2696       ggw.BottomExecutionMask          = 0xffffffff;
   2697    }
   2698 
   2699    anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
   2700 }
   2701 
   2702 #define GPGPU_DISPATCHDIMX 0x2500
   2703 #define GPGPU_DISPATCHDIMY 0x2504
   2704 #define GPGPU_DISPATCHDIMZ 0x2508
   2705 
   2706 void genX(CmdDispatchIndirect)(
   2707     VkCommandBuffer                             commandBuffer,
   2708     VkBuffer                                    _buffer,
   2709     VkDeviceSize                                offset)
   2710 {
   2711    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   2712    ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
   2713    struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
   2714    const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
   2715    struct anv_bo *bo = buffer->bo;
   2716    uint32_t bo_offset = buffer->offset + offset;
   2717    struct anv_batch *batch = &cmd_buffer->batch;
   2718 
   2719 #if GEN_GEN == 7
   2720    /* Linux 4.4 added command parser version 5 which allows the GPGPU
   2721     * indirect dispatch registers to be written.
   2722     */
   2723    if (verify_cmd_parser(cmd_buffer->device, 5,
   2724                          "vkCmdDispatchIndirect") != VK_SUCCESS)
   2725       return;
   2726 #endif
   2727 
   2728    if (prog_data->uses_num_work_groups) {
   2729       cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
   2730          .bo = bo,
   2731          .offset = bo_offset,
   2732       };
   2733    }
   2734 
   2735    genX(cmd_buffer_flush_compute_state)(cmd_buffer);
   2736 
   2737    emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
   2738    emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
   2739    emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
   2740 
   2741 #if GEN_GEN <= 7
   2742    /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
   2743    emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
   2744    emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
   2745    emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
   2746 
   2747    /* Load compute_dispatch_indirect_x_size into SRC0 */
   2748    emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
   2749 
   2750    /* predicate = (compute_dispatch_indirect_x_size == 0); */
   2751    anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
   2752       mip.LoadOperation    = LOAD_LOAD;
   2753       mip.CombineOperation = COMBINE_SET;
   2754       mip.CompareOperation = COMPARE_SRCS_EQUAL;
   2755    }
   2756 
   2757    /* Load compute_dispatch_indirect_y_size into SRC0 */
   2758    emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
   2759 
   2760    /* predicate |= (compute_dispatch_indirect_y_size == 0); */
   2761    anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
   2762       mip.LoadOperation    = LOAD_LOAD;
   2763       mip.CombineOperation = COMBINE_OR;
   2764       mip.CompareOperation = COMPARE_SRCS_EQUAL;
   2765    }
   2766 
   2767    /* Load compute_dispatch_indirect_z_size into SRC0 */
   2768    emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
   2769 
   2770    /* predicate |= (compute_dispatch_indirect_z_size == 0); */
   2771    anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
   2772       mip.LoadOperation    = LOAD_LOAD;
   2773       mip.CombineOperation = COMBINE_OR;
   2774       mip.CompareOperation = COMPARE_SRCS_EQUAL;
   2775    }
   2776 
   2777    /* predicate = !predicate; */
   2778 #define COMPARE_FALSE                           1
   2779    anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
   2780       mip.LoadOperation    = LOAD_LOADINV;
   2781       mip.CombineOperation = COMBINE_OR;
   2782       mip.CompareOperation = COMPARE_FALSE;
   2783    }
   2784 #endif
   2785 
   2786    anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
   2787       ggw.IndirectParameterEnable      = true;
   2788       ggw.PredicateEnable              = GEN_GEN <= 7;
   2789       ggw.SIMDSize                     = prog_data->simd_size / 16;
   2790       ggw.ThreadDepthCounterMaximum    = 0;
   2791       ggw.ThreadHeightCounterMaximum   = 0;
   2792       ggw.ThreadWidthCounterMaximum    = prog_data->threads - 1;
   2793       ggw.RightExecutionMask           = pipeline->cs_right_mask;
   2794       ggw.BottomExecutionMask          = 0xffffffff;
   2795    }
   2796 
   2797    anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
   2798 }
   2799 
   2800 static void
   2801 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
   2802                             uint32_t pipeline)
   2803 {
   2804    UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
   2805 
   2806    if (cmd_buffer->state.current_pipeline == pipeline)
   2807       return;
   2808 
   2809 #if GEN_GEN >= 8 && GEN_GEN < 10
   2810    /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
   2811     *
   2812     *   Software must clear the COLOR_CALC_STATE Valid field in
   2813     *   3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
   2814     *   with Pipeline Select set to GPGPU.
