Home | History | Annotate | Download | only in Reader
      1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/Bitcode/BitcodeReader.h"
     11 #include "MetadataLoader.h"
     12 #include "ValueList.h"
     13 #include "llvm/ADT/APFloat.h"
     14 #include "llvm/ADT/APInt.h"
     15 #include "llvm/ADT/ArrayRef.h"
     16 #include "llvm/ADT/DenseMap.h"
     17 #include "llvm/ADT/Optional.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallString.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/StringRef.h"
     22 #include "llvm/ADT/Triple.h"
     23 #include "llvm/ADT/Twine.h"
     24 #include "llvm/Bitcode/BitstreamReader.h"
     25 #include "llvm/Bitcode/LLVMBitCodes.h"
     26 #include "llvm/Config/llvm-config.h"
     27 #include "llvm/IR/Argument.h"
     28 #include "llvm/IR/Attributes.h"
     29 #include "llvm/IR/AutoUpgrade.h"
     30 #include "llvm/IR/BasicBlock.h"
     31 #include "llvm/IR/CallSite.h"
     32 #include "llvm/IR/CallingConv.h"
     33 #include "llvm/IR/Comdat.h"
     34 #include "llvm/IR/Constant.h"
     35 #include "llvm/IR/Constants.h"
     36 #include "llvm/IR/DataLayout.h"
     37 #include "llvm/IR/DebugInfo.h"
     38 #include "llvm/IR/DebugInfoMetadata.h"
     39 #include "llvm/IR/DebugLoc.h"
     40 #include "llvm/IR/DerivedTypes.h"
     41 #include "llvm/IR/Function.h"
     42 #include "llvm/IR/GVMaterializer.h"
     43 #include "llvm/IR/GlobalAlias.h"
     44 #include "llvm/IR/GlobalIFunc.h"
     45 #include "llvm/IR/GlobalIndirectSymbol.h"
     46 #include "llvm/IR/GlobalObject.h"
     47 #include "llvm/IR/GlobalValue.h"
     48 #include "llvm/IR/GlobalVariable.h"
     49 #include "llvm/IR/InlineAsm.h"
     50 #include "llvm/IR/InstIterator.h"
     51 #include "llvm/IR/InstrTypes.h"
     52 #include "llvm/IR/Instruction.h"
     53 #include "llvm/IR/Instructions.h"
     54 #include "llvm/IR/Intrinsics.h"
     55 #include "llvm/IR/LLVMContext.h"
     56 #include "llvm/IR/Metadata.h"
     57 #include "llvm/IR/Module.h"
     58 #include "llvm/IR/ModuleSummaryIndex.h"
     59 #include "llvm/IR/Operator.h"
     60 #include "llvm/IR/Type.h"
     61 #include "llvm/IR/Value.h"
     62 #include "llvm/IR/Verifier.h"
     63 #include "llvm/Support/AtomicOrdering.h"
     64 #include "llvm/Support/Casting.h"
     65 #include "llvm/Support/CommandLine.h"
     66 #include "llvm/Support/Compiler.h"
     67 #include "llvm/Support/Debug.h"
     68 #include "llvm/Support/Error.h"
     69 #include "llvm/Support/ErrorHandling.h"
     70 #include "llvm/Support/ErrorOr.h"
     71 #include "llvm/Support/ManagedStatic.h"
     72 #include "llvm/Support/MathExtras.h"
     73 #include "llvm/Support/MemoryBuffer.h"
     74 #include "llvm/Support/raw_ostream.h"
     75 #include <algorithm>
     76 #include <cassert>
     77 #include <cstddef>
     78 #include <cstdint>
     79 #include <deque>
     80 #include <map>
     81 #include <memory>
     82 #include <set>
     83 #include <string>
     84 #include <system_error>
     85 #include <tuple>
     86 #include <utility>
     87 #include <vector>
     88 
     89 using namespace llvm;
     90 
     91 static cl::opt<bool> PrintSummaryGUIDs(
     92     "print-summary-global-ids", cl::init(false), cl::Hidden,
     93     cl::desc(
     94         "Print the global id for each value when reading the module summary"));
     95 
     96 namespace {
     97 
     98 enum {
     99   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
    100 };
    101 
    102 } // end anonymous namespace
    103 
    104 static Error error(const Twine &Message) {
    105   return make_error<StringError>(
    106       Message, make_error_code(BitcodeError::CorruptedBitcode));
    107 }
    108 
    109 /// Helper to read the header common to all bitcode files.
    110 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
    111   // Sniff for the signature.
    112   if (!Stream.canSkipToPos(4) ||
    113       Stream.Read(8) != 'B' ||
    114       Stream.Read(8) != 'C' ||
    115       Stream.Read(4) != 0x0 ||
    116       Stream.Read(4) != 0xC ||
    117       Stream.Read(4) != 0xE ||
    118       Stream.Read(4) != 0xD)
    119     return false;
    120   return true;
    121 }
    122 
    123 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
    124   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
    125   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
    126 
    127   if (Buffer.getBufferSize() & 3)
    128     return error("Invalid bitcode signature");
    129 
    130   // If we have a wrapper header, parse it and ignore the non-bc file contents.
    131   // The magic number is 0x0B17C0DE stored in little endian.
    132   if (isBitcodeWrapper(BufPtr, BufEnd))
    133     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
    134       return error("Invalid bitcode wrapper header");
    135 
    136   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
    137   if (!hasValidBitcodeHeader(Stream))
    138     return error("Invalid bitcode signature");
    139 
    140   return std::move(Stream);
    141 }
    142 
    143 /// Convert a string from a record into an std::string, return true on failure.
    144 template <typename StrTy>
    145 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
    146                             StrTy &Result) {
    147   if (Idx > Record.size())
    148     return true;
    149 
    150   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
    151     Result += (char)Record[i];
    152   return false;
    153 }
    154 
    155 // Strip all the TBAA attachment for the module.
    156 static void stripTBAA(Module *M) {
    157   for (auto &F : *M) {
    158     if (F.isMaterializable())
    159       continue;
    160     for (auto &I : instructions(F))
    161       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
    162   }
    163 }
    164 
    165 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
    166 /// "epoch" encoded in the bitcode, and return the producer name if any.
    167 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
    168   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
    169     return error("Invalid record");
    170 
    171   // Read all the records.
    172   SmallVector<uint64_t, 64> Record;
    173 
    174   std::string ProducerIdentification;
    175 
    176   while (true) {
    177     BitstreamEntry Entry = Stream.advance();
    178 
    179     switch (Entry.Kind) {
    180     default:
    181     case BitstreamEntry::Error:
    182       return error("Malformed block");
    183     case BitstreamEntry::EndBlock:
    184       return ProducerIdentification;
    185     case BitstreamEntry::Record:
    186       // The interesting case.
    187       break;
    188     }
    189 
    190     // Read a record.
    191     Record.clear();
    192     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
    193     switch (BitCode) {
    194     default: // Default behavior: reject
    195       return error("Invalid value");
    196     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
    197       convertToString(Record, 0, ProducerIdentification);
    198       break;
    199     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
    200       unsigned epoch = (unsigned)Record[0];
    201       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
    202         return error(
    203           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
    204           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
    205       }
    206     }
    207     }
    208   }
    209 }
    210 
    211 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
    212   // We expect a number of well-defined blocks, though we don't necessarily
    213   // need to understand them all.
    214   while (true) {
    215     if (Stream.AtEndOfStream())
    216       return "";
    217 
    218     BitstreamEntry Entry = Stream.advance();
    219     switch (Entry.Kind) {
    220     case BitstreamEntry::EndBlock:
    221     case BitstreamEntry::Error:
    222       return error("Malformed block");
    223 
    224     case BitstreamEntry::SubBlock:
    225       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
    226         return readIdentificationBlock(Stream);
    227 
    228       // Ignore other sub-blocks.
    229       if (Stream.SkipBlock())
    230         return error("Malformed block");
    231       continue;
    232     case BitstreamEntry::Record:
    233       Stream.skipRecord(Entry.ID);
    234       continue;
    235     }
    236   }
    237 }
    238 
    239 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
    240   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
    241     return error("Invalid record");
    242 
    243   SmallVector<uint64_t, 64> Record;
    244   // Read all the records for this module.
    245 
    246   while (true) {
    247     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    248 
    249     switch (Entry.Kind) {
    250     case BitstreamEntry::SubBlock: // Handled for us already.
    251     case BitstreamEntry::Error:
    252       return error("Malformed block");
    253     case BitstreamEntry::EndBlock:
    254       return false;
    255     case BitstreamEntry::Record:
    256       // The interesting case.
    257       break;
    258     }
    259 
    260     // Read a record.
    261     switch (Stream.readRecord(Entry.ID, Record)) {
    262     default:
    263       break; // Default behavior, ignore unknown content.
    264     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
    265       std::string S;
    266       if (convertToString(Record, 0, S))
    267         return error("Invalid record");
    268       // Check for the i386 and other (x86_64, ARM) conventions
    269       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
    270           S.find("__OBJC,__category") != std::string::npos)
    271         return true;
    272       break;
    273     }
    274     }
    275     Record.clear();
    276   }
    277   llvm_unreachable("Exit infinite loop");
    278 }
    279 
    280 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
    281   // We expect a number of well-defined blocks, though we don't necessarily
    282   // need to understand them all.
    283   while (true) {
    284     BitstreamEntry Entry = Stream.advance();
    285 
    286     switch (Entry.Kind) {
    287     case BitstreamEntry::Error:
    288       return error("Malformed block");
    289     case BitstreamEntry::EndBlock:
    290       return false;
    291 
    292     case BitstreamEntry::SubBlock:
    293       if (Entry.ID == bitc::MODULE_BLOCK_ID)
    294         return hasObjCCategoryInModule(Stream);
    295 
    296       // Ignore other sub-blocks.
    297       if (Stream.SkipBlock())
    298         return error("Malformed block");
    299       continue;
    300 
    301     case BitstreamEntry::Record:
    302       Stream.skipRecord(Entry.ID);
    303       continue;
    304     }
    305   }
    306 }
    307 
    308 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
    309   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
    310     return error("Invalid record");
    311 
    312   SmallVector<uint64_t, 64> Record;
    313 
    314   std::string Triple;
    315 
    316   // Read all the records for this module.
    317   while (true) {
    318     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    319 
    320     switch (Entry.Kind) {
    321     case BitstreamEntry::SubBlock: // Handled for us already.
    322     case BitstreamEntry::Error:
    323       return error("Malformed block");
    324     case BitstreamEntry::EndBlock:
    325       return Triple;
    326     case BitstreamEntry::Record:
    327       // The interesting case.
    328       break;
    329     }
    330 
    331     // Read a record.
    332     switch (Stream.readRecord(Entry.ID, Record)) {
    333     default: break;  // Default behavior, ignore unknown content.
    334     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
    335       std::string S;
    336       if (convertToString(Record, 0, S))
    337         return error("Invalid record");
    338       Triple = S;
    339       break;
    340     }
    341     }
    342     Record.clear();
    343   }
    344   llvm_unreachable("Exit infinite loop");
    345 }
    346 
    347 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
    348   // We expect a number of well-defined blocks, though we don't necessarily
    349   // need to understand them all.
    350   while (true) {
    351     BitstreamEntry Entry = Stream.advance();
    352 
    353     switch (Entry.Kind) {
    354     case BitstreamEntry::Error:
    355       return error("Malformed block");
    356     case BitstreamEntry::EndBlock:
    357       return "";
    358 
    359     case BitstreamEntry::SubBlock:
    360       if (Entry.ID == bitc::MODULE_BLOCK_ID)
    361         return readModuleTriple(Stream);
    362 
    363       // Ignore other sub-blocks.
    364       if (Stream.SkipBlock())
    365         return error("Malformed block");
    366       continue;
    367 
    368     case BitstreamEntry::Record:
    369       Stream.skipRecord(Entry.ID);
    370       continue;
    371     }
    372   }
    373 }
    374 
    375 namespace {
    376 
    377 class BitcodeReaderBase {
    378 protected:
    379   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
    380       : Stream(std::move(Stream)), Strtab(Strtab) {
    381     this->Stream.setBlockInfo(&BlockInfo);
    382   }
    383 
    384   BitstreamBlockInfo BlockInfo;
    385   BitstreamCursor Stream;
    386   StringRef Strtab;
    387 
    388   /// In version 2 of the bitcode we store names of global values and comdats in
    389   /// a string table rather than in the VST.
    390   bool UseStrtab = false;
    391 
    392   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
    393 
    394   /// If this module uses a string table, pop the reference to the string table
    395   /// and return the referenced string and the rest of the record. Otherwise
    396   /// just return the record itself.
    397   std::pair<StringRef, ArrayRef<uint64_t>>
    398   readNameFromStrtab(ArrayRef<uint64_t> Record);
    399 
    400   bool readBlockInfo();
    401 
    402   // Contains an arbitrary and optional string identifying the bitcode producer
    403   std::string ProducerIdentification;
    404 
    405   Error error(const Twine &Message);
    406 };
    407 
    408 } // end anonymous namespace
    409 
    410 Error BitcodeReaderBase::error(const Twine &Message) {
    411   std::string FullMsg = Message.str();
    412   if (!ProducerIdentification.empty())
    413     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
    414                LLVM_VERSION_STRING "')";
    415   return ::error(FullMsg);
    416 }
    417 
    418 Expected<unsigned>
    419 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
    420   if (Record.empty())
    421     return error("Invalid record");
    422   unsigned ModuleVersion = Record[0];
    423   if (ModuleVersion > 2)
    424     return error("Invalid value");
    425   UseStrtab = ModuleVersion >= 2;
    426   return ModuleVersion;
    427 }
    428 
    429 std::pair<StringRef, ArrayRef<uint64_t>>
    430 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
    431   if (!UseStrtab)
    432     return {"", Record};
    433   // Invalid reference. Let the caller complain about the record being empty.
    434   if (Record[0] + Record[1] > Strtab.size())
    435     return {"", {}};
    436   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
    437 }
    438 
    439 namespace {
    440 
    441 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
    442   LLVMContext &Context;
    443   Module *TheModule = nullptr;
    444   // Next offset to start scanning for lazy parsing of function bodies.
    445   uint64_t NextUnreadBit = 0;
    446   // Last function offset found in the VST.
    447   uint64_t LastFunctionBlockBit = 0;
    448   bool SeenValueSymbolTable = false;
    449   uint64_t VSTOffset = 0;
    450 
    451   std::vector<std::string> SectionTable;
    452   std::vector<std::string> GCTable;
    453 
    454   std::vector<Type*> TypeList;
    455   BitcodeReaderValueList ValueList;
    456   Optional<MetadataLoader> MDLoader;
    457   std::vector<Comdat *> ComdatList;
    458   SmallVector<Instruction *, 64> InstructionList;
    459 
    460   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
    461   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
    462   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
    463   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
    464   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
    465 
    466   /// The set of attributes by index.  Index zero in the file is for null, and
    467   /// is thus not represented here.  As such all indices are off by one.
    468   std::vector<AttributeList> MAttributes;
    469 
    470   /// The set of attribute groups.
    471   std::map<unsigned, AttributeList> MAttributeGroups;
    472 
    473   /// While parsing a function body, this is a list of the basic blocks for the
    474   /// function.
    475   std::vector<BasicBlock*> FunctionBBs;
    476 
    477   // When reading the module header, this list is populated with functions that
    478   // have bodies later in the file.
    479   std::vector<Function*> FunctionsWithBodies;
    480 
    481   // When intrinsic functions are encountered which require upgrading they are
    482   // stored here with their replacement function.
    483   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
    484   UpdatedIntrinsicMap UpgradedIntrinsics;
    485   // Intrinsics which were remangled because of types rename
    486   UpdatedIntrinsicMap RemangledIntrinsics;
    487 
    488   // Several operations happen after the module header has been read, but
    489   // before function bodies are processed. This keeps track of whether
    490   // we've done this yet.
    491   bool SeenFirstFunctionBody = false;
    492 
    493   /// When function bodies are initially scanned, this map contains info about
    494   /// where to find deferred function body in the stream.
    495   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
    496 
    497   /// When Metadata block is initially scanned when parsing the module, we may
    498   /// choose to defer parsing of the metadata. This vector contains info about
    499   /// which Metadata blocks are deferred.
    500   std::vector<uint64_t> DeferredMetadataInfo;
    501 
    502   /// These are basic blocks forward-referenced by block addresses.  They are
    503   /// inserted lazily into functions when they're loaded.  The basic block ID is
    504   /// its index into the vector.
    505   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
    506   std::deque<Function *> BasicBlockFwdRefQueue;
    507 
    508   /// Indicates that we are using a new encoding for instruction operands where
    509   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
    510   /// instruction number, for a more compact encoding.  Some instruction
    511   /// operands are not relative to the instruction ID: basic block numbers, and
    512   /// types. Once the old style function blocks have been phased out, we would
    513   /// not need this flag.
    514   bool UseRelativeIDs = false;
    515 
    516   /// True if all functions will be materialized, negating the need to process
    517   /// (e.g.) blockaddress forward references.
    518   bool WillMaterializeAllForwardRefs = false;
    519 
    520   bool StripDebugInfo = false;
    521   TBAAVerifier TBAAVerifyHelper;
    522 
    523   std::vector<std::string> BundleTags;
    524   SmallVector<SyncScope::ID, 8> SSIDs;
    525 
    526 public:
    527   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
    528                 StringRef ProducerIdentification, LLVMContext &Context);
    529 
    530   Error materializeForwardReferencedFunctions();
    531 
    532   Error materialize(GlobalValue *GV) override;
    533   Error materializeModule() override;
    534   std::vector<StructType *> getIdentifiedStructTypes() const override;
    535 
    536   /// Main interface to parsing a bitcode buffer.
    537   /// \returns true if an error occurred.
    538   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
    539                          bool IsImporting = false);
    540 
    541   static uint64_t decodeSignRotatedValue(uint64_t V);
    542 
    543   /// Materialize any deferred Metadata block.
    544   Error materializeMetadata() override;
    545 
    546   void setStripDebugInfo() override;
    547 
    548 private:
    549   std::vector<StructType *> IdentifiedStructTypes;
    550   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
    551   StructType *createIdentifiedStructType(LLVMContext &Context);
    552 
    553   Type *getTypeByID(unsigned ID);
    554 
    555   Value *getFnValueByID(unsigned ID, Type *Ty) {
    556     if (Ty && Ty->isMetadataTy())
    557       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
    558     return ValueList.getValueFwdRef(ID, Ty);
    559   }
    560 
    561   Metadata *getFnMetadataByID(unsigned ID) {
    562     return MDLoader->getMetadataFwdRefOrLoad(ID);
    563   }
    564 
    565   BasicBlock *getBasicBlock(unsigned ID) const {
    566     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
    567     return FunctionBBs[ID];
    568   }
    569 
    570   AttributeList getAttributes(unsigned i) const {
    571     if (i-1 < MAttributes.size())
    572       return MAttributes[i-1];
    573     return AttributeList();
    574   }
    575 
    576   /// Read a value/type pair out of the specified record from slot 'Slot'.
    577   /// Increment Slot past the number of slots used in the record. Return true on
    578   /// failure.
    579   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
    580                         unsigned InstNum, Value *&ResVal) {
    581     if (Slot == Record.size()) return true;
    582     unsigned ValNo = (unsigned)Record[Slot++];
    583     // Adjust the ValNo, if it was encoded relative to the InstNum.
    584     if (UseRelativeIDs)
    585       ValNo = InstNum - ValNo;
    586     if (ValNo < InstNum) {
    587       // If this is not a forward reference, just return the value we already
    588       // have.
    589       ResVal = getFnValueByID(ValNo, nullptr);
    590       return ResVal == nullptr;
    591     }
    592     if (Slot == Record.size())
    593       return true;
    594 
    595     unsigned TypeNo = (unsigned)Record[Slot++];
    596     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
    597     return ResVal == nullptr;
    598   }
    599 
    600   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
    601   /// past the number of slots used by the value in the record. Return true if
    602   /// there is an error.
    603   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
    604                 unsigned InstNum, Type *Ty, Value *&ResVal) {
    605     if (getValue(Record, Slot, InstNum, Ty, ResVal))
    606       return true;
    607     // All values currently take a single record slot.
    608     ++Slot;
    609     return false;
    610   }
    611 
    612   /// Like popValue, but does not increment the Slot number.
    613   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
    614                 unsigned InstNum, Type *Ty, Value *&ResVal) {
    615     ResVal = getValue(Record, Slot, InstNum, Ty);
    616     return ResVal == nullptr;
    617   }
    618 
    619   /// Version of getValue that returns ResVal directly, or 0 if there is an
    620   /// error.
    621   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
    622                   unsigned InstNum, Type *Ty) {
    623     if (Slot == Record.size()) return nullptr;
    624     unsigned ValNo = (unsigned)Record[Slot];
    625     // Adjust the ValNo, if it was encoded relative to the InstNum.
    626     if (UseRelativeIDs)
    627       ValNo = InstNum - ValNo;
    628     return getFnValueByID(ValNo, Ty);
    629   }
    630 
    631   /// Like getValue, but decodes signed VBRs.
    632   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
    633                         unsigned InstNum, Type *Ty) {
    634     if (Slot == Record.size()) return nullptr;
    635     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
    636     // Adjust the ValNo, if it was encoded relative to the InstNum.
    637     if (UseRelativeIDs)
    638       ValNo = InstNum - ValNo;
    639     return getFnValueByID(ValNo, Ty);
    640   }
    641 
    642   /// Converts alignment exponent (i.e. power of two (or zero)) to the
    643   /// corresponding alignment to use. If alignment is too large, returns
    644   /// a corresponding error code.
    645   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
    646   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
    647   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
    648 
    649   Error parseComdatRecord(ArrayRef<uint64_t> Record);
    650   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
    651   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
    652   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
    653                                         ArrayRef<uint64_t> Record);
    654 
    655   Error parseAttributeBlock();
    656   Error parseAttributeGroupBlock();
    657   Error parseTypeTable();
    658   Error parseTypeTableBody();
    659   Error parseOperandBundleTags();
    660   Error parseSyncScopeNames();
    661 
    662   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
    663                                 unsigned NameIndex, Triple &TT);
    664   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
    665                                ArrayRef<uint64_t> Record);
    666   Error parseValueSymbolTable(uint64_t Offset = 0);
    667   Error parseGlobalValueSymbolTable();
    668   Error parseConstants();
    669   Error rememberAndSkipFunctionBodies();
    670   Error rememberAndSkipFunctionBody();
    671   /// Save the positions of the Metadata blocks and skip parsing the blocks.
    672   Error rememberAndSkipMetadata();
    673   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
    674   Error parseFunctionBody(Function *F);
    675   Error globalCleanup();
    676   Error resolveGlobalAndIndirectSymbolInits();
    677   Error parseUseLists();
    678   Error findFunctionInStream(
    679       Function *F,
    680       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
    681 
    682   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
    683 };
    684 
    685 /// Class to manage reading and parsing function summary index bitcode
    686 /// files/sections.
    687 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
    688   /// The module index built during parsing.
    689   ModuleSummaryIndex &TheIndex;
    690 
    691   /// Indicates whether we have encountered a global value summary section
    692   /// yet during parsing.
    693   bool SeenGlobalValSummary = false;
    694 
    695   /// Indicates whether we have already parsed the VST, used for error checking.
    696   bool SeenValueSymbolTable = false;
    697 
    698   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
    699   /// Used to enable on-demand parsing of the VST.
    700   uint64_t VSTOffset = 0;
    701 
    702   // Map to save ValueId to ValueInfo association that was recorded in the
    703   // ValueSymbolTable. It is used after the VST is parsed to convert
    704   // call graph edges read from the function summary from referencing
    705   // callees by their ValueId to using the ValueInfo instead, which is how
    706   // they are recorded in the summary index being built.
    707   // We save a GUID which refers to the same global as the ValueInfo, but
    708   // ignoring the linkage, i.e. for values other than local linkage they are
    709   // identical.
    710   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
    711       ValueIdToValueInfoMap;
    712 
    713   /// Map populated during module path string table parsing, from the
    714   /// module ID to a string reference owned by the index's module
    715   /// path string table, used to correlate with combined index
    716   /// summary records.
    717   DenseMap<uint64_t, StringRef> ModuleIdMap;
    718 
    719   /// Original source file name recorded in a bitcode record.
    720   std::string SourceFileName;
    721 
    722   /// The string identifier given to this module by the client, normally the
    723   /// path to the bitcode file.
    724   StringRef ModulePath;
    725 
    726   /// For per-module summary indexes, the unique numerical identifier given to
    727   /// this module by the client.
    728   unsigned ModuleId;
    729 
    730 public:
    731   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
    732                                   ModuleSummaryIndex &TheIndex,
    733                                   StringRef ModulePath, unsigned ModuleId);
    734 
    735   Error parseModule();
    736 
    737 private:
    738   void setValueGUID(uint64_t ValueID, StringRef ValueName,
    739                     GlobalValue::LinkageTypes Linkage,
    740                     StringRef SourceFileName);
    741   Error parseValueSymbolTable(
    742       uint64_t Offset,
    743       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
    744   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
    745   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
    746                                                     bool IsOldProfileFormat,
    747                                                     bool HasProfile,
    748                                                     bool HasRelBF);
    749   Error parseEntireSummary(unsigned ID);
    750   Error parseModuleStringTable();
    751 
    752   std::pair<ValueInfo, GlobalValue::GUID>
    753   getValueInfoFromValueId(unsigned ValueId);
    754 
    755   void addThisModule();
    756   ModuleSummaryIndex::ModuleInfo *getThisModule();
    757 };
    758 
    759 } // end anonymous namespace
    760 
    761 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
    762                                                     Error Err) {
    763   if (Err) {
    764     std::error_code EC;
    765     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
    766       EC = EIB.convertToErrorCode();
    767       Ctx.emitError(EIB.message());
    768     });
    769     return EC;
    770   }
    771   return std::error_code();
    772 }
    773 
    774 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
    775                              StringRef ProducerIdentification,
    776                              LLVMContext &Context)
    777     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
    778       ValueList(Context) {
    779   this->ProducerIdentification = ProducerIdentification;
    780 }
    781 
    782 Error BitcodeReader::materializeForwardReferencedFunctions() {
    783   if (WillMaterializeAllForwardRefs)
    784     return Error::success();
    785 
    786   // Prevent recursion.
    787   WillMaterializeAllForwardRefs = true;
    788 
    789   while (!BasicBlockFwdRefQueue.empty()) {
    790     Function *F = BasicBlockFwdRefQueue.front();
    791     BasicBlockFwdRefQueue.pop_front();
    792     assert(F && "Expected valid function");
    793     if (!BasicBlockFwdRefs.count(F))
    794       // Already materialized.
    795       continue;
    796 
    797     // Check for a function that isn't materializable to prevent an infinite
    798     // loop.  When parsing a blockaddress stored in a global variable, there
    799     // isn't a trivial way to check if a function will have a body without a
    800     // linear search through FunctionsWithBodies, so just check it here.
    801     if (!F->isMaterializable())
    802       return error("Never resolved function from blockaddress");
    803 
    804     // Try to materialize F.
    805     if (Error Err = materialize(F))
    806       return Err;
    807   }
    808   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
    809 
    810   // Reset state.
    811   WillMaterializeAllForwardRefs = false;
    812   return Error::success();
    813 }
    814 
    815 //===----------------------------------------------------------------------===//
    816 //  Helper functions to implement forward reference resolution, etc.
    817 //===----------------------------------------------------------------------===//
    818 
    819 static bool hasImplicitComdat(size_t Val) {
    820   switch (Val) {
    821   default:
    822     return false;
    823   case 1:  // Old WeakAnyLinkage
    824   case 4:  // Old LinkOnceAnyLinkage
    825   case 10: // Old WeakODRLinkage
    826   case 11: // Old LinkOnceODRLinkage
    827     return true;
    828   }
    829 }
    830 
    831 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
    832   switch (Val) {
    833   default: // Map unknown/new linkages to external
    834   case 0:
    835     return GlobalValue::ExternalLinkage;
    836   case 2:
    837     return GlobalValue::AppendingLinkage;
    838   case 3:
    839     return GlobalValue::InternalLinkage;
    840   case 5:
    841     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
    842   case 6:
    843     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
    844   case 7:
    845     return GlobalValue::ExternalWeakLinkage;
    846   case 8:
    847     return GlobalValue::CommonLinkage;
    848   case 9:
    849     return GlobalValue::PrivateLinkage;
    850   case 12:
    851     return GlobalValue::AvailableExternallyLinkage;
    852   case 13:
    853     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
    854   case 14:
    855     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
    856   case 15:
    857     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
    858   case 1: // Old value with implicit comdat.
    859   case 16:
    860     return GlobalValue::WeakAnyLinkage;
    861   case 10: // Old value with implicit comdat.
    862   case 17:
    863     return GlobalValue::WeakODRLinkage;
    864   case 4: // Old value with implicit comdat.
    865   case 18:
    866     return GlobalValue::LinkOnceAnyLinkage;
    867   case 11: // Old value with implicit comdat.
    868   case 19:
    869     return GlobalValue::LinkOnceODRLinkage;
    870   }
    871 }
    872 
    873 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
    874   FunctionSummary::FFlags Flags;
    875   Flags.ReadNone = RawFlags & 0x1;
    876   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
    877   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
    878   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
    879   return Flags;
    880 }
    881 
    882 /// Decode the flags for GlobalValue in the summary.
    883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
    884                                                             uint64_t Version) {
    885   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
    886   // like getDecodedLinkage() above. Any future change to the linkage enum and
    887   // to getDecodedLinkage() will need to be taken into account here as above.
    888   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
    889   RawFlags = RawFlags >> 4;
    890   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
    891   // The Live flag wasn't introduced until version 3. For dead stripping
    892   // to work correctly on earlier versions, we must conservatively treat all
    893   // values as live.
    894   bool Live = (RawFlags & 0x2) || Version < 3;
    895   bool Local = (RawFlags & 0x4);
    896 
    897   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
    898 }
    899 
    900 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
    901   switch (Val) {
    902   default: // Map unknown visibilities to default.
    903   case 0: return GlobalValue::DefaultVisibility;
    904   case 1: return GlobalValue::HiddenVisibility;
    905   case 2: return GlobalValue::ProtectedVisibility;
    906   }
    907 }
    908 
    909 static GlobalValue::DLLStorageClassTypes
    910 getDecodedDLLStorageClass(unsigned Val) {
    911   switch (Val) {
    912   default: // Map unknown values to default.
    913   case 0: return GlobalValue::DefaultStorageClass;
    914   case 1: return GlobalValue::DLLImportStorageClass;
    915   case 2: return GlobalValue::DLLExportStorageClass;
    916   }
    917 }
    918 
    919 static bool getDecodedDSOLocal(unsigned Val) {
    920   switch(Val) {
    921   default: // Map unknown values to preemptable.
    922   case 0:  return false;
    923   case 1:  return true;
    924   }
    925 }
    926 
    927 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
    928   switch (Val) {
    929     case 0: return GlobalVariable::NotThreadLocal;
    930     default: // Map unknown non-zero value to general dynamic.
    931     case 1: return GlobalVariable::GeneralDynamicTLSModel;
    932     case 2: return GlobalVariable::LocalDynamicTLSModel;
    933     case 3: return GlobalVariable::InitialExecTLSModel;
    934     case 4: return GlobalVariable::LocalExecTLSModel;
    935   }
    936 }
    937 
    938 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
    939   switch (Val) {
    940     default: // Map unknown to UnnamedAddr::None.
    941     case 0: return GlobalVariable::UnnamedAddr::None;
    942     case 1: return GlobalVariable::UnnamedAddr::Global;
    943     case 2: return GlobalVariable::UnnamedAddr::Local;
    944   }
    945 }
    946 
    947 static int getDecodedCastOpcode(unsigned Val) {
    948   switch (Val) {
    949   default: return -1;
    950   case bitc::CAST_TRUNC   : return Instruction::Trunc;
    951   case bitc::CAST_ZEXT    : return Instruction::ZExt;
    952   case bitc::CAST_SEXT    : return Instruction::SExt;
    953   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
    954   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
    955   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
    956   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
    957   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
    958   case bitc::CAST_FPEXT   : return Instruction::FPExt;
    959   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
    960   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
    961   case bitc::CAST_BITCAST : return Instruction::BitCast;
    962   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
    963   }
    964 }
    965 
    966 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
    967   bool IsFP = Ty->isFPOrFPVectorTy();
    968   // BinOps are only valid for int/fp or vector of int/fp types
    969   if (!IsFP && !Ty->isIntOrIntVectorTy())
    970     return -1;
    971 
    972   switch (Val) {
    973   default:
    974     return -1;
    975   case bitc::BINOP_ADD:
    976     return IsFP ? Instruction::FAdd : Instruction::Add;
    977   case bitc::BINOP_SUB:
    978     return IsFP ? Instruction::FSub : Instruction::Sub;
    979   case bitc::BINOP_MUL:
    980     return IsFP ? Instruction::FMul : Instruction::Mul;
    981   case bitc::BINOP_UDIV:
    982     return IsFP ? -1 : Instruction::UDiv;
    983   case bitc::BINOP_SDIV:
    984     return IsFP ? Instruction::FDiv : Instruction::SDiv;
    985   case bitc::BINOP_UREM:
    986     return IsFP ? -1 : Instruction::URem;
    987   case bitc::BINOP_SREM:
    988     return IsFP ? Instruction::FRem : Instruction::SRem;
    989   case bitc::BINOP_SHL:
    990     return IsFP ? -1 : Instruction::Shl;
    991   case bitc::BINOP_LSHR:
    992     return IsFP ? -1 : Instruction::LShr;
    993   case bitc::BINOP_ASHR:
    994     return IsFP ? -1 : Instruction::AShr;
    995   case bitc::BINOP_AND:
    996     return IsFP ? -1 : Instruction::And;
    997   case bitc::BINOP_OR:
    998     return IsFP ? -1 : Instruction::Or;
    999   case bitc::BINOP_XOR:
   1000     return IsFP ? -1 : Instruction::Xor;
   1001   }
   1002 }
   1003 
   1004 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
   1005   switch (Val) {
   1006   default: return AtomicRMWInst::BAD_BINOP;
   1007   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
   1008   case bitc::RMW_ADD: return AtomicRMWInst::Add;
   1009   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
   1010   case bitc::RMW_AND: return AtomicRMWInst::And;
   1011   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
   1012   case bitc::RMW_OR: return AtomicRMWInst::Or;
   1013   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
   1014   case bitc::RMW_MAX: return AtomicRMWInst::Max;
   1015   case bitc::RMW_MIN: return AtomicRMWInst::Min;
   1016   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
   1017   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
   1018   }
   1019 }
   1020 
   1021 static AtomicOrdering getDecodedOrdering(unsigned Val) {
   1022   switch (Val) {
   1023   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
   1024   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
   1025   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
   1026   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
   1027   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
   1028   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
   1029   default: // Map unknown orderings to sequentially-consistent.
   1030   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
   1031   }
   1032 }
   1033 
   1034 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
   1035   switch (Val) {
   1036   default: // Map unknown selection kinds to any.
   1037   case bitc::COMDAT_SELECTION_KIND_ANY:
   1038     return Comdat::Any;
   1039   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
   1040     return Comdat::ExactMatch;
   1041   case bitc::COMDAT_SELECTION_KIND_LARGEST:
   1042     return Comdat::Largest;
   1043   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
   1044     return Comdat::NoDuplicates;
   1045   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
   1046     return Comdat::SameSize;
   1047   }
   1048 }
   1049 
   1050 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
   1051   FastMathFlags FMF;
   1052   if (0 != (Val & bitc::UnsafeAlgebra))
   1053     FMF.setFast();
   1054   if (0 != (Val & bitc::AllowReassoc))
   1055     FMF.setAllowReassoc();
   1056   if (0 != (Val & bitc::NoNaNs))
   1057     FMF.setNoNaNs();
   1058   if (0 != (Val & bitc::NoInfs))
   1059     FMF.setNoInfs();
   1060   if (0 != (Val & bitc::NoSignedZeros))
   1061     FMF.setNoSignedZeros();
   1062   if (0 != (Val & bitc::AllowReciprocal))
   1063     FMF.setAllowReciprocal();
   1064   if (0 != (Val & bitc::AllowContract))
   1065     FMF.setAllowContract(true);
   1066   if (0 != (Val & bitc::ApproxFunc))
   1067     FMF.setApproxFunc();
   1068   return FMF;
   1069 }
   1070 
   1071 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
   1072   switch (Val) {
   1073   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
   1074   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
   1075   }
   1076 }
   1077 
   1078 Type *BitcodeReader::getTypeByID(unsigned ID) {
   1079   // The type table size is always specified correctly.
   1080   if (ID >= TypeList.size())
   1081     return nullptr;
   1082 
   1083   if (Type *Ty = TypeList[ID])
   1084     return Ty;
   1085 
   1086   // If we have a forward reference, the only possible case is when it is to a
   1087   // named struct.  Just create a placeholder for now.
   1088   return TypeList[ID] = createIdentifiedStructType(Context);
   1089 }
   1090 
   1091 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
   1092                                                       StringRef Name) {
   1093   auto *Ret = StructType::create(Context, Name);
   1094   IdentifiedStructTypes.push_back(Ret);
   1095   return Ret;
   1096 }
   1097 
   1098 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
   1099   auto *Ret = StructType::create(Context);
   1100   IdentifiedStructTypes.push_back(Ret);
   1101   return Ret;
   1102 }
   1103 
   1104 //===----------------------------------------------------------------------===//
   1105 //  Functions for parsing blocks from the bitcode file
   1106 //===----------------------------------------------------------------------===//
   1107 
   1108 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
   1109   switch (Val) {
   1110   case Attribute::EndAttrKinds:
   1111     llvm_unreachable("Synthetic enumerators which should never get here");
   1112 
   1113   case Attribute::None:            return 0;
   1114   case Attribute::ZExt:            return 1 << 0;
   1115   case Attribute::SExt:            return 1 << 1;
   1116   case Attribute::NoReturn:        return 1 << 2;
   1117   case Attribute::InReg:           return 1 << 3;
   1118   case Attribute::StructRet:       return 1 << 4;
   1119   case Attribute::NoUnwind:        return 1 << 5;
   1120   case Attribute::NoAlias:         return 1 << 6;
   1121   case Attribute::ByVal:           return 1 << 7;
   1122   case Attribute::Nest:            return 1 << 8;
   1123   case Attribute::ReadNone:        return 1 << 9;
   1124   case Attribute::ReadOnly:        return 1 << 10;
   1125   case Attribute::NoInline:        return 1 << 11;
   1126   case Attribute::AlwaysInline:    return 1 << 12;
   1127   case Attribute::OptimizeForSize: return 1 << 13;
   1128   case Attribute::StackProtect:    return 1 << 14;
   1129   case Attribute::StackProtectReq: return 1 << 15;
   1130   case Attribute::Alignment:       return 31 << 16;
   1131   case Attribute::NoCapture:       return 1 << 21;
   1132   case Attribute::NoRedZone:       return 1 << 22;
   1133   case Attribute::NoImplicitFloat: return 1 << 23;
   1134   case Attribute::Naked:           return 1 << 24;
   1135   case Attribute::InlineHint:      return 1 << 25;
   1136   case Attribute::StackAlignment:  return 7 << 26;
   1137   case Attribute::ReturnsTwice:    return 1 << 29;
   1138   case Attribute::UWTable:         return 1 << 30;
   1139   case Attribute::NonLazyBind:     return 1U << 31;
   1140   case Attribute::SanitizeAddress: return 1ULL << 32;
   1141   case Attribute::MinSize:         return 1ULL << 33;
   1142   case Attribute::NoDuplicate:     return 1ULL << 34;
   1143   case Attribute::StackProtectStrong: return 1ULL << 35;
   1144   case Attribute::SanitizeThread:  return 1ULL << 36;
   1145   case Attribute::SanitizeMemory:  return 1ULL << 37;
   1146   case Attribute::NoBuiltin:       return 1ULL << 38;
   1147   case Attribute::Returned:        return 1ULL << 39;
   1148   case Attribute::Cold:            return 1ULL << 40;
   1149   case Attribute::Builtin:         return 1ULL << 41;
   1150   case Attribute::OptimizeNone:    return 1ULL << 42;
   1151   case Attribute::InAlloca:        return 1ULL << 43;
   1152   case Attribute::NonNull:         return 1ULL << 44;
   1153   case Attribute::JumpTable:       return 1ULL << 45;
   1154   case Attribute::Convergent:      return 1ULL << 46;
   1155   case Attribute::SafeStack:       return 1ULL << 47;
   1156   case Attribute::NoRecurse:       return 1ULL << 48;
   1157   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
   1158   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
   1159   case Attribute::SwiftSelf:       return 1ULL << 51;
   1160   case Attribute::SwiftError:      return 1ULL << 52;
   1161   case Attribute::WriteOnly:       return 1ULL << 53;
   1162   case Attribute::Speculatable:    return 1ULL << 54;
   1163   case Attribute::StrictFP:        return 1ULL << 55;
   1164   case Attribute::SanitizeHWAddress: return 1ULL << 56;
   1165   case Attribute::NoCfCheck:       return 1ULL << 57;
   1166   case Attribute::OptForFuzzing:   return 1ULL << 58;
   1167   case Attribute::ShadowCallStack: return 1ULL << 59;
   1168   case Attribute::Dereferenceable:
   1169     llvm_unreachable("dereferenceable attribute not supported in raw format");
   1170     break;
   1171   case Attribute::DereferenceableOrNull:
   1172     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
   1173                      "format");
   1174     break;
   1175   case Attribute::ArgMemOnly:
   1176     llvm_unreachable("argmemonly attribute not supported in raw format");
   1177     break;
   1178   case Attribute::AllocSize:
   1179     llvm_unreachable("allocsize not supported in raw format");
   1180     break;
   1181   }
   1182   llvm_unreachable("Unsupported attribute type");
   1183 }
   1184 
   1185 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
   1186   if (!Val) return;
   1187 
   1188   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
   1189        I = Attribute::AttrKind(I + 1)) {
   1190     if (I == Attribute::Dereferenceable ||
   1191         I == Attribute::DereferenceableOrNull ||
   1192         I == Attribute::ArgMemOnly ||
   1193         I == Attribute::AllocSize)
   1194       continue;
   1195     if (uint64_t A = (Val & getRawAttributeMask(I))) {
   1196       if (I == Attribute::Alignment)
   1197         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
   1198       else if (I == Attribute::StackAlignment)
   1199         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
   1200       else
   1201         B.addAttribute(I);
   1202     }
   1203   }
   1204 }
   1205 
   1206 /// This fills an AttrBuilder object with the LLVM attributes that have
   1207 /// been decoded from the given integer. This function must stay in sync with
   1208 /// 'encodeLLVMAttributesForBitcode'.