   2815     *
   2816     * The internal hardware docs recommend the same workaround for Gen9
   2817     * hardware too.
   2818     */
   2819    if (pipeline == GPGPU)
   2820       anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
   2821 #endif
   2822 
   2823    /* From "BXML  GT  MI  vol1a GPU Overview  [Instruction]
   2824     * PIPELINE_SELECT [DevBWR+]":
   2825     *
   2826     *   Project: DEVSNB+
   2827     *
   2828     *   Software must ensure all the write caches are flushed through a
   2829     *   stalling PIPE_CONTROL command followed by another PIPE_CONTROL
   2830     *   command to invalidate read only caches prior to programming
   2831     *   MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
   2832     */
   2833    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
   2834       pc.RenderTargetCacheFlushEnable  = true;
   2835       pc.DepthCacheFlushEnable         = true;
   2836       pc.DCFlushEnable                 = true;
   2837       pc.PostSyncOperation             = NoWrite;
   2838       pc.CommandStreamerStallEnable    = true;
   2839    }
   2840 
   2841    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
   2842       pc.TextureCacheInvalidationEnable   = true;
   2843       pc.ConstantCacheInvalidationEnable  = true;
   2844       pc.StateCacheInvalidationEnable     = true;
   2845       pc.InstructionCacheInvalidateEnable = true;
   2846       pc.PostSyncOperation                = NoWrite;
   2847    }
   2848 
   2849    anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
   2850 #if GEN_GEN >= 9
   2851       ps.MaskBits = 3;
   2852 #endif
   2853       ps.PipelineSelection = pipeline;
   2854    }
   2855 
   2856 #if GEN_GEN == 9
   2857    if (devinfo->is_geminilake) {
   2858       /* Project: DevGLK
   2859        *
   2860        * "This chicken bit works around a hardware issue with barrier logic
   2861        *  encountered when switching between GPGPU and 3D pipelines.  To
   2862        *  workaround the issue, this mode bit should be set after a pipeline
   2863        *  is selected."
   2864        */
   2865       uint32_t scec;
   2866       anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
   2867                       .GLKBarrierMode =
   2868                           pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
   2869                                             : GLK_BARRIER_MODE_3D_HULL,
   2870                       .GLKBarrierModeMask = 1);
   2871       emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
   2872    }
   2873 #endif
   2874 
   2875    cmd_buffer->state.current_pipeline = pipeline;
   2876 }
   2877 
   2878 void
   2879 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
   2880 {
   2881    genX(flush_pipeline_select)(cmd_buffer, _3D);
   2882 }
   2883 
   2884 void
   2885 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
   2886 {
   2887    genX(flush_pipeline_select)(cmd_buffer, GPGPU);
   2888 }
   2889 
   2890 void
   2891 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
   2892 {
   2893    if (GEN_GEN >= 8)
   2894       return;
   2895 
   2896    /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
   2897     *
   2898     *    "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
   2899     *    combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
   2900     *    3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
   2901     *    issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
   2902     *    set), followed by a pipelined depth cache flush (PIPE_CONTROL with
   2903     *    Depth Flush Bit set, followed by another pipelined depth stall
   2904     *    (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
   2905     *    guarantee that the pipeline from WM onwards is already flushed (e.g.,
   2906     *    via a preceding MI_FLUSH)."
   2907     */
   2908    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
   2909       pipe.DepthStallEnable = true;
   2910    }
   2911    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
   2912       pipe.DepthCacheFlushEnable = true;
   2913    }
   2914    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
   2915       pipe.DepthStallEnable = true;
   2916    }
   2917 }
   2918 
   2919 static void
   2920 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
   2921 {
   2922    struct anv_device *device = cmd_buffer->device;
   2923    const struct anv_image_view *iview =
   2924       anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
   2925    const struct anv_image *image = iview ? iview->image : NULL;
   2926 
   2927    /* FIXME: Width and Height are wrong */
   2928 
   2929    genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
   2930 
   2931    uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
   2932                                         device->isl_dev.ds.size / 4);
   2933    if (dw == NULL)
   2934       return;
   2935 
   2936    struct isl_depth_stencil_hiz_emit_info info = {
   2937       .mocs = device->default_mocs,
   2938    };
   2939 
   2940    if (iview)
   2941       info.view = &iview->planes[0].isl;
   2942 
   2943    if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
   2944       uint32_t depth_plane =
   2945          anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
   2946       const struct anv_surface *surface = &image->planes[depth_plane].surface;
   2947 
   2948       info.depth_surf = &surface->isl;
   2949 
   2950       info.depth_address =
   2951          anv_batch_emit_reloc(&cmd_buffer->batch,
   2952                               dw + device->isl_dev.ds.depth_offset / 4,
   2953                               image->planes[depth_plane].bo,
   2954                               image->planes[depth_plane].bo_offset +
   2955                               surface->offset);
   2956 
   2957       const uint32_t ds =
   2958          cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
   2959       info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
   2960       if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
   2961          info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
   2962 
   2963          info.hiz_address =
   2964             anv_batch_emit_reloc(&cmd_buffer->batch,
   2965                                  dw + device->isl_dev.ds.hiz_offset / 4,
   2966                                  image->planes[depth_plane].bo,
   2967                                  image->planes[depth_plane].bo_offset +
   2968                                  image->planes[depth_plane].aux_surface.offset);
   2969 
   2970          info.depth_clear_value = ANV_HZ_FC_VAL;
   2971       }
   2972    }
   2973 
   2974    if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
   2975       uint32_t stencil_plane =
   2976          anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
   2977       const struct anv_surface *surface = &image->planes[stencil_plane].surface;
   2978 
   2979       info.stencil_surf = &surface->isl;
   2980 
   2981       info.stencil_address =
   2982          anv_batch_emit_reloc(&cmd_buffer->batch,
   2983                               dw + device->isl_dev.ds.stencil_offset / 4,
   2984                               image->planes[stencil_plane].bo,
   2985                               image->planes[stencil_plane].bo_offset + surface->offset);
   2986    }
   2987 
   2988    isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
   2989 
   2990    cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
   2991 }
   2992 
   2993 
   2994 /**
   2995  * @brief Perform any layout transitions required at the beginning and/or end
   2996  *        of the current subpass for depth buffers.
   2997  *
   2998  * TODO: Consider preprocessing the attachment reference array at render pass
   2999  *       create time to determine if no layout transition is needed at the
   3000  *       beginning and/or end of each subpass.
   3001  *
   3002  * @param cmd_buffer The command buffer the transition is happening within.
   3003  * @param subpass_end If true, marks that the transition is happening at the
   3004  *                    end of the subpass.
   3005  */
   3006 static void
   3007 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
   3008                                       const bool subpass_end)
   3009 {
   3010    /* We need a non-NULL command buffer. */
   3011    assert(cmd_buffer);
   3012 
   3013    const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
   3014    const struct anv_subpass * const subpass = cmd_state->subpass;
   3015 
   3016    /* This function must be called within a subpass. */
   3017    assert(subpass);
   3018 
   3019    /* If there are attachment references, the array shouldn't be NULL.