   1209 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
   1210                                            uint64_t EncodedAttrs) {
   1211   // FIXME: Remove in 4.0.
   1212 
   1213   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
   1214   // the bits above 31 down by 11 bits.
   1215   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
   1216   assert((!Alignment || isPowerOf2_32(Alignment)) &&
   1217          "Alignment must be a power of two.");
   1218 
   1219   if (Alignment)
   1220     B.addAlignmentAttr(Alignment);
   1221   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
   1222                           (EncodedAttrs & 0xffff));
   1223 }
   1224 
   1225 Error BitcodeReader::parseAttributeBlock() {
   1226   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
   1227     return error("Invalid record");
   1228 
   1229   if (!MAttributes.empty())
   1230     return error("Invalid multiple blocks");
   1231 
   1232   SmallVector<uint64_t, 64> Record;
   1233 
   1234   SmallVector<AttributeList, 8> Attrs;
   1235 
   1236   // Read all the records.
   1237   while (true) {
   1238     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1239 
   1240     switch (Entry.Kind) {
   1241     case BitstreamEntry::SubBlock: // Handled for us already.
   1242     case BitstreamEntry::Error:
   1243       return error("Malformed block");
   1244     case BitstreamEntry::EndBlock:
   1245       return Error::success();
   1246     case BitstreamEntry::Record:
   1247       // The interesting case.
   1248       break;
   1249     }
   1250 
   1251     // Read a record.
   1252     Record.clear();
   1253     switch (Stream.readRecord(Entry.ID, Record)) {
   1254     default:  // Default behavior: ignore.
   1255       break;
   1256     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
   1257       // FIXME: Remove in 4.0.
   1258       if (Record.size() & 1)
   1259         return error("Invalid record");
   1260 
   1261       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
   1262         AttrBuilder B;
   1263         decodeLLVMAttributesForBitcode(B, Record[i+1]);
   1264         Attrs.push_back(AttributeList::get(Context, Record[i], B));
   1265       }
   1266 
   1267       MAttributes.push_back(AttributeList::get(Context, Attrs));
   1268       Attrs.clear();
   1269       break;
   1270     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
   1271       for (unsigned i = 0, e = Record.size(); i != e; ++i)
   1272         Attrs.push_back(MAttributeGroups[Record[i]]);
   1273 
   1274       MAttributes.push_back(AttributeList::get(Context, Attrs));
   1275       Attrs.clear();
   1276       break;
   1277     }
   1278   }
   1279 }
   1280 
   1281 // Returns Attribute::None on unrecognized codes.
   1282 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
   1283   switch (Code) {
   1284   default:
   1285     return Attribute::None;
   1286   case bitc::ATTR_KIND_ALIGNMENT:
   1287     return Attribute::Alignment;
   1288   case bitc::ATTR_KIND_ALWAYS_INLINE:
   1289     return Attribute::AlwaysInline;
   1290   case bitc::ATTR_KIND_ARGMEMONLY:
   1291     return Attribute::ArgMemOnly;
   1292   case bitc::ATTR_KIND_BUILTIN:
   1293     return Attribute::Builtin;
   1294   case bitc::ATTR_KIND_BY_VAL:
   1295     return Attribute::ByVal;
   1296   case bitc::ATTR_KIND_IN_ALLOCA:
   1297     return Attribute::InAlloca;
   1298   case bitc::ATTR_KIND_COLD:
   1299     return Attribute::Cold;
   1300   case bitc::ATTR_KIND_CONVERGENT:
   1301     return Attribute::Convergent;
   1302   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
   1303     return Attribute::InaccessibleMemOnly;
   1304   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
   1305     return Attribute::InaccessibleMemOrArgMemOnly;
   1306   case bitc::ATTR_KIND_INLINE_HINT:
   1307     return Attribute::InlineHint;
   1308   case bitc::ATTR_KIND_IN_REG:
   1309     return Attribute::InReg;
   1310   case bitc::ATTR_KIND_JUMP_TABLE:
   1311     return Attribute::JumpTable;
   1312   case bitc::ATTR_KIND_MIN_SIZE:
   1313     return Attribute::MinSize;
   1314   case bitc::ATTR_KIND_NAKED:
   1315     return Attribute::Naked;
   1316   case bitc::ATTR_KIND_NEST:
   1317     return Attribute::Nest;
   1318   case bitc::ATTR_KIND_NO_ALIAS:
   1319     return Attribute::NoAlias;
   1320   case bitc::ATTR_KIND_NO_BUILTIN:
   1321     return Attribute::NoBuiltin;
   1322   case bitc::ATTR_KIND_NO_CAPTURE:
   1323     return Attribute::NoCapture;
   1324   case bitc::ATTR_KIND_NO_DUPLICATE:
   1325     return Attribute::NoDuplicate;
   1326   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
   1327     return Attribute::NoImplicitFloat;
   1328   case bitc::ATTR_KIND_NO_INLINE:
   1329     return Attribute::NoInline;
   1330   case bitc::ATTR_KIND_NO_RECURSE:
   1331     return Attribute::NoRecurse;
   1332   case bitc::ATTR_KIND_NON_LAZY_BIND:
   1333     return Attribute::NonLazyBind;
   1334   case bitc::ATTR_KIND_NON_NULL:
   1335     return Attribute::NonNull;
   1336   case bitc::ATTR_KIND_DEREFERENCEABLE:
   1337     return Attribute::Dereferenceable;
   1338   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
   1339     return Attribute::DereferenceableOrNull;
   1340   case bitc::ATTR_KIND_ALLOC_SIZE:
   1341     return Attribute::AllocSize;
   1342   case bitc::ATTR_KIND_NO_RED_ZONE:
   1343     return Attribute::NoRedZone;
   1344   case bitc::ATTR_KIND_NO_RETURN:
   1345     return Attribute::NoReturn;
   1346   case bitc::ATTR_KIND_NOCF_CHECK:
   1347     return Attribute::NoCfCheck;
   1348   case bitc::ATTR_KIND_NO_UNWIND:
   1349     return Attribute::NoUnwind;
   1350   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
   1351     return Attribute::OptForFuzzing;
   1352   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
   1353     return Attribute::OptimizeForSize;
   1354   case bitc::ATTR_KIND_OPTIMIZE_NONE:
   1355     return Attribute::OptimizeNone;
   1356   case bitc::ATTR_KIND_READ_NONE:
   1357     return Attribute::ReadNone;
   1358   case bitc::ATTR_KIND_READ_ONLY:
   1359     return Attribute::ReadOnly;
   1360   case bitc::ATTR_KIND_RETURNED:
   1361     return Attribute::Returned;
   1362   case bitc::ATTR_KIND_RETURNS_TWICE:
   1363     return Attribute::ReturnsTwice;
   1364   case bitc::ATTR_KIND_S_EXT:
   1365     return Attribute::SExt;
   1366   case bitc::ATTR_KIND_SPECULATABLE:
   1367     return Attribute::Speculatable;
   1368   case bitc::ATTR_KIND_STACK_ALIGNMENT:
   1369     return Attribute::StackAlignment;
   1370   case bitc::ATTR_KIND_STACK_PROTECT:
   1371     return Attribute::StackProtect;
   1372   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
   1373     return Attribute::StackProtectReq;
   1374   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
   1375     return Attribute::StackProtectStrong;
   1376   case bitc::ATTR_KIND_SAFESTACK:
   1377     return Attribute::SafeStack;
   1378   case bitc::ATTR_KIND_SHADOWCALLSTACK:
   1379     return Attribute::ShadowCallStack;
   1380   case bitc::ATTR_KIND_STRICT_FP:
   1381     return Attribute::StrictFP;
   1382   case bitc::ATTR_KIND_STRUCT_RET:
   1383     return Attribute::StructRet;
   1384   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
   1385     return Attribute::SanitizeAddress;
   1386   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
   1387     return Attribute::SanitizeHWAddress;
   1388   case bitc::ATTR_KIND_SANITIZE_THREAD:
   1389     return Attribute::SanitizeThread;
   1390   case bitc::ATTR_KIND_SANITIZE_MEMORY:
   1391     return Attribute::SanitizeMemory;
   1392   case bitc::ATTR_KIND_SWIFT_ERROR:
   1393     return Attribute::SwiftError;
   1394   case bitc::ATTR_KIND_SWIFT_SELF:
   1395     return Attribute::SwiftSelf;
   1396   case bitc::ATTR_KIND_UW_TABLE:
   1397     return Attribute::UWTable;
   1398   case bitc::ATTR_KIND_WRITEONLY:
   1399     return Attribute::WriteOnly;
   1400   case bitc::ATTR_KIND_Z_EXT:
   1401     return Attribute::ZExt;
   1402   }
   1403 }
   1404 
   1405 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
   1406                                          unsigned &Alignment) {
   1407   // Note: Alignment in bitcode files is incremented by 1, so that zero
   1408   // can be used for default alignment.
   1409   if (Exponent > Value::MaxAlignmentExponent + 1)
   1410     return error("Invalid alignment value");
   1411   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
   1412   return Error::success();
   1413 }
   1414 
   1415 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
   1416   *Kind = getAttrFromCode(Code);
   1417   if (*Kind == Attribute::None)
   1418     return error("Unknown attribute kind (" + Twine(Code) + ")");
   1419   return Error::success();
   1420 }
   1421 
   1422 Error BitcodeReader::parseAttributeGroupBlock() {
   1423   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
   1424     return error("Invalid record");
   1425 
   1426   if (!MAttributeGroups.empty())
   1427     return error("Invalid multiple blocks");
   1428 
   1429   SmallVector<uint64_t, 64> Record;
   1430 
   1431   // Read all the records.
   1432   while (true) {
   1433     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1434 
   1435     switch (Entry.Kind) {
   1436     case BitstreamEntry::SubBlock: // Handled for us already.
   1437     case BitstreamEntry::Error:
   1438       return error("Malformed block");
   1439     case BitstreamEntry::EndBlock:
   1440       return Error::success();
   1441     case BitstreamEntry::Record:
   1442       // The interesting case.
   1443       break;
   1444     }
   1445 
   1446     // Read a record.
   1447     Record.clear();
   1448     switch (Stream.readRecord(Entry.ID, Record)) {
   1449     default:  // Default behavior: ignore.
   1450       break;
   1451     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
   1452       if (Record.size() < 3)
   1453         return error("Invalid record");
   1454 
   1455       uint64_t GrpID = Record[0];
   1456       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
   1457 
   1458       AttrBuilder B;
   1459       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
   1460         if (Record[i] == 0) {        // Enum attribute
   1461           Attribute::AttrKind Kind;
   1462           if (Error Err = parseAttrKind(Record[++i], &Kind))
   1463             return Err;
   1464 
   1465           B.addAttribute(Kind);
   1466         } else if (Record[i] == 1) { // Integer attribute
   1467           Attribute::AttrKind Kind;
   1468           if (Error Err = parseAttrKind(Record[++i], &Kind))
   1469             return Err;
   1470           if (Kind == Attribute::Alignment)
   1471             B.addAlignmentAttr(Record[++i]);
   1472           else if (Kind == Attribute::StackAlignment)
   1473             B.addStackAlignmentAttr(Record[++i]);
   1474           else if (Kind == Attribute::Dereferenceable)
   1475             B.addDereferenceableAttr(Record[++i]);
   1476           else if (Kind == Attribute::DereferenceableOrNull)
   1477             B.addDereferenceableOrNullAttr(Record[++i]);
   1478           else if (Kind == Attribute::AllocSize)
   1479             B.addAllocSizeAttrFromRawRepr(Record[++i]);
   1480         } else {                     // String attribute
   1481           assert((Record[i] == 3 || Record[i] == 4) &&
   1482                  "Invalid attribute group entry");
   1483           bool HasValue = (Record[i++] == 4);
   1484           SmallString<64> KindStr;
   1485           SmallString<64> ValStr;
   1486 
   1487           while (Record[i] != 0 && i != e)
   1488             KindStr += Record[i++];
   1489           assert(Record[i] == 0 && "Kind string not null terminated");
   1490 
   1491           if (HasValue) {
   1492             // Has a value associated with it.
   1493             ++i; // Skip the '0' that terminates the "kind" string.
   1494             while (Record[i] != 0 && i != e)
   1495               ValStr += Record[i++];
   1496             assert(Record[i] == 0 && "Value string not null terminated");
   1497           }
   1498 
   1499           B.addAttribute(KindStr.str(), ValStr.str());
   1500         }
   1501       }
   1502 
   1503       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
   1504       break;
   1505     }
   1506     }
   1507   }
   1508 }
   1509 
   1510 Error BitcodeReader::parseTypeTable() {
   1511   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
   1512     return error("Invalid record");
   1513 
   1514   return parseTypeTableBody();
   1515 }
   1516 
   1517 Error BitcodeReader::parseTypeTableBody() {
   1518   if (!TypeList.empty())
   1519     return error("Invalid multiple blocks");
   1520 
   1521   SmallVector<uint64_t, 64> Record;
   1522   unsigned NumRecords = 0;
   1523 
   1524   SmallString<64> TypeName;
   1525 
   1526   // Read all the records for this type table.
   1527   while (true) {
   1528     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1529 
   1530     switch (Entry.Kind) {
   1531     case BitstreamEntry::SubBlock: // Handled for us already.
   1532     case BitstreamEntry::Error:
   1533       return error("Malformed block");
   1534     case BitstreamEntry::EndBlock:
   1535       if (NumRecords != TypeList.size())
   1536         return error("Malformed block");
   1537       return Error::success();
   1538     case BitstreamEntry::Record:
   1539       // The interesting case.
   1540       break;
   1541     }
   1542 
   1543     // Read a record.
   1544     Record.clear();
   1545     Type *ResultTy = nullptr;
   1546     switch (Stream.readRecord(Entry.ID, Record)) {
   1547     default:
   1548       return error("Invalid value");
   1549     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
   1550       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
   1551       // type list.  This allows us to reserve space.
   1552       if (Record.size() < 1)
   1553         return error("Invalid record");
   1554       TypeList.resize(Record[0]);
   1555       continue;
   1556     case bitc::TYPE_CODE_VOID:      // VOID
   1557       ResultTy = Type::getVoidTy(Context);
   1558       break;
   1559     case bitc::TYPE_CODE_HALF:     // HALF
   1560       ResultTy = Type::getHalfTy(Context);
   1561       break;
   1562     case bitc::TYPE_CODE_FLOAT:     // FLOAT
   1563       ResultTy = Type::getFloatTy(Context);
   1564       break;
   1565     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
   1566       ResultTy = Type::getDoubleTy(Context);
   1567       break;
   1568     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
   1569       ResultTy = Type::getX86_FP80Ty(Context);
   1570       break;
   1571     case bitc::TYPE_CODE_FP128:     // FP128
   1572       ResultTy = Type::getFP128Ty(Context);
   1573       break;
   1574     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
   1575       ResultTy = Type::getPPC_FP128Ty(Context);
   1576       break;
   1577     case bitc::TYPE_CODE_LABEL:     // LABEL
   1578       ResultTy = Type::getLabelTy(Context);
   1579       break;
   1580     case bitc::TYPE_CODE_METADATA:  // METADATA
   1581       ResultTy = Type::getMetadataTy(Context);
   1582       break;
   1583     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
   1584       ResultTy = Type::getX86_MMXTy(Context);
   1585       break;
   1586     case bitc::TYPE_CODE_TOKEN:     // TOKEN
   1587       ResultTy = Type::getTokenTy(Context);
   1588       break;
   1589     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
   1590       if (Record.size() < 1)
   1591         return error("Invalid record");
   1592 
   1593       uint64_t NumBits = Record[0];
   1594       if (NumBits < IntegerType::MIN_INT_BITS ||
   1595           NumBits > IntegerType::MAX_INT_BITS)
   1596         return error("Bitwidth for integer type out of range");
   1597       ResultTy = IntegerType::get(Context, NumBits);
   1598       break;
   1599     }
   1600     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
   1601                                     //          [pointee type, address space]
   1602       if (Record.size() < 1)
   1603         return error("Invalid record");
   1604       unsigned AddressSpace = 0;
   1605       if (Record.size() == 2)
   1606         AddressSpace = Record[1];
   1607       ResultTy = getTypeByID(Record[0]);
   1608       if (!ResultTy ||
   1609           !PointerType::isValidElementType(ResultTy))
   1610         return error("Invalid type");
   1611       ResultTy = PointerType::get(ResultTy, AddressSpace);
   1612       break;
   1613     }
   1614     case bitc::TYPE_CODE_FUNCTION_OLD: {
   1615       // FIXME: attrid is dead, remove it in LLVM 4.0
   1616       // FUNCTION: [vararg, attrid, retty, paramty x N]
   1617       if (Record.size() < 3)
   1618         return error("Invalid record");
   1619       SmallVector<Type*, 8> ArgTys;
   1620       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
   1621         if (Type *T = getTypeByID(Record[i]))
   1622           ArgTys.push_back(T);
   1623         else
   1624           break;
   1625       }
   1626 
   1627       ResultTy = getTypeByID(Record[2]);
   1628       if (!ResultTy || ArgTys.size() < Record.size()-3)
   1629         return error("Invalid type");
   1630 
   1631       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
   1632       break;
   1633     }
   1634     case bitc::TYPE_CODE_FUNCTION: {
   1635       // FUNCTION: [vararg, retty, paramty x N]
   1636       if (Record.size() < 2)
   1637         return error("Invalid record");
   1638       SmallVector<Type*, 8> ArgTys;
   1639       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
   1640         if (Type *T = getTypeByID(Record[i])) {
   1641           if (!FunctionType::isValidArgumentType(T))
   1642             return error("Invalid function argument type");
   1643           ArgTys.push_back(T);
   1644         }
   1645         else
   1646           break;
   1647       }
   1648 
   1649       ResultTy = getTypeByID(Record[1]);
   1650       if (!ResultTy || ArgTys.size() < Record.size()-2)
   1651         return error("Invalid type");
   1652 
   1653       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
   1654       break;
   1655     }
   1656     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
   1657       if (Record.size() < 1)
   1658         return error("Invalid record");
   1659       SmallVector<Type*, 8> EltTys;
   1660       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
   1661         if (Type *T = getTypeByID(Record[i]))
   1662           EltTys.push_back(T);
   1663         else
   1664           break;
   1665       }
   1666       if (EltTys.size() != Record.size()-1)
   1667         return error("Invalid type");
   1668       ResultTy = StructType::get(Context, EltTys, Record[0]);
   1669       break;
   1670     }
   1671     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
   1672       if (convertToString(Record, 0, TypeName))
   1673         return error("Invalid record");
   1674       continue;
   1675 
   1676     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
   1677       if (Record.size() < 1)
   1678         return error("Invalid record");
   1679 
   1680       if (NumRecords >= TypeList.size())
   1681         return error("Invalid TYPE table");
   1682 
   1683       // Check to see if this was forward referenced, if so fill in the temp.