   3020     */
   3021    if (subpass->attachment_count > 0)
   3022       assert(subpass->attachments);
   3023 
   3024    /* Iterate over the array of attachment references. */
   3025    for (const VkAttachmentReference *att_ref = subpass->attachments;
   3026         att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
   3027 
   3028       /* If the attachment is unused, we can't perform a layout transition. */
   3029       if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
   3030          continue;
   3031 
   3032       /* This attachment index shouldn't go out of bounds. */
   3033       assert(att_ref->attachment < cmd_state->pass->attachment_count);
   3034 
   3035       const struct anv_render_pass_attachment * const att_desc =
   3036          &cmd_state->pass->attachments[att_ref->attachment];
   3037       struct anv_attachment_state * const att_state =
   3038          &cmd_buffer->state.attachments[att_ref->attachment];
   3039 
   3040       /* The attachment should not be used in a subpass after its last. */
   3041       assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
   3042 
   3043       if (subpass_end && anv_get_subpass_id(cmd_state) <
   3044           att_desc->last_subpass_idx) {
   3045          /* We're calling this function on a buffer twice in one subpass and
   3046           * this is not the last use of the buffer. The layout should not have
   3047           * changed from the first call and no transition is necessary.
   3048           */
   3049          assert(att_state->current_layout == att_ref->layout ||
   3050                 att_state->current_layout ==
   3051                 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
   3052          continue;
   3053       }
   3054 
   3055       /* The attachment index must be less than the number of attachments
   3056        * within the framebuffer.
   3057        */
   3058       assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
   3059 
   3060       const struct anv_image_view * const iview =
   3061          cmd_state->framebuffer->attachments[att_ref->attachment];
   3062       const struct anv_image * const image = iview->image;
   3063 
   3064       /* Get the appropriate target layout for this attachment. */
   3065       VkImageLayout target_layout;
   3066 
   3067       /* A resolve is necessary before use as an input attachment if the clear
   3068        * color or auxiliary buffer usage isn't supported by the sampler.
   3069        */
   3070       const bool input_needs_resolve =
   3071             (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
   3072             att_state->input_aux_usage != att_state->aux_usage;
   3073       if (subpass_end) {
   3074          target_layout = att_desc->final_layout;
   3075       } else if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
   3076                  !input_needs_resolve) {
   3077          /* Layout transitions before the final only help to enable sampling as
   3078           * an input attachment. If the input attachment supports sampling
   3079           * using the auxiliary surface, we can skip such transitions by making
   3080           * the target layout one that is CCS-aware.
   3081           */
   3082          target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
   3083       } else {
   3084          target_layout = att_ref->layout;
   3085       }
   3086 
   3087       /* Perform the layout transition. */
   3088       if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
   3089          transition_depth_buffer(cmd_buffer, image,
   3090                                  att_state->current_layout, target_layout);
   3091          att_state->aux_usage =
   3092             anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
   3093                                     VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
   3094       } else if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
   3095          assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
   3096          transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
   3097                                  iview->planes[0].isl.base_level, 1,
   3098                                  iview->planes[0].isl.base_array_layer,
   3099                                  iview->planes[0].isl.array_len,
   3100                                  att_state->current_layout, target_layout);
   3101       }
   3102 
   3103       att_state->current_layout = target_layout;
   3104    }
   3105 }
   3106 
   3107 /* Update the clear value dword(s) in surface state objects or the fast clear
   3108  * state buffer entry for the color attachments used in this subpass.
   3109  */
   3110 static void
   3111 cmd_buffer_subpass_sync_fast_clear_values(struct anv_cmd_buffer *cmd_buffer)
   3112 {
   3113    assert(cmd_buffer && cmd_buffer->state.subpass);
   3114 
   3115    const struct anv_cmd_state *state = &cmd_buffer->state;
   3116 
   3117    /* Iterate through every color attachment used in this subpass. */
   3118    for (uint32_t i = 0; i < state->subpass->color_count; ++i) {
   3119 
   3120       /* The attachment should be one of the attachments described in the
   3121        * render pass and used in the subpass.
   3122        */
   3123       const uint32_t a = state->subpass->color_attachments[i].attachment;
   3124       if (a == VK_ATTACHMENT_UNUSED)
   3125          continue;
   3126 
   3127       assert(a < state->pass->attachment_count);
   3128 
   3129       /* Store some information regarding this attachment. */
   3130       const struct anv_attachment_state *att_state = &state->attachments[a];
   3131       const struct anv_image_view *iview = state->framebuffer->attachments[a];
   3132       const struct anv_render_pass_attachment *rp_att =
   3133          &state->pass->attachments[a];
   3134 
   3135       if (att_state->aux_usage == ISL_AUX_USAGE_NONE)
   3136          continue;
   3137 
   3138       /* The fast clear state entry must be updated if a fast clear is going to
   3139        * happen. The surface state must be updated if the clear value from a
   3140        * prior fast clear may be needed.
   3141        */
   3142       if (att_state->pending_clear_aspects && att_state->fast_clear) {
   3143          /* Update the fast clear state entry. */
   3144          genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
   3145                                       iview->image,
   3146                                       VK_IMAGE_ASPECT_COLOR_BIT,
   3147                                       iview->planes[0].isl.base_level,
   3148                                       true /* copy from ss */);
   3149 
   3150          /* Fast-clears impact whether or not a resolve will be necessary. */
   3151          if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E &&
   3152              att_state->clear_color_is_zero) {
   3153             /* This image always has the auxiliary buffer enabled. We can mark
   3154              * the subresource as not needing a resolve because the clear color
   3155              * will match what's in every RENDER_SURFACE_STATE object when it's
   3156              * being used for sampling.
   3157              */
   3158             genX(set_image_needs_resolve)(cmd_buffer, iview->image,
   3159                                           VK_IMAGE_ASPECT_COLOR_BIT,
   3160                                           iview->planes[0].isl.base_level,
   3161                                           false);
   3162          } else {
   3163             genX(set_image_needs_resolve)(cmd_buffer, iview->image,
   3164                                           VK_IMAGE_ASPECT_COLOR_BIT,
   3165                                           iview->planes[0].isl.base_level,
   3166                                           true);
   3167          }
   3168       } else if (rp_att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
   3169          /* The attachment may have been fast-cleared in a previous render
   3170           * pass and the value is needed now. Update the surface state(s).
   3171           *
   3172           * TODO: Do this only once per render pass instead of every subpass.
   3173           */
   3174          genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
   3175                                       iview->image,
   3176                                       VK_IMAGE_ASPECT_COLOR_BIT,
   3177                                       iview->planes[0].isl.base_level,
   3178                                       false /* copy to ss */);
   3179 
   3180          if (need_input_attachment_state(rp_att) &&
   3181              att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
   3182             genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
   3183                                          iview->image,
   3184                                          VK_IMAGE_ASPECT_COLOR_BIT,
   3185                                          iview->planes[0].isl.base_level,
   3186                                          false /* copy to ss */);
   3187          }
   3188       }
   3189    }
   3190 }
   3191 
   3192 
   3193 static void
   3194 genX(cmd_buffer_set_subpass)(struct anv_cmd_buffer *cmd_buffer,
   3195                              struct anv_subpass *subpass)
   3196 {
   3197    cmd_buffer->state.subpass = subpass;
   3198 
   3199    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
   3200 
   3201    /* Our implementation of VK_KHR_multiview uses instancing to draw the
   3202     * different views.  If the client asks for instancing, we need to use the
   3203     * Instance Data Step Rate to ensure that we repeat the client's
   3204     * per-instance data once for each view.  Since this bit is in
   3205     * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
   3206     * of each subpass.
   3207     */
   3208    if (GEN_GEN == 7)
   3209       cmd_buffer->state.gfx.vb_dirty |= ~0;
   3210 
   3211    /* It is possible to start a render pass with an old pipeline.  Because the
   3212     * render pass and subpass index are both baked into the pipeline, this is
   3213     * highly unlikely.  In order to do so, it requires that you have a render
   3214     * pass with a single subpass and that you use that render pass twice
   3215     * back-to-back and use the same pipeline at the start of the second render
   3216     * pass as at the end of the first.  In order to avoid unpredictable issues
   3217     * with this edge case, we just dirty the pipeline at the start of every
   3218     * subpass.