   1684       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
   1685       if (Res) {
   1686         Res->setName(TypeName);
   1687         TypeList[NumRecords] = nullptr;
   1688       } else  // Otherwise, create a new struct.
   1689         Res = createIdentifiedStructType(Context, TypeName);
   1690       TypeName.clear();
   1691 
   1692       SmallVector<Type*, 8> EltTys;
   1693       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
   1694         if (Type *T = getTypeByID(Record[i]))
   1695           EltTys.push_back(T);
   1696         else
   1697           break;
   1698       }
   1699       if (EltTys.size() != Record.size()-1)
   1700         return error("Invalid record");
   1701       Res->setBody(EltTys, Record[0]);
   1702       ResultTy = Res;
   1703       break;
   1704     }
   1705     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
   1706       if (Record.size() != 1)
   1707         return error("Invalid record");
   1708 
   1709       if (NumRecords >= TypeList.size())
   1710         return error("Invalid TYPE table");
   1711 
   1712       // Check to see if this was forward referenced, if so fill in the temp.
   1713       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
   1714       if (Res) {
   1715         Res->setName(TypeName);
   1716         TypeList[NumRecords] = nullptr;
   1717       } else  // Otherwise, create a new struct with no body.
   1718         Res = createIdentifiedStructType(Context, TypeName);
   1719       TypeName.clear();
   1720       ResultTy = Res;
   1721       break;
   1722     }
   1723     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
   1724       if (Record.size() < 2)
   1725         return error("Invalid record");
   1726       ResultTy = getTypeByID(Record[1]);
   1727       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
   1728         return error("Invalid type");
   1729       ResultTy = ArrayType::get(ResultTy, Record[0]);
   1730       break;
   1731     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
   1732       if (Record.size() < 2)
   1733         return error("Invalid record");
   1734       if (Record[0] == 0)
   1735         return error("Invalid vector length");
   1736       ResultTy = getTypeByID(Record[1]);
   1737       if (!ResultTy || !StructType::isValidElementType(ResultTy))
   1738         return error("Invalid type");
   1739       ResultTy = VectorType::get(ResultTy, Record[0]);
   1740       break;
   1741     }
   1742 
   1743     if (NumRecords >= TypeList.size())
   1744       return error("Invalid TYPE table");
   1745     if (TypeList[NumRecords])
   1746       return error(
   1747           "Invalid TYPE table: Only named structs can be forward referenced");
   1748     assert(ResultTy && "Didn't read a type?");
   1749     TypeList[NumRecords++] = ResultTy;
   1750   }
   1751 }
   1752 
   1753 Error BitcodeReader::parseOperandBundleTags() {
   1754   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
   1755     return error("Invalid record");
   1756 
   1757   if (!BundleTags.empty())
   1758     return error("Invalid multiple blocks");
   1759 
   1760   SmallVector<uint64_t, 64> Record;
   1761 
   1762   while (true) {
   1763     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1764 
   1765     switch (Entry.Kind) {
   1766     case BitstreamEntry::SubBlock: // Handled for us already.
   1767     case BitstreamEntry::Error:
   1768       return error("Malformed block");
   1769     case BitstreamEntry::EndBlock:
   1770       return Error::success();
   1771     case BitstreamEntry::Record:
   1772       // The interesting case.
   1773       break;
   1774     }
   1775 
   1776     // Tags are implicitly mapped to integers by their order.
   1777 
   1778     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
   1779       return error("Invalid record");
   1780 
   1781     // OPERAND_BUNDLE_TAG: [strchr x N]
   1782     BundleTags.emplace_back();
   1783     if (convertToString(Record, 0, BundleTags.back()))
   1784       return error("Invalid record");
   1785     Record.clear();
   1786   }
   1787 }
   1788 
   1789 Error BitcodeReader::parseSyncScopeNames() {
   1790   if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
   1791     return error("Invalid record");
   1792 
   1793   if (!SSIDs.empty())
   1794     return error("Invalid multiple synchronization scope names blocks");
   1795 
   1796   SmallVector<uint64_t, 64> Record;
   1797   while (true) {
   1798     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1799     switch (Entry.Kind) {
   1800     case BitstreamEntry::SubBlock: // Handled for us already.
   1801     case BitstreamEntry::Error:
   1802       return error("Malformed block");
   1803     case BitstreamEntry::EndBlock:
   1804       if (SSIDs.empty())
   1805         return error("Invalid empty synchronization scope names block");
   1806       return Error::success();
   1807     case BitstreamEntry::Record:
   1808       // The interesting case.
   1809       break;
   1810     }
   1811 
   1812     // Synchronization scope names are implicitly mapped to synchronization
   1813     // scope IDs by their order.
   1814 
   1815     if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
   1816       return error("Invalid record");
   1817 
   1818     SmallString<16> SSN;
   1819     if (convertToString(Record, 0, SSN))
   1820       return error("Invalid record");
   1821 
   1822     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
   1823     Record.clear();
   1824   }
   1825 }
   1826 
   1827 /// Associate a value with its name from the given index in the provided record.
   1828 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
   1829                                              unsigned NameIndex, Triple &TT) {
   1830   SmallString<128> ValueName;
   1831   if (convertToString(Record, NameIndex, ValueName))
   1832     return error("Invalid record");
   1833   unsigned ValueID = Record[0];
   1834   if (ValueID >= ValueList.size() || !ValueList[ValueID])
   1835     return error("Invalid record");
   1836   Value *V = ValueList[ValueID];
   1837 
   1838   StringRef NameStr(ValueName.data(), ValueName.size());
   1839   if (NameStr.find_first_of(0) != StringRef::npos)
   1840     return error("Invalid value name");
   1841   V->setName(NameStr);
   1842   auto *GO = dyn_cast<GlobalObject>(V);
   1843   if (GO) {
   1844     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
   1845       if (TT.supportsCOMDAT())
   1846         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
   1847       else
   1848         GO->setComdat(nullptr);
   1849     }
   1850   }
   1851   return V;
   1852 }
   1853 
   1854 /// Helper to note and return the current location, and jump to the given
   1855 /// offset.
   1856 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
   1857                                        BitstreamCursor &Stream) {
   1858   // Save the current parsing location so we can jump back at the end
   1859   // of the VST read.
   1860   uint64_t CurrentBit = Stream.GetCurrentBitNo();
   1861   Stream.JumpToBit(Offset * 32);
   1862 #ifndef NDEBUG
   1863   // Do some checking if we are in debug mode.
   1864   BitstreamEntry Entry = Stream.advance();
   1865   assert(Entry.Kind == BitstreamEntry::SubBlock);
   1866   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
   1867 #else
   1868   // In NDEBUG mode ignore the output so we don't get an unused variable
   1869   // warning.
   1870   Stream.advance();
   1871 #endif
   1872   return CurrentBit;
   1873 }
   1874 
   1875 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
   1876                                             Function *F,
   1877                                             ArrayRef<uint64_t> Record) {
   1878   // Note that we subtract 1 here because the offset is relative to one word
   1879   // before the start of the identification or module block, which was
   1880   // historically always the start of the regular bitcode header.
   1881   uint64_t FuncWordOffset = Record[1] - 1;
   1882   uint64_t FuncBitOffset = FuncWordOffset * 32;
   1883   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
   1884   // Set the LastFunctionBlockBit to point to the last function block.
   1885   // Later when parsing is resumed after function materialization,
   1886   // we can simply skip that last function block.
   1887   if (FuncBitOffset > LastFunctionBlockBit)
   1888     LastFunctionBlockBit = FuncBitOffset;
   1889 }
   1890 
   1891 /// Read a new-style GlobalValue symbol table.
   1892 Error BitcodeReader::parseGlobalValueSymbolTable() {
   1893   unsigned FuncBitcodeOffsetDelta =
   1894       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
   1895 
   1896   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
   1897     return error("Invalid record");
   1898 
   1899   SmallVector<uint64_t, 64> Record;
   1900   while (true) {
   1901     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1902 
   1903     switch (Entry.Kind) {
   1904     case BitstreamEntry::SubBlock:
   1905     case BitstreamEntry::Error:
   1906       return error("Malformed block");
   1907     case BitstreamEntry::EndBlock:
   1908       return Error::success();
   1909     case BitstreamEntry::Record:
   1910       break;
   1911     }
   1912 
   1913     Record.clear();
   1914     switch (Stream.readRecord(Entry.ID, Record)) {
   1915     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
   1916       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
   1917                               cast<Function>(ValueList[Record[0]]), Record);
   1918       break;
   1919     }
   1920   }
   1921 }
   1922 
   1923 /// Parse the value symbol table at either the current parsing location or
   1924 /// at the given bit offset if provided.
   1925 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
   1926   uint64_t CurrentBit;
   1927   // Pass in the Offset to distinguish between calling for the module-level
   1928   // VST (where we want to jump to the VST offset) and the function-level
   1929   // VST (where we don't).
   1930   if (Offset > 0) {
   1931     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
   1932     // If this module uses a string table, read this as a module-level VST.
   1933     if (UseStrtab) {
   1934       if (Error Err = parseGlobalValueSymbolTable())
   1935         return Err;
   1936       Stream.JumpToBit(CurrentBit);
   1937       return Error::success();
   1938     }
   1939     // Otherwise, the VST will be in a similar format to a function-level VST,
   1940     // and will contain symbol names.
   1941   }
   1942 
   1943   // Compute the delta between the bitcode indices in the VST (the word offset
   1944   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
   1945   // expected by the lazy reader. The reader's EnterSubBlock expects to have
   1946   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
   1947   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
   1948   // just before entering the VST subblock because: 1) the EnterSubBlock
   1949   // changes the AbbrevID width; 2) the VST block is nested within the same
   1950   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
   1951   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
   1952   // jump to the FUNCTION_BLOCK using this offset later, we don't want
   1953   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
   1954   unsigned FuncBitcodeOffsetDelta =
   1955       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
   1956 
   1957   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
   1958     return error("Invalid record");
   1959 
   1960   SmallVector<uint64_t, 64> Record;
   1961 
   1962   Triple TT(TheModule->getTargetTriple());
   1963 
   1964   // Read all the records for this value table.
   1965   SmallString<128> ValueName;
   1966 
   1967   while (true) {
   1968     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1969 
   1970     switch (Entry.Kind) {
   1971     case BitstreamEntry::SubBlock: // Handled for us already.
   1972     case BitstreamEntry::Error:
   1973       return error("Malformed block");
   1974     case BitstreamEntry::EndBlock:
   1975       if (Offset > 0)
   1976         Stream.JumpToBit(CurrentBit);
   1977       return Error::success();
   1978     case BitstreamEntry::Record:
   1979       // The interesting case.
   1980       break;
   1981     }
   1982 
   1983     // Read a record.
   1984     Record.clear();
   1985     switch (Stream.readRecord(Entry.ID, Record)) {
   1986     default:  // Default behavior: unknown type.
   1987       break;
   1988     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
   1989       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
   1990       if (Error Err = ValOrErr.takeError())
   1991         return Err;
   1992       ValOrErr.get();
   1993       break;
   1994     }
   1995     case bitc::VST_CODE_FNENTRY: {
   1996       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
   1997       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
   1998       if (Error Err = ValOrErr.takeError())
   1999         return Err;
   2000       Value *V = ValOrErr.get();
   2001 
   2002       // Ignore function offsets emitted for aliases of functions in older
   2003       // versions of LLVM.
   2004       if (auto *F = dyn_cast<Function>(V))
   2005         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
   2006       break;
   2007     }
   2008     case bitc::VST_CODE_BBENTRY: {
   2009       if (convertToString(Record, 1, ValueName))
   2010         return error("Invalid record");
   2011       BasicBlock *BB = getBasicBlock(Record[0]);
   2012       if (!BB)
   2013         return error("Invalid record");
   2014 
   2015       BB->setName(StringRef(ValueName.data(), ValueName.size()));
   2016       ValueName.clear();
   2017       break;
   2018     }
   2019     }
   2020   }
   2021 }
   2022 
   2023 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
   2024 /// encoding.
   2025 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
   2026   if ((V & 1) == 0)
   2027     return V >> 1;
   2028   if (V != 1)
   2029     return -(V >> 1);
   2030   // There is no such thing as -0 with integers.  "-0" really means MININT.
   2031   return 1ULL << 63;
   2032 }
   2033 
   2034 /// Resolve all of the initializers for global values and aliases that we can.
   2035 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
   2036   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
   2037   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
   2038       IndirectSymbolInitWorklist;
   2039   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
   2040   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
   2041   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
   2042 
   2043   GlobalInitWorklist.swap(GlobalInits);
   2044   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
   2045   FunctionPrefixWorklist.swap(FunctionPrefixes);
   2046   FunctionPrologueWorklist.swap(FunctionPrologues);
   2047   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
   2048 
   2049   while (!GlobalInitWorklist.empty()) {
   2050     unsigned ValID = GlobalInitWorklist.back().second;
   2051     if (ValID >= ValueList.size()) {
   2052       // Not ready to resolve this yet, it requires something later in the file.
   2053       GlobalInits.push_back(GlobalInitWorklist.back());
   2054     } else {
   2055       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   2056         GlobalInitWorklist.back().first->setInitializer(C);
   2057       else
   2058         return error("Expected a constant");
   2059     }
   2060     GlobalInitWorklist.pop_back();
   2061   }
   2062 
   2063   while (!IndirectSymbolInitWorklist.empty()) {
   2064     unsigned ValID = IndirectSymbolInitWorklist.back().second;
   2065     if (ValID >= ValueList.size()) {
   2066       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
   2067     } else {
   2068       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
   2069       if (!C)
   2070         return error("Expected a constant");
   2071       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
   2072       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
   2073         return error("Alias and aliasee types don't match");
   2074       GIS->setIndirectSymbol(C);
   2075     }
   2076     IndirectSymbolInitWorklist.pop_back();
   2077   }
   2078 
   2079   while (!FunctionPrefixWorklist.empty()) {
   2080     unsigned ValID = FunctionPrefixWorklist.back().second;
   2081     if (ValID >= ValueList.size()) {
   2082       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
   2083     } else {
   2084       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   2085         FunctionPrefixWorklist.back().first->setPrefixData(C);
   2086       else
   2087         return error("Expected a constant");
   2088     }
   2089     FunctionPrefixWorklist.pop_back();
   2090   }
   2091 
   2092   while (!FunctionPrologueWorklist.empty()) {
   2093     unsigned ValID = FunctionPrologueWorklist.back().second;
   2094     if (ValID >= ValueList.size()) {
   2095       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
   2096     } else {
   2097       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   2098         FunctionPrologueWorklist.back().first->setPrologueData(C);
   2099       else
   2100         return error("Expected a constant");
   2101     }
   2102     FunctionPrologueWorklist.pop_back();
   2103   }
   2104 
   2105   while (!FunctionPersonalityFnWorklist.empty()) {
   2106     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
   2107     if (ValID >= ValueList.size()) {
   2108       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
   2109     } else {
   2110       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   2111         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
   2112       else
   2113         return error("Expected a constant");
   2114     }
   2115     FunctionPersonalityFnWorklist.pop_back();
   2116   }
   2117 
   2118   return Error::success();
   2119 }
   2120 
   2121 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
   2122   SmallVector<uint64_t, 8> Words(Vals.size());
   2123   transform(Vals, Words.begin(),
   2124                  BitcodeReader::decodeSignRotatedValue);
   2125 
   2126   return APInt(TypeBits, Words);
   2127 }
   2128 
   2129 Error BitcodeReader::parseConstants() {
   2130   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
   2131     return error("Invalid record");
   2132 
   2133   SmallVector<uint64_t, 64> Record;
   2134 
   2135   // Read all the records for this value table.
   2136   Type *CurTy = Type::getInt32Ty(Context);
   2137   unsigned NextCstNo = ValueList.size();
   2138 
   2139   while (true) {
   2140     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   2141 
   2142     switch (Entry.Kind) {
   2143     case BitstreamEntry::SubBlock: // Handled for us already.
   2144     case BitstreamEntry::Error:
   2145       return error("Malformed block");
   2146     case BitstreamEntry::EndBlock:
   2147       if (NextCstNo != ValueList.size())
   2148         return error("Invalid constant reference");
   2149 
   2150       // Once all the constants have been read, go through and resolve forward
   2151       // references.
   2152       ValueList.resolveConstantForwardRefs();
   2153       return Error::success();
   2154     case BitstreamEntry::Record:
   2155       // The interesting case.
   2156       break;
   2157     }
   2158 
   2159     // Read a record.
   2160     Record.clear();
   2161     Type *VoidType = Type::getVoidTy(Context);
   2162     Value *V = nullptr;
   2163     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
   2164     switch (BitCode) {
   2165     default:  // Default behavior: unknown constant
   2166     case bitc::CST_CODE_UNDEF:     // UNDEF
   2167       V = UndefValue::get(CurTy);
   2168       break;
   2169     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
   2170       if (Record.empty())
   2171         return error("Invalid record");
   2172       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
   2173         return error("Invalid record");
   2174       if (TypeList[Record[0]] == VoidType)
   2175         return error("Invalid constant type");
   2176       CurTy = TypeList[Record[0]];
   2177       continue;  // Skip the ValueList manipulation.
   2178     case bitc::CST_CODE_NULL:      // NULL
   2179       V = Constant::getNullValue(CurTy);
   2180       break;
   2181     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
   2182       if (!CurTy->isIntegerTy() || Record.empty())
   2183         return error("Invalid record");
   2184       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
   2185       break;
   2186     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
   2187       if (!CurTy->isIntegerTy() || Record.empty())
   2188         return error("Invalid record");
   2189 
   2190       APInt VInt =
   2191           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
   2192       V = ConstantInt::get(Context, VInt);
   2193 
   2194       break;
   2195     }
   2196     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
   2197       if (Record.empty())
   2198         return error("Invalid record");
   2199       if (CurTy->isHalfTy())
   2200         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
   2201                                              APInt(16, (uint16_t)Record[0])));
   2202       else if (CurTy->isFloatTy())
   2203         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
   2204                                              APInt(32, (uint32_t)Record[0])));
   2205       else if (CurTy->isDoubleTy())
   2206         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
   2207                                              APInt(64, Record[0])));
   2208       else if (CurTy->isX86_FP80Ty()) {
   2209         // Bits are not stored the same way as a normal i80 APInt, compensate.
   2210         uint64_t Rearrange[2];
   2211         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
   2212         Rearrange[1] = Record[0] >> 48;
   2213         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
   2214                                              APInt(80, Rearrange)));
   2215       } else if (CurTy->isFP128Ty())
   2216         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
   2217                                              APInt(128, Record)));
   2218       else if (CurTy->isPPC_FP128Ty())
   2219         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
   2220                                              APInt(128, Record)));
   2221       else
   2222         V = UndefValue::get(CurTy);
   2223       break;
   2224     }
   2225 
   2226     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
   2227       if (Record.empty())
   2228         return error("Invalid record");
   2229 
   2230       unsigned Size = Record.size();
   2231       SmallVector<Constant*, 16> Elts;
   2232 
   2233       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
   2234         for (unsigned i = 0; i != Size; ++i)
   2235           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
   2236                                                      STy->getElementType(i)));
   2237         V = ConstantStruct::get(STy, Elts);
   2238       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
   2239         Type *EltTy = ATy->getElementType();
   2240         for (unsigned i = 0; i != Size; ++i)
   2241           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   2242         V = ConstantArray::get(ATy, Elts);
   2243       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
   2244         Type *EltTy = VTy->getElementType();
   2245         for (unsigned i = 0; i != Size; ++i)
   2246           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   2247         V = ConstantVector::get(Elts);
   2248       } else {
   2249         V = UndefValue::get(CurTy);
   2250       }
   2251       break;
   2252     }
   2253     case bitc::CST_CODE_STRING:    // STRING: [values]
   2254     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
   2255       if (Record.empty())
   2256         return error("Invalid record");
   2257 
   2258       SmallString<16> Elts(Record.begin(), Record.end());
   2259       V = ConstantDataArray::getString(Context, Elts,
   2260                                        BitCode == bitc::CST_CODE_CSTRING);
   2261       break;
   2262     }
   2263     case bitc::CST_CODE_DATA: {// DATA: [n x value]
   2264       if (Record.empty())
   2265         return error("Invalid record");
   2266 
   2267       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
   2268       if (EltTy->isIntegerTy(8)) {
   2269         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
   2270         if (isa<VectorType>(CurTy))
   2271           V = ConstantDataVector::get(Context, Elts);
   2272         else
   2273           V = ConstantDataArray::get(Context, Elts);
   2274       } else if (EltTy->isIntegerTy(16)) {
   2275         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
   2276         if (isa<VectorType>(CurTy))
   2277           V = ConstantDataVector::get(Context, Elts);
   2278         else
   2279           V = ConstantDataArray::get(Context, Elts);
   2280       } else if (EltTy->isIntegerTy(32)) {
   2281         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
   2282         if (isa<VectorType>(CurTy))
   2283           V = ConstantDataVector::get(Context, Elts);
   2284         else
   2285           V = ConstantDataArray::get(Context, Elts);
   2286       } else if (EltTy->isIntegerTy(64)) {
   2287         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
   2288         if (isa<VectorType>(CurTy))
   2289           V = ConstantDataVector::get(Context, Elts);
   2290         else
   2291           V = ConstantDataArray::get(Context, Elts);
   2292       } else if (EltTy->isHalfTy()) {
   2293         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
   2294         if (isa<VectorType>(CurTy))
   2295           V = ConstantDataVector::getFP(Context, Elts);
   2296         else
   2297           V = ConstantDataArray::getFP(Context, Elts);
   2298       } else if (EltTy->isFloatTy()) {
   2299         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
   2300         if (isa<VectorType>(CurTy))
   2301           V = ConstantDataVector::getFP(Context, Elts);
   2302         else
   2303           V = ConstantDataArray::getFP(Context, Elts);
   2304       } else if (EltTy->isDoubleTy()) {
   2305         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
   2306         if (isa<VectorType>(CurTy))
   2307           V = ConstantDataVector::getFP(Context, Elts);
   2308         else
   2309           V = ConstantDataArray::getFP(Context, Elts);
   2310       } else {
   2311         return error("Invalid type for value");
   2312       }
   2313       break;
   2314     }
   2315     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
   2316       if (Record.size() < 3)
   2317         return error("Invalid record");
   2318       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
   2319       if (Opc < 0) {
   2320         V = UndefValue::get(CurTy);  // Unknown binop.
   2321       } else {
   2322         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
   2323         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
   2324         unsigned Flags = 0;
   2325         if (Record.size() >= 4) {
   2326           if (Opc == Instruction::Add ||
   2327               Opc == Instruction::Sub ||
   2328               Opc == Instruction::Mul ||
   2329               Opc == Instruction::Shl) {
   2330             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   2331               Flags |= OverflowingBinaryOperator::NoSignedWrap;
   2332             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   2333               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   2334           } else if (Opc == Instruction::SDiv ||
   2335                      Opc == Instruction::UDiv ||
   2336                      Opc == Instruction::LShr ||
   2337                      Opc == Instruction::AShr) {
   2338             if (Record[3] & (1 << bitc::PEO_EXACT))
   2339               Flags |= SDivOperator::IsExact;
   2340           }
   2341         }
   2342         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
   2343       }
   2344       break;
   2345     }
   2346     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
   2347       if (Record.size() < 3)
   2348         return error("Invalid record");
   2349       int Opc = getDecodedCastOpcode(Record[0]);
   2350       if (Opc < 0) {
   2351         V = UndefValue::get(CurTy);  // Unknown cast.
   2352       } else {
   2353         Type *OpTy = getTypeByID(Record[1]);
   2354         if (!OpTy)
   2355           return error("Invalid record");
   2356         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
   2357         V = UpgradeBitCastExpr(Opc, Op, CurTy);
   2358         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
   2359       }
   2360       break;
   2361     }
   2362     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
   2363     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
   2364     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
   2365                                                      // operands]
   2366       unsigned OpNum = 0;
   2367       Type *PointeeType = nullptr;
   2368       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
   2369           Record.size() % 2)
   2370         PointeeType = getTypeByID(Record[OpNum++]);
   2371 
   2372       bool InBounds = false;
   2373       Optional<unsigned> InRangeIndex;
   2374       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
   2375         uint64_t Op = Record[OpNum++];
   2376         InBounds = Op & 1;
   2377         InRangeIndex = Op >> 1;
   2378       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
   2379         InBounds = true;
   2380 
   2381       SmallVector<Constant*, 16> Elts;
   2382       while (OpNum != Record.size()) {
   2383         Type *ElTy = getTypeByID(Record[OpNum++]);
   2384         if (!ElTy)
   2385           return error("Invalid record");
   2386         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
   2387       }
   2388 
   2389       if (PointeeType &&
   2390           PointeeType !=
   2391               cast<PointerType>(Elts[0]->getType()->getScalarType())
   2392                   ->getElementType())
   2393         return error("Explicit gep operator type does not match pointee type "
   2394                      "of pointer operand");
   2395 
   2396       if (Elts.size() < 1)
   2397         return error("Invalid gep with no operands");
   2398 
   2399       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
   2400       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
   2401                                          InBounds, InRangeIndex);
   2402       break;
   2403     }
   2404     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
   2405       if (Record.size() < 3)
   2406         return error("Invalid record");
   2407 
   2408       Type *SelectorTy = Type::getInt1Ty(Context);
   2409 
   2410       // The selector might be an i1 or an <n x i1>
   2411       // Get the type from the ValueList before getting a forward ref.
   2412       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
   2413         if (Value *V = ValueList[Record[0]])
   2414           if (SelectorTy != V->getType())
   2415             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
   2416 
   2417       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
   2418                                                               SelectorTy),
   2419                                   ValueList.getConstantFwdRef(Record[1],CurTy),
   2420                                   ValueList.getConstantFwdRef(Record[2],CurTy));
   2421       break;
   2422     }
   2423     case bitc::CST_CODE_CE_EXTRACTELT
   2424         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
   2425       if (Record.size() < 3)
   2426         return error("Invalid record");
   2427       VectorType *OpTy =
   2428         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   2429       if (!OpTy)
   2430         return error("Invalid record");
   2431       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   2432       Constant *Op1 = nullptr;
   2433       if (Record.size() == 4) {
   2434         Type *IdxTy = getTypeByID(Record[2]);
   2435         if (!IdxTy)
   2436           return error("Invalid record");
   2437         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
   2438       } else // TODO: Remove with llvm 4.0
   2439         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   2440       if (!Op1)
   2441         return error("Invalid record");
   2442       V = ConstantExpr::getExtractElement(Op0, Op1);
   2443       break;
   2444     }
   2445     case bitc::CST_CODE_CE_INSERTELT
   2446         : { // CE_INSERTELT: [opval, opval, opty, opval]
   2447       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   2448       if (Record.size() < 3 || !OpTy)
   2449         return error("Invalid record");
   2450       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   2451       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
   2452                                                   OpTy->getElementType());
   2453       Constant *Op2 = nullptr;
   2454       if (Record.size() == 4) {
   2455         Type *IdxTy = getTypeByID(Record[2]);
   2456         if (!IdxTy)
   2457           return error("Invalid record");
   2458         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
   2459       } else // TODO: Remove with llvm 4.0
   2460         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   2461       if (!Op2)
   2462         return error("Invalid record");
   2463       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
   2464       break;
   2465     }
   2466     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
   2467       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   2468       if (Record.size() < 3 || !OpTy)
   2469         return error("Invalid record");
   2470       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   2471       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
   2472       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   2473                                                  OpTy->getNumElements());
   2474       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
   2475       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   2476       break;
   2477     }
   2478     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
   2479       VectorType *RTy = dyn_cast<VectorType>(CurTy);
   2480       VectorType *OpTy =
   2481         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   2482       if (Record.size() < 4 || !RTy || !OpTy)
   2483         return error("Invalid record");
   2484       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   2485       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   2486       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   2487                                                  RTy->getNumElements());
   2488       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
   2489       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   2490       break;
   2491     }
   2492     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
   2493       if (Record.size() < 4)
   2494         return error("Invalid record");
   2495       Type *OpTy = getTypeByID(Record[0]);
   2496       if (!OpTy)
   2497         return error("Invalid record");
   2498       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   2499       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   2500 
   2501       if (OpTy->isFPOrFPVectorTy())
   2502         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
   2503       else
   2504         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
   2505       break;
   2506     }
   2507     // This maintains backward compatibility, pre-asm dialect keywords.
   2508     // FIXME: Remove with the 4.0 release.
   2509     case bitc::CST_CODE_INLINEASM_OLD: {
   2510       if (Record.size() < 2)
   2511         return error("Invalid record");
   2512       std::string AsmStr, ConstrStr;
   2513       bool HasSideEffects = Record[0] & 1;
   2514       bool IsAlignStack = Record[0] >> 1;
   2515       unsigned AsmStrSize = Record[1];
   2516       if (2+AsmStrSize >= Record.size())
   2517         return error("Invalid record");
   2518       unsigned ConstStrSize = Record[2+AsmStrSize];
   2519       if (3+AsmStrSize+ConstStrSize > Record.size())
   2520         return error("Invalid record");
   2521 
   2522       for (unsigned i = 0; i != AsmStrSize; ++i)
   2523         AsmStr += (char)Record[2+i];
   2524       for (unsigned i = 0; i != ConstStrSize; ++i)
   2525         ConstrStr += (char)Record[3+AsmStrSize+i];
   2526       PointerType *PTy = cast<PointerType>(CurTy);
   2527       UpgradeInlineAsmString(&AsmStr);
   2528       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
   2529                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
   2530       break;
   2531     }
   2532     // This version adds support for the asm dialect keywords (e.g.,
   2533     // inteldialect).
   2534     case bitc::CST_CODE_INLINEASM: {
   2535       if (Record.size() < 2)
   2536         return error("Invalid record");
   2537       std::string AsmStr, ConstrStr;
   2538       bool HasSideEffects = Record[0] & 1;
   2539       bool IsAlignStack = (Record[0] >> 1) & 1;
   2540       unsigned AsmDialect = Record[0] >> 2;
   2541       unsigned AsmStrSize = Record[1];
   2542       if (2+AsmStrSize >= Record.size())
   2543         return error("Invalid record");
   2544       unsigned ConstStrSize = Record[2+AsmStrSize];
   2545       if (3+AsmStrSize+ConstStrSize > Record.size())
   2546         return error("Invalid record");
   2547 
   2548       for (unsigned i = 0; i != AsmStrSize; ++i)
   2549         AsmStr += (char)Record[2+i];
   2550       for (unsigned i = 0; i != ConstStrSize; ++i)
   2551         ConstrStr += (char)Record[3+AsmStrSize+i];
   2552       PointerType *PTy = cast<PointerType>(CurTy);
   2553       UpgradeInlineAsmString(&AsmStr);
   2554       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
   2555                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
   2556                          InlineAsm::AsmDialect(AsmDialect));
   2557       break;
   2558     }
   2559     case bitc::CST_CODE_BLOCKADDRESS:{
   2560       if (Record.size() < 3)
   2561         return error("Invalid record");
   2562       Type *FnTy = getTypeByID(Record[0]);
   2563       if (!FnTy)
   2564         return error("Invalid record");
   2565       Function *Fn =
   2566         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
   2567       if (!Fn)
   2568         return error("Invalid record");
   2569 
   2570       // If the function is already parsed we can insert the block address right
   2571       // away.
   2572       BasicBlock *BB;
   2573       unsigned BBID = Record[2];
   2574       if (!BBID)
   2575         // Invalid reference to entry block.
   2576         return error("Invalid ID");
   2577       if (!Fn->empty()) {
   2578         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
   2579         for (size_t I = 0, E = BBID; I != E; ++I) {
   2580           if (BBI == BBE)
   2581             return error("Invalid ID");
   2582           ++BBI;
   2583         }
   2584         BB = &*BBI;
   2585       } else {
   2586         // Otherwise insert a placeholder and remember it so it can be inserted
   2587         // when the function is parsed.
   2588         auto &FwdBBs = BasicBlockFwdRefs[Fn];
   2589         if (FwdBBs.empty())
   2590           BasicBlockFwdRefQueue.push_back(Fn);
   2591         if (FwdBBs.size() < BBID + 1)
   2592           FwdBBs.resize(BBID + 1);
   2593         if (!FwdBBs[BBID])
   2594           FwdBBs[BBID] = BasicBlock::Create(Context);
   2595         BB = FwdBBs[BBID];
   2596       }
   2597       V = BlockAddress::get(Fn, BB);
   2598       break;
   2599     }
   2600     }
   2601 
   2602     ValueList.assignValue(V, NextCstNo);
   2603     ++NextCstNo;
   2604   }
   2605 }
   2606 
   2607 Error BitcodeReader::parseUseLists() {
   2608   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
   2609     return error("Invalid record");
   2610 
   2611   // Read all the records.
   2612   SmallVector<uint64_t, 64> Record;
   2613 
   2614   while (true) {
   2615     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   2616 
   2617     switch (Entry.Kind) {
   2618     case BitstreamEntry::SubBlock: // Handled for us already.
   2619     case BitstreamEntry::Error:
   2620       return error("Malformed block");
   2621     case BitstreamEntry::EndBlock:
   2622       return Error::success();
   2623     case BitstreamEntry::Record:
   2624       // The interesting case.
   2625       break;
   2626     }
   2627 
   2628     // Read a use list record.
   2629     Record.clear();
   2630     bool IsBB = false;
   2631     switch (Stream.readRecord(Entry.ID, Record)) {
   2632     default:  // Default behavior: unknown type.
   2633       break;
   2634     case bitc::USELIST_CODE_BB:
   2635       IsBB = true;
   2636       LLVM_FALLTHROUGH;
   2637     case bitc::USELIST_CODE_DEFAULT: {
   2638       unsigned RecordLength = Record.size();
   2639       if (RecordLength < 3)
   2640         // Records should have at least an ID and two indexes.
   2641         return error("Invalid record");
   2642       unsigned ID = Record.back();
   2643       Record.pop_back();
   2644 
   2645       Value *V;
   2646       if (IsBB) {
   2647         assert(ID < FunctionBBs.size() && "Basic block not found");
   2648         V = FunctionBBs[ID];
   2649       } else
   2650         V = ValueList[ID];
   2651       unsigned NumUses = 0;
   2652       SmallDenseMap<const Use *, unsigned, 16> Order;
   2653       for (const Use &U : V->materialized_uses()) {
   2654         if (++NumUses > Record.size())
   2655           break;
   2656         Order[&U] = Record[NumUses - 1];
   2657       }
   2658       if (Order.size() != Record.size() || NumUses > Record.size())
   2659         // Mismatches can happen if the functions are being materialized lazily
   2660         // (out-of-order), or a value has been upgraded.
   2661         break;
   2662 
   2663       V->sortUseList([&](const Use &L, const Use &R) {
   2664         return Order.lookup(&L) < Order.lookup(&R);
   2665       });
   2666       break;
   2667     }
   2668     }
   2669   }
   2670 }
   2671 
   2672 /// When we see the block for metadata, remember where it is and then skip it.
   2673 /// This lets us lazily deserialize the metadata.
   2674 Error BitcodeReader::rememberAndSkipMetadata() {
   2675   // Save the current stream state.
   2676   uint64_t CurBit = Stream.GetCurrentBitNo();
   2677   DeferredMetadataInfo.push_back(CurBit);
   2678 
   2679   // Skip over the block for now.
   2680   if (Stream.SkipBlock())
   2681     return error("Invalid record");
   2682   return Error::success();
   2683 }
   2684 
   2685 Error BitcodeReader::materializeMetadata() {
   2686   for (uint64_t BitPos : DeferredMetadataInfo) {
   2687     // Move the bit stream to the saved position.
   2688     Stream.JumpToBit(BitPos);
   2689     if (Error Err = MDLoader->parseModuleMetadata())
   2690       return Err;
   2691   }
   2692 
   2693   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
   2694   // metadata.
   2695   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
   2696     NamedMDNode *LinkerOpts =
   2697         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
   2698     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
   2699       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
   2700   }
   2701 
   2702   DeferredMetadataInfo.clear();
   2703   return Error::success();
   2704 }
   2705 
   2706 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
   2707 
   2708 /// When we see the block for a function body, remember where it is and then
   2709 /// skip it.  This lets us lazily deserialize the functions.
   2710 Error BitcodeReader::rememberAndSkipFunctionBody() {
   2711   // Get the function we are talking about.
   2712   if (FunctionsWithBodies.empty())
   2713     return error("Insufficient function protos");
   2714 
   2715   Function *Fn = FunctionsWithBodies.back();
   2716   FunctionsWithBodies.pop_back();
   2717 
   2718   // Save the current stream state.
   2719   uint64_t CurBit = Stream.GetCurrentBitNo();
   2720   assert(
   2721       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
   2722       "Mismatch between VST and scanned function offsets");
   2723   DeferredFunctionInfo[Fn] = CurBit;
   2724 
   2725   // Skip over the function block for now.
   2726   if (Stream.SkipBlock())
   2727     return error("Invalid record");
   2728   return Error::success();
   2729 }
   2730 
   2731 Error BitcodeReader::globalCleanup() {
   2732   // Patch the initializers for globals and aliases up.
   2733   if (Error Err = resolveGlobalAndIndirectSymbolInits())
   2734     return Err;
   2735   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
   2736     return error("Malformed global initializer set");
   2737 
   2738   // Look for intrinsic functions which need to be upgraded at some point
   2739   for (Function &F : *TheModule) {
   2740     MDLoader->upgradeDebugIntrinsics(F);
   2741     Function *NewFn;
   2742     if (UpgradeIntrinsicFunction(&F, NewFn))
   2743       UpgradedIntrinsics[&F] = NewFn;
   2744     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
   2745       // Some types could be renamed during loading if several modules are
   2746       // loaded in the same LLVMContext (LTO scenario). In this case we should
   2747       // remangle intrinsics names as well.
   2748       RemangledIntrinsics[&F] = Remangled.getValue();
   2749   }
   2750 
   2751   // Look for global variables which need to be renamed.
   2752   for (GlobalVariable &GV : TheModule->globals())
   2753     UpgradeGlobalVariable(&GV);
   2754 
   2755   // Force deallocation of memory for these vectors to favor the client that
   2756   // want lazy deserialization.
   2757   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
   2758   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
   2759       IndirectSymbolInits);
   2760   return Error::success();
   2761 }
   2762 
   2763 /// Support for lazy parsing of function bodies. This is required if we
   2764 /// either have an old bitcode file without a VST forward declaration record,
   2765 /// or if we have an anonymous function being materialized, since anonymous
   2766 /// functions do not have a name and are therefore not in the VST.
   2767 Error BitcodeReader::rememberAndSkipFunctionBodies() {
   2768   Stream.JumpToBit(NextUnreadBit);
   2769 
   2770   if (Stream.AtEndOfStream())
   2771     return error("Could not find function in stream");
   2772 
   2773   if (!SeenFirstFunctionBody)
   2774     return error("Trying to materialize functions before seeing function blocks");
   2775 
   2776   // An old bitcode file with the symbol table at the end would have
   2777   // finished the parse greedily.
   2778   assert(SeenValueSymbolTable);
   2779 
   2780   SmallVector<uint64_t, 64> Record;
   2781 
   2782   while (true) {
   2783     BitstreamEntry Entry = Stream.advance();
   2784     switch (Entry.Kind) {
   2785     default:
   2786       return error("Expect SubBlock");
   2787     case BitstreamEntry::SubBlock:
   2788       switch (Entry.ID) {
   2789       default:
   2790         return error("Expect function block");
   2791       case bitc::FUNCTION_BLOCK_ID:
   2792         if (Error Err = rememberAndSkipFunctionBody())
   2793           return Err;
   2794         NextUnreadBit = Stream.GetCurrentBitNo();
   2795         return Error::success();
   2796       }
   2797     }
   2798   }
   2799 }
   2800 
   2801 bool BitcodeReaderBase::readBlockInfo() {
   2802   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
   2803   if (!NewBlockInfo)
   2804     return true;
   2805   BlockInfo = std::move(*NewBlockInfo);
   2806   return false;
   2807 }
   2808 
   2809 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
   2810   // v1: [selection_kind, name]
   2811   // v2: [strtab_offset, strtab_size, selection_kind]
   2812   StringRef Name;
   2813   std::tie(Name, Record) = readNameFromStrtab(Record);
   2814 
   2815   if (Record.empty())
   2816     return error("Invalid record");
   2817   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
   2818   std::string OldFormatName;
   2819   if (!UseStrtab) {
   2820     if (Record.size() < 2)
   2821       return error("Invalid record");
   2822     unsigned ComdatNameSize = Record[1];
   2823     OldFormatName.reserve(ComdatNameSize);
   2824     for (unsigned i = 0; i != ComdatNameSize; ++i)
   2825       OldFormatName += (char)Record[2 + i];
   2826     Name = OldFormatName;
   2827   }
   2828   Comdat *C = TheModule->getOrInsertComdat(Name);
   2829   C->setSelectionKind(SK);
   2830   ComdatList.push_back(C);
   2831   return Error::success();
   2832 }
   2833 
   2834 static void inferDSOLocal(GlobalValue *GV) {
   2835   // infer dso_local from linkage and visibility if it is not encoded.