   3219     */
   3220    cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
   3221 
   3222    /* Perform transitions to the subpass layout before any writes have
   3223     * occurred.
   3224     */
   3225    cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
   3226 
   3227    /* Update clear values *after* performing automatic layout transitions.
   3228     * This ensures that transitions from the UNDEFINED layout have had a chance
   3229     * to populate the clear value buffer with the correct values for the
   3230     * LOAD_OP_LOAD loadOp and that the fast-clears will update the buffer
   3231     * without the aforementioned layout transition overwriting the fast-clear
   3232     * value.
   3233     */
   3234    cmd_buffer_subpass_sync_fast_clear_values(cmd_buffer);
   3235 
   3236    cmd_buffer_emit_depth_stencil(cmd_buffer);
   3237 
   3238    anv_cmd_buffer_clear_subpass(cmd_buffer);
   3239 }
   3240 
   3241 void genX(CmdBeginRenderPass)(
   3242     VkCommandBuffer                             commandBuffer,
   3243     const VkRenderPassBeginInfo*                pRenderPassBegin,
   3244     VkSubpassContents                           contents)
   3245 {
   3246    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   3247    ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
   3248    ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
   3249 
   3250    cmd_buffer->state.framebuffer = framebuffer;
   3251    cmd_buffer->state.pass = pass;
   3252    cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
   3253    VkResult result =
   3254       genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
   3255 
   3256    /* If we failed to setup the attachments we should not try to go further */
   3257    if (result != VK_SUCCESS) {
   3258       assert(anv_batch_has_error(&cmd_buffer->batch));
   3259       return;
   3260    }
   3261 
   3262    genX(flush_pipeline_select_3d)(cmd_buffer);
   3263 
   3264    genX(cmd_buffer_set_subpass)(cmd_buffer, pass->subpasses);
   3265 
   3266    cmd_buffer->state.pending_pipe_bits |=
   3267       cmd_buffer->state.pass->subpass_flushes[0];
   3268 }
   3269 
   3270 void genX(CmdNextSubpass)(
   3271     VkCommandBuffer                             commandBuffer,
   3272     VkSubpassContents                           contents)
   3273 {
   3274    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   3275 
   3276    if (anv_batch_has_error(&cmd_buffer->batch))
   3277       return;
   3278 
   3279    assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
   3280 
   3281    anv_cmd_buffer_resolve_subpass(cmd_buffer);
   3282 
   3283    /* Perform transitions to the final layout after all writes have occurred.
   3284     */
   3285    cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
   3286 
   3287    genX(cmd_buffer_set_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
   3288 
   3289    uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
   3290    cmd_buffer->state.pending_pipe_bits |=
   3291       cmd_buffer->state.pass->subpass_flushes[subpass_id];
   3292 }
   3293 
   3294 void genX(CmdEndRenderPass)(
   3295     VkCommandBuffer                             commandBuffer)
   3296 {
   3297    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
   3298 
   3299    if (anv_batch_has_error(&cmd_buffer->batch))
   3300       return;
   3301 
   3302    anv_cmd_buffer_resolve_subpass(cmd_buffer);
   3303 
   3304    /* Perform transitions to the final layout after all writes have occurred.
   3305     */
   3306    cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
   3307 
   3308    cmd_buffer->state.pending_pipe_bits |=
   3309       cmd_buffer->state.pass->subpass_flushes[cmd_buffer->state.pass->subpass_count];
   3310 
   3311    cmd_buffer->state.hiz_enabled = false;
   3312 
   3313 #ifndef NDEBUG
   3314    anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
   3315 #endif
   3316 
   3317    /* Remove references to render pass specific state. This enables us to
   3318     * detect whether or not we're in a renderpass.
   3319     */
   3320    cmd_buffer->state.framebuffer = NULL;
   3321    cmd_buffer->state.pass = NULL;
   3322    cmd_buffer->state.subpass = NULL;
   3323 }
   3324