   2836   if (GV->hasLocalLinkage() ||
   2837       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
   2838     GV->setDSOLocal(true);
   2839 }
   2840 
   2841 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
   2842   // v1: [pointer type, isconst, initid, linkage, alignment, section,
   2843   // visibility, threadlocal, unnamed_addr, externally_initialized,
   2844   // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
   2845   // v2: [strtab_offset, strtab_size, v1]
   2846   StringRef Name;
   2847   std::tie(Name, Record) = readNameFromStrtab(Record);
   2848 
   2849   if (Record.size() < 6)
   2850     return error("Invalid record");
   2851   Type *Ty = getTypeByID(Record[0]);
   2852   if (!Ty)
   2853     return error("Invalid record");
   2854   bool isConstant = Record[1] & 1;
   2855   bool explicitType = Record[1] & 2;
   2856   unsigned AddressSpace;
   2857   if (explicitType) {
   2858     AddressSpace = Record[1] >> 2;
   2859   } else {
   2860     if (!Ty->isPointerTy())
   2861       return error("Invalid type for value");
   2862     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
   2863     Ty = cast<PointerType>(Ty)->getElementType();
   2864   }
   2865 
   2866   uint64_t RawLinkage = Record[3];
   2867   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
   2868   unsigned Alignment;
   2869   if (Error Err = parseAlignmentValue(Record[4], Alignment))
   2870     return Err;
   2871   std::string Section;
   2872   if (Record[5]) {
   2873     if (Record[5] - 1 >= SectionTable.size())
   2874       return error("Invalid ID");
   2875     Section = SectionTable[Record[5] - 1];
   2876   }
   2877   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
   2878   // Local linkage must have default visibility.
   2879   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
   2880     // FIXME: Change to an error if non-default in 4.0.
   2881     Visibility = getDecodedVisibility(Record[6]);
   2882 
   2883   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
   2884   if (Record.size() > 7)
   2885     TLM = getDecodedThreadLocalMode(Record[7]);
   2886 
   2887   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
   2888   if (Record.size() > 8)
   2889     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
   2890 
   2891   bool ExternallyInitialized = false;
   2892   if (Record.size() > 9)
   2893     ExternallyInitialized = Record[9];
   2894 
   2895   GlobalVariable *NewGV =
   2896       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
   2897                          nullptr, TLM, AddressSpace, ExternallyInitialized);
   2898   NewGV->setAlignment(Alignment);
   2899   if (!Section.empty())
   2900     NewGV->setSection(Section);
   2901   NewGV->setVisibility(Visibility);
   2902   NewGV->setUnnamedAddr(UnnamedAddr);
   2903 
   2904   if (Record.size() > 10)
   2905     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
   2906   else
   2907     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
   2908 
   2909   ValueList.push_back(NewGV);
   2910 
   2911   // Remember which value to use for the global initializer.
   2912   if (unsigned InitID = Record[2])
   2913     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
   2914 
   2915   if (Record.size() > 11) {
   2916     if (unsigned ComdatID = Record[11]) {
   2917       if (ComdatID > ComdatList.size())
   2918         return error("Invalid global variable comdat ID");
   2919       NewGV->setComdat(ComdatList[ComdatID - 1]);
   2920     }
   2921   } else if (hasImplicitComdat(RawLinkage)) {
   2922     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
   2923   }
   2924 
   2925   if (Record.size() > 12) {
   2926     auto AS = getAttributes(Record[12]).getFnAttributes();
   2927     NewGV->setAttributes(AS);
   2928   }
   2929 
   2930   if (Record.size() > 13) {
   2931     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
   2932   }
   2933   inferDSOLocal(NewGV);
   2934 
   2935   return Error::success();
   2936 }
   2937 
   2938 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
   2939   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
   2940   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
   2941   // prefixdata,  personalityfn, preemption specifier] (name in VST)
   2942   // v2: [strtab_offset, strtab_size, v1]
   2943   StringRef Name;
   2944   std::tie(Name, Record) = readNameFromStrtab(Record);
   2945 
   2946   if (Record.size() < 8)
   2947     return error("Invalid record");
   2948   Type *Ty = getTypeByID(Record[0]);
   2949   if (!Ty)
   2950     return error("Invalid record");
   2951   if (auto *PTy = dyn_cast<PointerType>(Ty))
   2952     Ty = PTy->getElementType();
   2953   auto *FTy = dyn_cast<FunctionType>(Ty);
   2954   if (!FTy)
   2955     return error("Invalid type for value");
   2956   auto CC = static_cast<CallingConv::ID>(Record[1]);
   2957   if (CC & ~CallingConv::MaxID)
   2958     return error("Invalid calling convention ID");
   2959 
   2960   Function *Func =
   2961       Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule);
   2962 
   2963   Func->setCallingConv(CC);
   2964   bool isProto = Record[2];
   2965   uint64_t RawLinkage = Record[3];
   2966   Func->setLinkage(getDecodedLinkage(RawLinkage));
   2967   Func->setAttributes(getAttributes(Record[4]));
   2968 
   2969   unsigned Alignment;
   2970   if (Error Err = parseAlignmentValue(Record[5], Alignment))
   2971     return Err;
   2972   Func->setAlignment(Alignment);
   2973   if (Record[6]) {
   2974     if (Record[6] - 1 >= SectionTable.size())
   2975       return error("Invalid ID");
   2976     Func->setSection(SectionTable[Record[6] - 1]);
   2977   }
   2978   // Local linkage must have default visibility.
   2979   if (!Func->hasLocalLinkage())
   2980     // FIXME: Change to an error if non-default in 4.0.
   2981     Func->setVisibility(getDecodedVisibility(Record[7]));
   2982   if (Record.size() > 8 && Record[8]) {
   2983     if (Record[8] - 1 >= GCTable.size())
   2984       return error("Invalid ID");
   2985     Func->setGC(GCTable[Record[8] - 1]);
   2986   }
   2987   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
   2988   if (Record.size() > 9)
   2989     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
   2990   Func->setUnnamedAddr(UnnamedAddr);
   2991   if (Record.size() > 10 && Record[10] != 0)
   2992     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
   2993 
   2994   if (Record.size() > 11)
   2995     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
   2996   else
   2997     upgradeDLLImportExportLinkage(Func, RawLinkage);
   2998 
   2999   if (Record.size() > 12) {
   3000     if (unsigned ComdatID = Record[12]) {
   3001       if (ComdatID > ComdatList.size())
   3002         return error("Invalid function comdat ID");
   3003       Func->setComdat(ComdatList[ComdatID - 1]);
   3004     }
   3005   } else if (hasImplicitComdat(RawLinkage)) {
   3006     Func->setComdat(reinterpret_cast<Comdat *>(1));
   3007   }
   3008 
   3009   if (Record.size() > 13 && Record[13] != 0)
   3010     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
   3011 
   3012   if (Record.size() > 14 && Record[14] != 0)
   3013     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
   3014 
   3015   if (Record.size() > 15) {
   3016     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
   3017   }
   3018   inferDSOLocal(Func);
   3019 
   3020   ValueList.push_back(Func);
   3021 
   3022   // If this is a function with a body, remember the prototype we are
   3023   // creating now, so that we can match up the body with them later.
   3024   if (!isProto) {
   3025     Func->setIsMaterializable(true);
   3026     FunctionsWithBodies.push_back(Func);
   3027     DeferredFunctionInfo[Func] = 0;
   3028   }
   3029   return Error::success();
   3030 }
   3031 
   3032 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
   3033     unsigned BitCode, ArrayRef<uint64_t> Record) {
   3034   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
   3035   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
   3036   // dllstorageclass, threadlocal, unnamed_addr,
   3037   // preemption specifier] (name in VST)
   3038   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
   3039   // visibility, dllstorageclass, threadlocal, unnamed_addr,
   3040   // preemption specifier] (name in VST)
   3041   // v2: [strtab_offset, strtab_size, v1]
   3042   StringRef Name;
   3043   std::tie(Name, Record) = readNameFromStrtab(Record);
   3044 
   3045   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
   3046   if (Record.size() < (3 + (unsigned)NewRecord))
   3047     return error("Invalid record");
   3048   unsigned OpNum = 0;
   3049   Type *Ty = getTypeByID(Record[OpNum++]);
   3050   if (!Ty)
   3051     return error("Invalid record");
   3052 
   3053   unsigned AddrSpace;
   3054   if (!NewRecord) {
   3055     auto *PTy = dyn_cast<PointerType>(Ty);
   3056     if (!PTy)
   3057       return error("Invalid type for value");
   3058     Ty = PTy->getElementType();
   3059     AddrSpace = PTy->getAddressSpace();
   3060   } else {
   3061     AddrSpace = Record[OpNum++];
   3062   }
   3063 
   3064   auto Val = Record[OpNum++];
   3065   auto Linkage = Record[OpNum++];
   3066   GlobalIndirectSymbol *NewGA;
   3067   if (BitCode == bitc::MODULE_CODE_ALIAS ||
   3068       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
   3069     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
   3070                                 TheModule);
   3071   else
   3072     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
   3073                                 nullptr, TheModule);
   3074   // Old bitcode files didn't have visibility field.
   3075   // Local linkage must have default visibility.
   3076   if (OpNum != Record.size()) {
   3077     auto VisInd = OpNum++;
   3078     if (!NewGA->hasLocalLinkage())
   3079       // FIXME: Change to an error if non-default in 4.0.
   3080       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
   3081   }
   3082   if (BitCode == bitc::MODULE_CODE_ALIAS ||
   3083       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
   3084     if (OpNum != Record.size())
   3085       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
   3086     else
   3087       upgradeDLLImportExportLinkage(NewGA, Linkage);
   3088     if (OpNum != Record.size())
   3089       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
   3090     if (OpNum != Record.size())
   3091       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
   3092   }
   3093   if (OpNum != Record.size())
   3094     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
   3095   inferDSOLocal(NewGA);
   3096 
   3097   ValueList.push_back(NewGA);
   3098   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
   3099   return Error::success();
   3100 }
   3101 
   3102 Error BitcodeReader::parseModule(uint64_t ResumeBit,
   3103                                  bool ShouldLazyLoadMetadata) {
   3104   if (ResumeBit)
   3105     Stream.JumpToBit(ResumeBit);
   3106   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   3107     return error("Invalid record");
   3108 
   3109   SmallVector<uint64_t, 64> Record;
   3110 
   3111   // Read all the records for this module.
   3112   while (true) {
   3113     BitstreamEntry Entry = Stream.advance();
   3114 
   3115     switch (Entry.Kind) {
   3116     case BitstreamEntry::Error:
   3117       return error("Malformed block");
   3118     case BitstreamEntry::EndBlock:
   3119       return globalCleanup();
   3120 
   3121     case BitstreamEntry::SubBlock:
   3122       switch (Entry.ID) {
   3123       default:  // Skip unknown content.
   3124         if (Stream.SkipBlock())
   3125           return error("Invalid record");
   3126         break;
   3127       case bitc::BLOCKINFO_BLOCK_ID:
   3128         if (readBlockInfo())
   3129           return error("Malformed block");
   3130         break;
   3131       case bitc::PARAMATTR_BLOCK_ID:
   3132         if (Error Err = parseAttributeBlock())
   3133           return Err;
   3134         break;
   3135       case bitc::PARAMATTR_GROUP_BLOCK_ID:
   3136         if (Error Err = parseAttributeGroupBlock())
   3137           return Err;
   3138         break;
   3139       case bitc::TYPE_BLOCK_ID_NEW:
   3140         if (Error Err = parseTypeTable())
   3141           return Err;
   3142         break;
   3143       case bitc::VALUE_SYMTAB_BLOCK_ID:
   3144         if (!SeenValueSymbolTable) {
   3145           // Either this is an old form VST without function index and an
   3146           // associated VST forward declaration record (which would have caused
   3147           // the VST to be jumped to and parsed before it was encountered
   3148           // normally in the stream), or there were no function blocks to
   3149           // trigger an earlier parsing of the VST.
   3150           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
   3151           if (Error Err = parseValueSymbolTable())
   3152             return Err;
   3153           SeenValueSymbolTable = true;
   3154         } else {
   3155           // We must have had a VST forward declaration record, which caused
   3156           // the parser to jump to and parse the VST earlier.
   3157           assert(VSTOffset > 0);
   3158           if (Stream.SkipBlock())
   3159             return error("Invalid record");
   3160         }
   3161         break;
   3162       case bitc::CONSTANTS_BLOCK_ID:
   3163         if (Error Err = parseConstants())
   3164           return Err;
   3165         if (Error Err = resolveGlobalAndIndirectSymbolInits())
   3166           return Err;
   3167         break;
   3168       case bitc::METADATA_BLOCK_ID:
   3169         if (ShouldLazyLoadMetadata) {
   3170           if (Error Err = rememberAndSkipMetadata())
   3171             return Err;
   3172           break;
   3173         }
   3174         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
   3175         if (Error Err = MDLoader->parseModuleMetadata())
   3176           return Err;
   3177         break;
   3178       case bitc::METADATA_KIND_BLOCK_ID:
   3179         if (Error Err = MDLoader->parseMetadataKinds())
   3180           return Err;
   3181         break;
   3182       case bitc::FUNCTION_BLOCK_ID:
   3183         // If this is the first function body we've seen, reverse the
   3184         // FunctionsWithBodies list.
   3185         if (!SeenFirstFunctionBody) {
   3186           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
   3187           if (Error Err = globalCleanup())
   3188             return Err;
   3189           SeenFirstFunctionBody = true;
   3190         }
   3191 
   3192         if (VSTOffset > 0) {
   3193           // If we have a VST forward declaration record, make sure we
   3194           // parse the VST now if we haven't already. It is needed to
   3195           // set up the DeferredFunctionInfo vector for lazy reading.
   3196           if (!SeenValueSymbolTable) {
   3197             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
   3198               return Err;
   3199             SeenValueSymbolTable = true;
   3200             // Fall through so that we record the NextUnreadBit below.
   3201             // This is necessary in case we have an anonymous function that
   3202             // is later materialized. Since it will not have a VST entry we
   3203             // need to fall back to the lazy parse to find its offset.
   3204           } else {
   3205             // If we have a VST forward declaration record, but have already
   3206             // parsed the VST (just above, when the first function body was
   3207             // encountered here), then we are resuming the parse after
   3208             // materializing functions. The ResumeBit points to the
   3209             // start of the last function block recorded in the
   3210             // DeferredFunctionInfo map. Skip it.
   3211             if (Stream.SkipBlock())
   3212               return error("Invalid record");
   3213             continue;
   3214           }
   3215         }
   3216 
   3217         // Support older bitcode files that did not have the function
   3218         // index in the VST, nor a VST forward declaration record, as
   3219         // well as anonymous functions that do not have VST entries.
   3220         // Build the DeferredFunctionInfo vector on the fly.
   3221         if (Error Err = rememberAndSkipFunctionBody())
   3222           return Err;
   3223 
   3224         // Suspend parsing when we reach the function bodies. Subsequent
   3225         // materialization calls will resume it when necessary. If the bitcode
   3226         // file is old, the symbol table will be at the end instead and will not
   3227         // have been seen yet. In this case, just finish the parse now.
   3228         if (SeenValueSymbolTable) {
   3229           NextUnreadBit = Stream.GetCurrentBitNo();
   3230           // After the VST has been parsed, we need to make sure intrinsic name
   3231           // are auto-upgraded.
   3232           return globalCleanup();
   3233         }
   3234         break;
   3235       case bitc::USELIST_BLOCK_ID:
   3236         if (Error Err = parseUseLists())
   3237           return Err;
   3238         break;
   3239       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
   3240         if (Error Err = parseOperandBundleTags())
   3241           return Err;
   3242         break;
   3243       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
   3244         if (Error Err = parseSyncScopeNames())
   3245           return Err;
   3246         break;
   3247       }
   3248       continue;
   3249 
   3250     case BitstreamEntry::Record:
   3251       // The interesting case.
   3252       break;
   3253     }
   3254 
   3255     // Read a record.
   3256     auto BitCode = Stream.readRecord(Entry.ID, Record);
   3257     switch (BitCode) {
   3258     default: break;  // Default behavior, ignore unknown content.
   3259     case bitc::MODULE_CODE_VERSION: {
   3260       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
   3261       if (!VersionOrErr)
   3262         return VersionOrErr.takeError();
   3263       UseRelativeIDs = *VersionOrErr >= 1;
   3264       break;
   3265     }
   3266     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   3267       std::string S;
   3268       if (convertToString(Record, 0, S))
   3269         return error("Invalid record");
   3270       TheModule->setTargetTriple(S);
   3271       break;
   3272     }
   3273     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
   3274       std::string S;
   3275       if (convertToString(Record, 0, S))
   3276         return error("Invalid record");
   3277       TheModule->setDataLayout(S);
   3278       break;
   3279     }
   3280     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
   3281       std::string S;
   3282       if (convertToString(Record, 0, S))
   3283         return error("Invalid record");
   3284       TheModule->setModuleInlineAsm(S);
   3285       break;
   3286     }
   3287     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
   3288       // FIXME: Remove in 4.0.
   3289       std::string S;
   3290       if (convertToString(Record, 0, S))
   3291         return error("Invalid record");
   3292       // Ignore value.
   3293       break;
   3294     }
   3295     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
   3296       std::string S;
   3297       if (convertToString(Record, 0, S))
   3298         return error("Invalid record");
   3299       SectionTable.push_back(S);
   3300       break;
   3301     }
   3302     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
   3303       std::string S;
   3304       if (convertToString(Record, 0, S))
   3305         return error("Invalid record");
   3306       GCTable.push_back(S);
   3307       break;
   3308     }
   3309     case bitc::MODULE_CODE_COMDAT:
   3310       if (Error Err = parseComdatRecord(Record))
   3311         return Err;
   3312       break;
   3313     case bitc::MODULE_CODE_GLOBALVAR:
   3314       if (Error Err = parseGlobalVarRecord(Record))
   3315         return Err;
   3316       break;
   3317     case bitc::MODULE_CODE_FUNCTION:
   3318       if (Error Err = parseFunctionRecord(Record))
   3319         return Err;
   3320       break;
   3321     case bitc::MODULE_CODE_IFUNC:
   3322     case bitc::MODULE_CODE_ALIAS:
   3323     case bitc::MODULE_CODE_ALIAS_OLD:
   3324       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
   3325         return Err;
   3326       break;
   3327     /// MODULE_CODE_VSTOFFSET: [offset]
   3328     case bitc::MODULE_CODE_VSTOFFSET:
   3329       if (Record.size() < 1)
   3330         return error("Invalid record");
   3331       // Note that we subtract 1 here because the offset is relative to one word
   3332       // before the start of the identification or module block, which was
   3333       // historically always the start of the regular bitcode header.
   3334       VSTOffset = Record[0] - 1;
   3335       break;
   3336     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
   3337     case bitc::MODULE_CODE_SOURCE_FILENAME:
   3338       SmallString<128> ValueName;
   3339       if (convertToString(Record, 0, ValueName))
   3340         return error("Invalid record");
   3341       TheModule->setSourceFileName(ValueName);
   3342       break;
   3343     }
   3344     Record.clear();
   3345   }
   3346 }
   3347 
   3348 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
   3349                                       bool IsImporting) {
   3350   TheModule = M;
   3351   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
   3352                             [&](unsigned ID) { return getTypeByID(ID); });
   3353   return parseModule(0, ShouldLazyLoadMetadata);
   3354 }
   3355 
   3356 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
   3357   if (!isa<PointerType>(PtrType))
   3358     return error("Load/Store operand is not a pointer type");
   3359   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
   3360 
   3361   if (ValType && ValType != ElemType)
   3362     return error("Explicit load/store type does not match pointee "
   3363                  "type of pointer operand");
   3364   if (!PointerType::isLoadableOrStorableType(ElemType))
   3365     return error("Cannot load/store from pointer");
   3366   return Error::success();
   3367 }
   3368 
   3369 /// Lazily parse the specified function body block.
   3370 Error BitcodeReader::parseFunctionBody(Function *F) {
   3371   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
   3372     return error("Invalid record");
   3373 
   3374   // Unexpected unresolved metadata when parsing function.
   3375   if (MDLoader->hasFwdRefs())
   3376     return error("Invalid function metadata: incoming forward references");
   3377 
   3378   InstructionList.clear();
   3379   unsigned ModuleValueListSize = ValueList.size();
   3380   unsigned ModuleMDLoaderSize = MDLoader->size();
   3381 
   3382   // Add all the function arguments to the value table.
   3383   for (Argument &I : F->args())
   3384     ValueList.push_back(&I);
   3385 
   3386   unsigned NextValueNo = ValueList.size();
   3387   BasicBlock *CurBB = nullptr;
   3388   unsigned CurBBNo = 0;
   3389 
   3390   DebugLoc LastLoc;
   3391   auto getLastInstruction = [&]() -> Instruction * {
   3392     if (CurBB && !CurBB->empty())
   3393       return &CurBB->back();
   3394     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
   3395              !FunctionBBs[CurBBNo - 1]->empty())
   3396       return &FunctionBBs[CurBBNo - 1]->back();
   3397     return nullptr;
   3398   };
   3399 
   3400   std::vector<OperandBundleDef> OperandBundles;
   3401 
   3402   // Read all the records.
   3403   SmallVector<uint64_t, 64> Record;
   3404 
   3405   while (true) {
   3406     BitstreamEntry Entry = Stream.advance();
   3407 
   3408     switch (Entry.Kind) {
   3409     case BitstreamEntry::Error:
   3410       return error("Malformed block");
   3411     case BitstreamEntry::EndBlock:
   3412       goto OutOfRecordLoop;
   3413 
   3414     case BitstreamEntry::SubBlock:
   3415       switch (Entry.ID) {
   3416       default:  // Skip unknown content.
   3417         if (Stream.SkipBlock())
   3418           return error("Invalid record");
   3419         break;
   3420       case bitc::CONSTANTS_BLOCK_ID:
   3421         if (Error Err = parseConstants())
   3422           return Err;
   3423         NextValueNo = ValueList.size();
   3424         break;
   3425       case bitc::VALUE_SYMTAB_BLOCK_ID:
   3426         if (Error Err = parseValueSymbolTable())
   3427           return Err;
   3428         break;
   3429       case bitc::METADATA_ATTACHMENT_ID:
   3430         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
   3431           return Err;
   3432         break;
   3433       case bitc::METADATA_BLOCK_ID:
   3434         assert(DeferredMetadataInfo.empty() &&
   3435                "Must read all module-level metadata before function-level");
   3436         if (Error Err = MDLoader->parseFunctionMetadata())
   3437           return Err;
   3438         break;
   3439       case bitc::USELIST_BLOCK_ID:
   3440         if (Error Err = parseUseLists())
   3441           return Err;
   3442         break;
   3443       }
   3444       continue;
   3445 
   3446     case BitstreamEntry::Record:
   3447       // The interesting case.
   3448       break;
   3449     }
   3450 
   3451     // Read a record.
   3452     Record.clear();
   3453     Instruction *I = nullptr;
   3454     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
   3455     switch (BitCode) {
   3456     default: // Default behavior: reject
   3457       return error("Invalid value");
   3458     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
   3459       if (Record.size() < 1 || Record[0] == 0)
   3460         return error("Invalid record");
   3461       // Create all the basic blocks for the function.
   3462       FunctionBBs.resize(Record[0]);
   3463 
   3464       // See if anything took the address of blocks in this function.
   3465       auto BBFRI = BasicBlockFwdRefs.find(F);
   3466       if (BBFRI == BasicBlockFwdRefs.end()) {
   3467         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
   3468           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
   3469       } else {
   3470         auto &BBRefs = BBFRI->second;
   3471         // Check for invalid basic block references.
   3472         if (BBRefs.size() > FunctionBBs.size())
   3473           return error("Invalid ID");
   3474         assert(!BBRefs.empty() && "Unexpected empty array");
   3475         assert(!BBRefs.front() && "Invalid reference to entry block");
   3476         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
   3477              ++I)
   3478           if (I < RE && BBRefs[I]) {
   3479             BBRefs[I]->insertInto(F);
   3480             FunctionBBs[I] = BBRefs[I];
   3481           } else {
   3482             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
   3483           }
   3484 
   3485         // Erase from the table.
   3486         BasicBlockFwdRefs.erase(BBFRI);
   3487       }
   3488 
   3489       CurBB = FunctionBBs[0];
   3490       continue;
   3491     }
   3492 
   3493     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
   3494       // This record indicates that the last instruction is at the same
   3495       // location as the previous instruction with a location.
   3496       I = getLastInstruction();
   3497 
   3498       if (!I)
   3499         return error("Invalid record");
   3500       I->setDebugLoc(LastLoc);
   3501       I = nullptr;
   3502       continue;
   3503 
   3504     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
   3505       I = getLastInstruction();
   3506       if (!I || Record.size() < 4)
   3507         return error("Invalid record");
   3508 
   3509       unsigned Line = Record[0], Col = Record[1];
   3510       unsigned ScopeID = Record[2], IAID = Record[3];
   3511 
   3512       MDNode *Scope = nullptr, *IA = nullptr;
   3513       if (ScopeID) {
   3514         Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
   3515         if (!Scope)
   3516           return error("Invalid record");
   3517       }
   3518       if (IAID) {
   3519         IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
   3520         if (!IA)
   3521           return error("Invalid record");
   3522       }
   3523       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
   3524       I->setDebugLoc(LastLoc);
   3525       I = nullptr;
   3526       continue;
   3527     }
   3528 
   3529     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
   3530       unsigned OpNum = 0;
   3531       Value *LHS, *RHS;
   3532       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   3533           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
   3534           OpNum+1 > Record.size())
   3535         return error("Invalid record");
   3536 
   3537       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
   3538       if (Opc == -1)
   3539         return error("Invalid record");
   3540       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   3541       InstructionList.push_back(I);
   3542       if (OpNum < Record.size()) {
   3543         if (Opc == Instruction::Add ||
   3544             Opc == Instruction::Sub ||
   3545             Opc == Instruction::Mul ||
   3546             Opc == Instruction::Shl) {
   3547           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   3548             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
   3549           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   3550             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
   3551         } else if (Opc == Instruction::SDiv ||
   3552                    Opc == Instruction::UDiv ||
   3553                    Opc == Instruction::LShr ||
   3554                    Opc == Instruction::AShr) {
   3555           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
   3556             cast<BinaryOperator>(I)->setIsExact(true);
   3557         } else if (isa<FPMathOperator>(I)) {
   3558           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
   3559           if (FMF.any())
   3560             I->setFastMathFlags(FMF);
   3561         }
   3562 
   3563       }
   3564       break;
   3565     }
   3566     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
   3567       unsigned OpNum = 0;
   3568       Value *Op;
   3569       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   3570           OpNum+2 != Record.size())
   3571         return error("Invalid record");
   3572 
   3573       Type *ResTy = getTypeByID(Record[OpNum]);
   3574       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
   3575       if (Opc == -1 || !ResTy)
   3576         return error("Invalid record");
   3577       Instruction *Temp = nullptr;
   3578       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
   3579         if (Temp) {
   3580           InstructionList.push_back(Temp);
   3581           CurBB->getInstList().push_back(Temp);
   3582         }
   3583       } else {
   3584         auto CastOp = (Instruction::CastOps)Opc;
   3585         if (!CastInst::castIsValid(CastOp, Op, ResTy))
   3586           return error("Invalid cast");
   3587         I = CastInst::Create(CastOp, Op, ResTy);
   3588       }
   3589       InstructionList.push_back(I);
   3590       break;
   3591     }
   3592     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
   3593     case bitc::FUNC_CODE_INST_GEP_OLD:
   3594     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
   3595       unsigned OpNum = 0;
   3596 
   3597       Type *Ty;
   3598       bool InBounds;
   3599 
   3600       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
   3601         InBounds = Record[OpNum++];
   3602         Ty = getTypeByID(Record[OpNum++]);
   3603       } else {
   3604         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
   3605         Ty = nullptr;
   3606       }
   3607 
   3608       Value *BasePtr;
   3609       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
   3610         return error("Invalid record");
   3611 
   3612       if (!Ty)
   3613         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
   3614                  ->getElementType();
   3615       else if (Ty !=
   3616                cast<PointerType>(BasePtr->getType()->getScalarType())
   3617                    ->getElementType())
   3618         return error(
   3619             "Explicit gep type does not match pointee type of pointer operand");
   3620 
   3621       SmallVector<Value*, 16> GEPIdx;
   3622       while (OpNum != Record.size()) {
   3623         Value *Op;
   3624         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   3625           return error("Invalid record");
   3626         GEPIdx.push_back(Op);
   3627       }
   3628 
   3629       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
   3630 
   3631       InstructionList.push_back(I);
   3632       if (InBounds)
   3633         cast<GetElementPtrInst>(I)->setIsInBounds(true);
   3634       break;
   3635     }
   3636 
   3637     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
   3638                                        // EXTRACTVAL: [opty, opval, n x indices]
   3639       unsigned OpNum = 0;
   3640       Value *Agg;
   3641       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   3642         return error("Invalid record");
   3643 
   3644       unsigned RecSize = Record.size();
   3645       if (OpNum == RecSize)
   3646         return error("EXTRACTVAL: Invalid instruction with 0 indices");
   3647 
   3648       SmallVector<unsigned, 4> EXTRACTVALIdx;
   3649       Type *CurTy = Agg->getType();
   3650       for (; OpNum != RecSize; ++OpNum) {
   3651         bool IsArray = CurTy->isArrayTy();
   3652         bool IsStruct = CurTy->isStructTy();
   3653         uint64_t Index = Record[OpNum];
   3654 
   3655         if (!IsStruct && !IsArray)
   3656           return error("EXTRACTVAL: Invalid type");
   3657         if ((unsigned)Index != Index)
   3658           return error("Invalid value");
   3659         if (IsStruct && Index >= CurTy->subtypes().size())
   3660           return error("EXTRACTVAL: Invalid struct index");
   3661         if (IsArray && Index >= CurTy->getArrayNumElements())
   3662           return error("EXTRACTVAL: Invalid array index");
   3663         EXTRACTVALIdx.push_back((unsigned)Index);
   3664 
   3665         if (IsStruct)
   3666           CurTy = CurTy->subtypes()[Index];
   3667         else
   3668           CurTy = CurTy->subtypes()[0];
   3669       }
   3670 
   3671       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
   3672       InstructionList.push_back(I);
   3673       break;
   3674     }
   3675 
   3676     case bitc::FUNC_CODE_INST_INSERTVAL: {
   3677                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
   3678       unsigned OpNum = 0;
   3679       Value *Agg;
   3680       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   3681         return error("Invalid record");
   3682       Value *Val;
   3683       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
   3684         return error("Invalid record");
   3685 
   3686       unsigned RecSize = Record.size();
   3687       if (OpNum == RecSize)
   3688         return error("INSERTVAL: Invalid instruction with 0 indices");
   3689 
   3690       SmallVector<unsigned, 4> INSERTVALIdx;
   3691       Type *CurTy = Agg->getType();
   3692       for (; OpNum != RecSize; ++OpNum) {
   3693         bool IsArray = CurTy->isArrayTy();
   3694         bool IsStruct = CurTy->isStructTy();
   3695         uint64_t Index = Record[OpNum];
   3696 
   3697         if (!IsStruct && !IsArray)
   3698           return error("INSERTVAL: Invalid type");
   3699         if ((unsigned)Index != Index)
   3700           return error("Invalid value");
   3701         if (IsStruct && Index >= CurTy->subtypes().size())
   3702           return error("INSERTVAL: Invalid struct index");
   3703         if (IsArray && Index >= CurTy->getArrayNumElements())
   3704           return error("INSERTVAL: Invalid array index");
   3705 
   3706         INSERTVALIdx.push_back((unsigned)Index);
   3707         if (IsStruct)
   3708           CurTy = CurTy->subtypes()[Index];
   3709         else
   3710           CurTy = CurTy->subtypes()[0];
   3711       }
   3712 
   3713       if (CurTy != Val->getType())
   3714         return error("Inserted value type doesn't match aggregate type");
   3715 
   3716       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
   3717       InstructionList.push_back(I);
   3718       break;
   3719     }
   3720 
   3721     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
   3722       // obsolete form of select
   3723       // handles select i1 ... in old bitcode
   3724       unsigned OpNum = 0;
   3725       Value *TrueVal, *FalseVal, *Cond;
   3726       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   3727           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
   3728           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
   3729         return error("Invalid record");
   3730 
   3731       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   3732       InstructionList.push_back(I);
   3733       break;
   3734     }
   3735 
   3736     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
   3737       // new form of select
   3738       // handles select i1 or select [N x i1]
   3739       unsigned OpNum = 0;
   3740       Value *TrueVal, *FalseVal, *Cond;
   3741       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   3742           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
   3743           getValueTypePair(Record, OpNum, NextValueNo, Cond))
   3744         return error("Invalid record");
   3745 
   3746       // select condition can be either i1 or [N x i1]
   3747       if (VectorType* vector_type =
   3748           dyn_cast<VectorType>(Cond->getType())) {
   3749         // expect <n x i1>
   3750         if (vector_type->getElementType() != Type::getInt1Ty(Context))
   3751           return error("Invalid type for value");
   3752       } else {
   3753         // expect i1
   3754         if (Cond->getType() != Type::getInt1Ty(Context))
   3755           return error("Invalid type for value");
   3756       }
   3757 
   3758       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   3759       InstructionList.push_back(I);
   3760       break;
   3761     }
   3762 
   3763     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
   3764       unsigned OpNum = 0;
   3765       Value *Vec, *Idx;
   3766       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   3767           getValueTypePair(Record, OpNum, NextValueNo, Idx))
   3768         return error("Invalid record");
   3769       if (!Vec->getType()->isVectorTy())
   3770         return error("Invalid type for value");
   3771       I = ExtractElementInst::Create(Vec, Idx);
   3772       InstructionList.push_back(I);
   3773       break;
   3774     }
   3775 
   3776     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
   3777       unsigned OpNum = 0;
   3778       Value *Vec, *Elt, *Idx;
   3779       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
   3780         return error("Invalid record");
   3781       if (!Vec->getType()->isVectorTy())
   3782         return error("Invalid type for value");
   3783       if (popValue(Record, OpNum, NextValueNo,
   3784                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
   3785           getValueTypePair(Record, OpNum, NextValueNo, Idx))
   3786         return error("Invalid record");
   3787       I = InsertElementInst::Create(Vec, Elt, Idx);
   3788       InstructionList.push_back(I);
   3789       break;
   3790     }
   3791 
   3792     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
   3793       unsigned OpNum = 0;
   3794       Value *Vec1, *Vec2, *Mask;
   3795       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
   3796           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
   3797         return error("Invalid record");
   3798 
   3799       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
   3800         return error("Invalid record");
   3801       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
   3802         return error("Invalid type for value");
   3803       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
   3804       InstructionList.push_back(I);
   3805       break;
   3806     }
   3807 
   3808     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
   3809       // Old form of ICmp/FCmp returning bool
   3810       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
   3811       // both legal on vectors but had different behaviour.
   3812     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
   3813       // FCmp/ICmp returning bool or vector of bool
   3814 
   3815       unsigned OpNum = 0;
   3816       Value *LHS, *RHS;
   3817       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   3818           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
   3819         return error("Invalid record");
   3820 
   3821       unsigned PredVal = Record[OpNum];
   3822       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
   3823       FastMathFlags FMF;
   3824       if (IsFP && Record.size() > OpNum+1)
   3825         FMF = getDecodedFastMathFlags(Record[++OpNum]);
   3826 
   3827       if (OpNum+1 != Record.size())
   3828         return error("Invalid record");
   3829 
   3830       if (LHS->getType()->isFPOrFPVectorTy())
   3831         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
   3832       else
   3833         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
   3834 
   3835       if (FMF.any())
   3836         I->setFastMathFlags(FMF);
   3837       InstructionList.push_back(I);
   3838       break;
   3839     }
   3840 
   3841     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
   3842       {
   3843         unsigned Size = Record.size();
   3844         if (Size == 0) {
   3845           I = ReturnInst::Create(Context);
   3846           InstructionList.push_back(I);
   3847           break;
   3848         }
   3849 
   3850         unsigned OpNum = 0;
   3851         Value *Op = nullptr;
   3852         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   3853           return error("Invalid record");
   3854         if (OpNum != Record.size())
   3855           return error("Invalid record");
   3856 
   3857         I = ReturnInst::Create(Context, Op);
   3858         InstructionList.push_back(I);
   3859         break;
   3860       }
   3861     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
   3862       if (Record.size() != 1 && Record.size() != 3)
   3863         return error("Invalid record");
   3864       BasicBlock *TrueDest = getBasicBlock(Record[0]);
   3865       if (!TrueDest)
   3866         return error("Invalid record");
   3867 
   3868       if (Record.size() == 1) {
   3869         I = BranchInst::Create(TrueDest);
   3870         InstructionList.push_back(I);
   3871       }
   3872       else {
   3873         BasicBlock *FalseDest = getBasicBlock(Record[1]);
   3874         Value *Cond = getValue(Record, 2, NextValueNo,
   3875                                Type::getInt1Ty(Context));
   3876         if (!FalseDest || !Cond)
   3877           return error("Invalid record");
   3878         I = BranchInst::Create(TrueDest, FalseDest, Cond);
   3879         InstructionList.push_back(I);
   3880       }
   3881       break;
   3882     }
   3883     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
   3884       if (Record.size() != 1 && Record.size() != 2)
   3885         return error("Invalid record");
   3886       unsigned Idx = 0;
   3887       Value *CleanupPad =
   3888           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
   3889       if (!CleanupPad)
   3890         return error("Invalid record");
   3891       BasicBlock *UnwindDest = nullptr;
   3892       if (Record.size() == 2) {
   3893         UnwindDest = getBasicBlock(Record[Idx++]);
   3894         if (!UnwindDest)
   3895           return error("Invalid record");
   3896       }
   3897 
   3898       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
   3899       InstructionList.push_back(I);
   3900       break;
   3901     }
   3902     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
   3903       if (Record.size() != 2)
   3904         return error("Invalid record");
   3905       unsigned Idx = 0;
   3906       Value *CatchPad =
   3907           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
   3908       if (!CatchPad)
   3909         return error("Invalid record");
   3910       BasicBlock *BB = getBasicBlock(Record[Idx++]);
   3911       if (!BB)
   3912         return error("Invalid record");
   3913 
   3914       I = CatchReturnInst::Create(CatchPad, BB);
   3915       InstructionList.push_back(I);
   3916       break;
   3917     }
   3918     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
   3919       // We must have, at minimum, the outer scope and the number of arguments.
   3920       if (Record.size() < 2)
   3921         return error("Invalid record");
   3922 
   3923       unsigned Idx = 0;
   3924 
   3925       Value *ParentPad =
   3926           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
   3927 
   3928       unsigned NumHandlers = Record[Idx++];
   3929 
   3930       SmallVector<BasicBlock *, 2> Handlers;
   3931       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
   3932         BasicBlock *BB = getBasicBlock(Record[Idx++]);
   3933         if (!BB)
   3934           return error("Invalid record");
   3935         Handlers.push_back(BB);
   3936       }
   3937 
   3938       BasicBlock *UnwindDest = nullptr;
   3939       if (Idx + 1 == Record.size()) {
   3940         UnwindDest = getBasicBlock(Record[Idx++]);
   3941         if (!UnwindDest)
   3942           return error("Invalid record");
   3943       }
   3944 
   3945       if (Record.size() != Idx)
   3946         return error("Invalid record");
   3947 
   3948       auto *CatchSwitch =
   3949           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
   3950       for (BasicBlock *Handler : Handlers)
   3951         CatchSwitch->addHandler(Handler);
   3952       I = CatchSwitch;
   3953       InstructionList.push_back(I);
   3954       break;
   3955     }
   3956     case bitc::FUNC_CODE_INST_CATCHPAD:
   3957     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
   3958       // We must have, at minimum, the outer scope and the number of arguments.
   3959       if (Record.size() < 2)
   3960         return error("Invalid record");
   3961 
   3962       unsigned Idx = 0;
   3963 
   3964       Value *ParentPad =
   3965           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
   3966 
   3967       unsigned NumArgOperands = Record[Idx++];
   3968 
   3969       SmallVector<Value *, 2> Args;
   3970       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
   3971         Value *Val;
   3972         if (getValueTypePair(Record, Idx, NextValueNo, Val))
   3973           return error("Invalid record");
   3974         Args.push_back(Val);
   3975       }
   3976 
   3977       if (Record.size() != Idx)
   3978         return error("Invalid record");
   3979 
   3980       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
   3981         I = CleanupPadInst::Create(ParentPad, Args);
   3982       else
   3983         I = CatchPadInst::Create(ParentPad, Args);
   3984       InstructionList.push_back(I);
   3985       break;
   3986     }
   3987     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
   3988       // Check magic
   3989       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
   3990         // "New" SwitchInst format with case ranges. The changes to write this
   3991         // format were reverted but we still recognize bitcode that uses it.
   3992         // Hopefully someday we will have support for case ranges and can use
   3993         // this format again.
   3994 
   3995         Type *OpTy = getTypeByID(Record[1]);
   3996         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
   3997 
   3998         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
   3999         BasicBlock *Default = getBasicBlock(Record[3]);
   4000         if (!OpTy || !Cond || !Default)
   4001           return error("Invalid record");
   4002 
   4003         unsigned NumCases = Record[4];
   4004 
   4005         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
   4006         InstructionList.push_back(SI);
   4007 
   4008         unsigned CurIdx = 5;
   4009         for (unsigned i = 0; i != NumCases; ++i) {
   4010           SmallVector<ConstantInt*, 1> CaseVals;
   4011           unsigned NumItems = Record[CurIdx++];
   4012           for (unsigned ci = 0; ci != NumItems; ++ci) {
   4013             bool isSingleNumber = Record[CurIdx++];
   4014 
   4015             APInt Low;
   4016             unsigned ActiveWords = 1;
   4017             if (ValueBitWidth > 64)
   4018               ActiveWords = Record[CurIdx++];
   4019             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
   4020                                 ValueBitWidth);
   4021             CurIdx += ActiveWords;
   4022 
   4023             if (!isSingleNumber) {
   4024               ActiveWords = 1;
   4025               if (ValueBitWidth > 64)
   4026                 ActiveWords = Record[CurIdx++];
   4027               APInt High = readWideAPInt(
   4028                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
   4029               CurIdx += ActiveWords;
   4030 
   4031               // FIXME: It is not clear whether values in the range should be
   4032               // compared as signed or unsigned values. The partially
   4033               // implemented changes that used this format in the past used
   4034               // unsigned comparisons.
   4035               for ( ; Low.ule(High); ++Low)
   4036                 CaseVals.push_back(ConstantInt::get(Context, Low));
   4037             } else
   4038               CaseVals.push_back(ConstantInt::get(Context, Low));
   4039           }
   4040           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
   4041           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
   4042                  cve = CaseVals.end(); cvi != cve; ++cvi)
   4043             SI->addCase(*cvi, DestBB);
   4044         }
   4045         I = SI;
   4046         break;
   4047       }
   4048 
   4049       // Old SwitchInst format without case ranges.
   4050 
   4051       if (Record.size() < 3 || (Record.size() & 1) == 0)
   4052         return error("Invalid record");
   4053       Type *OpTy = getTypeByID(Record[0]);
   4054       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
   4055       BasicBlock *Default = getBasicBlock(Record[2]);
   4056       if (!OpTy || !Cond || !Default)
   4057         return error("Invalid record");
   4058       unsigned NumCases = (Record.size()-3)/2;
   4059       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
   4060       InstructionList.push_back(SI);
   4061       for (unsigned i = 0, e = NumCases; i != e; ++i) {
   4062         ConstantInt *CaseVal =
   4063           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
   4064         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
   4065         if (!CaseVal || !DestBB) {
   4066           delete SI;
   4067           return error("Invalid record");
   4068         }
   4069         SI->addCase(CaseVal, DestBB);
   4070       }
   4071       I = SI;
   4072       break;
   4073     }
   4074     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
   4075       if (Record.size() < 2)
   4076         return error("Invalid record");
   4077       Type *OpTy = getTypeByID(Record[0]);
   4078       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
   4079       if (!OpTy || !Address)
   4080         return error("Invalid record");
   4081       unsigned NumDests = Record.size()-2;
   4082       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
   4083       InstructionList.push_back(IBI);
   4084       for (unsigned i = 0, e = NumDests; i != e; ++i) {
   4085         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
   4086           IBI->addDestination(DestBB);
   4087         } else {
   4088           delete IBI;
   4089           return error("Invalid record");
   4090         }
   4091       }
   4092       I = IBI;
   4093       break;
   4094     }
   4095 
   4096     case bitc::FUNC_CODE_INST_INVOKE: {
   4097       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
   4098       if (Record.size() < 4)
   4099         return error("Invalid record");
   4100       unsigned OpNum = 0;
   4101       AttributeList PAL = getAttributes(Record[OpNum++]);
   4102       unsigned CCInfo = Record[OpNum++];
   4103       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
   4104       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
   4105 
   4106       FunctionType *FTy = nullptr;
   4107       if (CCInfo >> 13 & 1 &&
   4108           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
   4109         return error("Explicit invoke type is not a function type");
   4110 
   4111       Value *Callee;
   4112       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   4113         return error("Invalid record");
   4114 
   4115       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
   4116       if (!CalleeTy)
   4117         return error("Callee is not a pointer");
   4118       if (!FTy) {
   4119         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
   4120         if (!FTy)
   4121           return error("Callee is not of pointer to function type");
   4122       } else if (CalleeTy->getElementType() != FTy)
   4123         return error("Explicit invoke type does not match pointee type of "
   4124                      "callee operand");
   4125       if (Record.size() < FTy->getNumParams() + OpNum)
   4126         return error("Insufficient operands to call");
   4127 
   4128       SmallVector<Value*, 16> Ops;
   4129       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   4130         Ops.push_back(getValue(Record, OpNum, NextValueNo,
   4131                                FTy->getParamType(i)));
   4132         if (!Ops.back())
   4133           return error("Invalid record");
   4134       }
   4135 
   4136       if (!FTy->isVarArg()) {
   4137         if (Record.size() != OpNum)
   4138           return error("Invalid record");
   4139       } else {
   4140         // Read type/value pairs for varargs params.
   4141         while (OpNum != Record.size()) {
   4142           Value *Op;
   4143           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   4144             return error("Invalid record");
   4145           Ops.push_back(Op);
   4146         }
   4147       }
   4148 
   4149       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
   4150       OperandBundles.clear();
   4151       InstructionList.push_back(I);
   4152       cast<InvokeInst>(I)->setCallingConv(
   4153           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
   4154       cast<InvokeInst>(I)->setAttributes(PAL);
   4155       break;
   4156     }
   4157     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
   4158       unsigned Idx = 0;
   4159       Value *Val = nullptr;
   4160       if (getValueTypePair(Record, Idx, NextValueNo, Val))
   4161         return error("Invalid record");
   4162       I = ResumeInst::Create(Val);
   4163       InstructionList.push_back(I);
   4164       break;
   4165     }
   4166     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
   4167       I = new UnreachableInst(Context);
   4168       InstructionList.push_back(I);
   4169       break;
   4170     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
   4171       if (Record.size() < 1 || ((Record.size()-1)&1))
   4172         return error("Invalid record");
   4173       Type *Ty = getTypeByID(Record[0]);
   4174       if (!Ty)
   4175         return error("Invalid record");
   4176 
   4177       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
   4178       InstructionList.push_back(PN);
   4179 
   4180       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
   4181         Value *V;
   4182         // With the new function encoding, it is possible that operands have
   4183         // negative IDs (for forward references).  Use a signed VBR
   4184         // representation to keep the encoding small.
   4185         if (UseRelativeIDs)
   4186           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
   4187         else
   4188           V = getValue(Record, 1+i, NextValueNo, Ty);
   4189         BasicBlock *BB = getBasicBlock(Record[2+i]);
   4190         if (!V || !BB)
   4191           return error("Invalid record");
   4192         PN->addIncoming(V, BB);
   4193       }
   4194       I = PN;
   4195       break;
   4196     }
   4197 
   4198     case bitc::FUNC_CODE_INST_LANDINGPAD:
   4199     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
   4200       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
   4201       unsigned Idx = 0;
   4202       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
   4203         if (Record.size() < 3)
   4204           return error("Invalid record");
   4205       } else {
   4206         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
   4207         if (Record.size() < 4)
   4208           return error("Invalid record");
   4209       }
   4210       Type *Ty = getTypeByID(Record[Idx++]);
   4211       if (!Ty)
   4212         return error("Invalid record");
   4213       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
   4214         Value *PersFn = nullptr;
   4215         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
   4216           return error("Invalid record");
   4217 
   4218         if (!F->hasPersonalityFn())
   4219           F->setPersonalityFn(cast<Constant>(PersFn));
   4220         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
   4221           return error("Personality function mismatch");
   4222       }
   4223 
   4224       bool IsCleanup = !!Record[Idx++];
   4225       unsigned NumClauses = Record[Idx++];
   4226       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
   4227       LP->setCleanup(IsCleanup);
   4228       for (unsigned J = 0; J != NumClauses; ++J) {
   4229         LandingPadInst::ClauseType CT =
   4230           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
   4231         Value *Val;
   4232 
   4233         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
   4234           delete LP;
   4235           return error("Invalid record");
   4236         }
   4237 
   4238         assert((CT != LandingPadInst::Catch ||
   4239                 !isa<ArrayType>(Val->getType())) &&
   4240                "Catch clause has a invalid type!");
   4241         assert((CT != LandingPadInst::Filter ||
   4242                 isa<ArrayType>(Val->getType())) &&
   4243                "Filter clause has invalid type!");
   4244         LP->addClause(cast<Constant>(Val));
   4245       }
   4246 
   4247       I = LP;
   4248       InstructionList.push_back(I);
   4249       break;
   4250     }
   4251 
   4252     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
   4253       if (Record.size() != 4)
   4254         return error("Invalid record");
   4255       uint64_t AlignRecord = Record[3];
   4256       const uint64_t InAllocaMask = uint64_t(1) << 5;
   4257       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
   4258       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
   4259       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
   4260                                 SwiftErrorMask;
   4261       bool InAlloca = AlignRecord & InAllocaMask;
   4262       bool SwiftError = AlignRecord & SwiftErrorMask;
   4263       Type *Ty = getTypeByID(Record[0]);
   4264       if ((AlignRecord & ExplicitTypeMask) == 0) {
   4265         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
   4266         if (!PTy)
   4267           return error("Old-style alloca with a non-pointer type");
   4268         Ty = PTy->getElementType();
   4269       }
   4270       Type *OpTy = getTypeByID(Record[1]);
   4271       Value *Size = getFnValueByID(Record[2], OpTy);
   4272       unsigned Align;
   4273       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
   4274         return Err;
   4275       }
   4276       if (!Ty || !Size)
   4277         return error("Invalid record");
   4278 
   4279       // FIXME: Make this an optional field.
   4280       const DataLayout &DL = TheModule->getDataLayout();
   4281       unsigned AS = DL.getAllocaAddrSpace();
   4282 
   4283       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
   4284       AI->setUsedWithInAlloca(InAlloca);
   4285       AI->setSwiftError(SwiftError);
   4286       I = AI;
   4287       InstructionList.push_back(I);
   4288       break;
   4289     }
   4290     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
   4291       unsigned OpNum = 0;
   4292       Value *Op;
   4293       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   4294           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
   4295         return error("Invalid record");
   4296 
   4297       Type *Ty = nullptr;
   4298       if (OpNum + 3 == Record.size())
   4299         Ty = getTypeByID(Record[OpNum++]);
   4300       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
   4301         return Err;
   4302       if (!Ty)
   4303         Ty = cast<PointerType>(Op->getType())->getElementType();
   4304 
   4305       unsigned Align;
   4306       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
   4307         return Err;
   4308       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
   4309 
   4310       InstructionList.push_back(I);
   4311       break;
   4312     }
   4313     case bitc::FUNC_CODE_INST_LOADATOMIC: {
   4314        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
   4315       unsigned OpNum = 0;
   4316       Value *Op;
   4317       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   4318           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
   4319         return error("Invalid record");
   4320 
   4321       Type *Ty = nullptr;
   4322       if (OpNum + 5 == Record.size())
   4323         Ty = getTypeByID(Record[OpNum++]);
   4324       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
   4325         return Err;
   4326       if (!Ty)
   4327         Ty = cast<PointerType>(Op->getType())->getElementType();
   4328 
   4329       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
   4330       if (Ordering == AtomicOrdering::NotAtomic ||
   4331           Ordering == AtomicOrdering::Release ||
   4332           Ordering == AtomicOrdering::AcquireRelease)
   4333         return error("Invalid record");
   4334       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
   4335         return error("Invalid record");
   4336       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
   4337 
   4338       unsigned Align;
   4339       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
   4340         return Err;
   4341       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
   4342 
   4343       InstructionList.push_back(I);
   4344       break;
   4345     }
   4346     case bitc::FUNC_CODE_INST_STORE:
   4347     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
   4348       unsigned OpNum = 0;
   4349       Value *Val, *Ptr;
   4350       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   4351           (BitCode == bitc::FUNC_CODE_INST_STORE
   4352                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
   4353                : popValue(Record, OpNum, NextValueNo,
   4354                           cast<PointerType>(Ptr->getType())->getElementType(),
   4355                           Val)) ||
   4356           OpNum + 2 != Record.size())
   4357         return error("Invalid record");
   4358 
   4359       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
   4360         return Err;
   4361       unsigned Align;
   4362       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
   4363         return Err;
   4364       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
   4365       InstructionList.push_back(I);
   4366       break;
   4367     }
   4368     case bitc::FUNC_CODE_INST_STOREATOMIC:
   4369     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
   4370       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
   4371       unsigned OpNum = 0;
   4372       Value *Val, *Ptr;
   4373       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   4374           !isa<PointerType>(Ptr->getType()) ||
   4375           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
   4376                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
   4377                : popValue(Record, OpNum, NextValueNo,
   4378                           cast<PointerType>(Ptr->getType())->getElementType(),
   4379                           Val)) ||
   4380           OpNum + 4 != Record.size())
   4381         return error("Invalid record");
   4382 
   4383       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
   4384         return Err;
   4385       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
   4386       if (Ordering == AtomicOrdering::NotAtomic ||
   4387           Ordering == AtomicOrdering::Acquire ||
   4388           Ordering == AtomicOrdering::AcquireRelease)
   4389         return error("Invalid record");
   4390       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
   4391       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
   4392         return error("Invalid record");
   4393 
   4394       unsigned Align;
   4395       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
   4396         return Err;
   4397       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
   4398       InstructionList.push_back(I);
   4399       break;
   4400     }
   4401     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
   4402     case bitc::FUNC_CODE_INST_CMPXCHG: {
   4403       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
   4404       //          failureordering?, isweak?]
   4405       unsigned OpNum = 0;
   4406       Value *Ptr, *Cmp, *New;
   4407       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   4408           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
   4409                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
   4410                : popValue(Record, OpNum, NextValueNo,
   4411                           cast<PointerType>(Ptr->getType())->getElementType(),
   4412                           Cmp)) ||
   4413           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
   4414           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
   4415         return error("Invalid record");
   4416       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
   4417       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
   4418           SuccessOrdering == AtomicOrdering::Unordered)
   4419         return error("Invalid record");
   4420       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
   4421 
   4422       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
   4423         return Err;
   4424       AtomicOrdering FailureOrdering;
   4425       if (Record.size() < 7)
   4426         FailureOrdering =
   4427             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
   4428       else
   4429         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
   4430 
   4431       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
   4432                                 SSID);
   4433       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
   4434 
   4435       if (Record.size() < 8) {
   4436         // Before weak cmpxchgs existed, the instruction simply returned the
   4437         // value loaded from memory, so bitcode files from that era will be
   4438         // expecting the first component of a modern cmpxchg.
   4439         CurBB->getInstList().push_back(I);
   4440         I = ExtractValueInst::Create(I, 0);
   4441       } else {
   4442         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
   4443       }
   4444 
   4445       InstructionList.push_back(I);
   4446       break;
   4447     }
   4448     case bitc::FUNC_CODE_INST_ATOMICRMW: {
   4449       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
   4450       unsigned OpNum = 0;
   4451       Value *Ptr, *Val;
   4452       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   4453           !isa<PointerType>(Ptr->getType()) ||
   4454           popValue(Record, OpNum, NextValueNo,
   4455                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   4456           OpNum+4 != Record.size())
   4457         return error("Invalid record");
   4458       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
   4459       if (Operation < AtomicRMWInst::FIRST_BINOP ||
   4460           Operation > AtomicRMWInst::LAST_BINOP)
   4461         return error("Invalid record");
   4462       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
   4463       if (Ordering == AtomicOrdering::NotAtomic ||
   4464           Ordering == AtomicOrdering::Unordered)
   4465         return error("Invalid record");
   4466       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
   4467       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
   4468       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
   4469       InstructionList.push_back(I);
   4470       break;
   4471     }
   4472     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
   4473       if (2 != Record.size())
   4474         return error("Invalid record");
   4475       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
   4476       if (Ordering == AtomicOrdering::NotAtomic ||
   4477           Ordering == AtomicOrdering::Unordered ||
   4478           Ordering == AtomicOrdering::Monotonic)
   4479         return error("Invalid record");
   4480       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
   4481       I = new FenceInst(Context, Ordering, SSID);
   4482       InstructionList.push_back(I);
   4483       break;
   4484     }
   4485     case bitc::FUNC_CODE_INST_CALL: {
   4486       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
   4487       if (Record.size() < 3)
   4488         return error("Invalid record");
   4489 
   4490       unsigned OpNum = 0;
   4491       AttributeList PAL = getAttributes(Record[OpNum++]);
   4492       unsigned CCInfo = Record[OpNum++];
   4493 
   4494       FastMathFlags FMF;
   4495       if ((CCInfo >> bitc::CALL_FMF) & 1) {
   4496         FMF = getDecodedFastMathFlags(Record[OpNum++]);
   4497         if (!FMF.any())
   4498           return error("Fast math flags indicator set for call with no FMF");
   4499       }
   4500 
   4501       FunctionType *FTy = nullptr;
   4502       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
   4503           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
   4504         return error("Explicit call type is not a function type");
   4505 
   4506       Value *Callee;
   4507       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   4508         return error("Invalid record");
   4509 
   4510       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
   4511       if (!OpTy)
   4512         return error("Callee is not a pointer type");
   4513       if (!FTy) {
   4514         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
   4515         if (!FTy)
   4516           return error("Callee is not of pointer to function type");
   4517       } else if (OpTy->getElementType() != FTy)
   4518         return error("Explicit call type does not match pointee type of "
   4519                      "callee operand");
   4520       if (Record.size() < FTy->getNumParams() + OpNum)
   4521         return error("Insufficient operands to call");
   4522 
   4523       SmallVector<Value*, 16> Args;
   4524       // Read the fixed params.
   4525       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   4526         if (FTy->getParamType(i)->isLabelTy())
   4527           Args.push_back(getBasicBlock(Record[OpNum]));
   4528         else
   4529           Args.push_back(getValue(Record, OpNum, NextValueNo,
   4530                                   FTy->getParamType(i)));
   4531         if (!Args.back())
   4532           return error("Invalid record");
   4533       }
   4534 
   4535       // Read type/value pairs for varargs params.
   4536       if (!FTy->isVarArg()) {
   4537         if (OpNum != Record.size())
   4538           return error("Invalid record");
   4539       } else {
   4540         while (OpNum != Record.size()) {
   4541           Value *Op;
   4542           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   4543             return error("Invalid record");
   4544           Args.push_back(Op);
   4545         }
   4546       }
   4547 
   4548       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
   4549       OperandBundles.clear();
   4550       InstructionList.push_back(I);
   4551       cast<CallInst>(I)->setCallingConv(
   4552           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
   4553       CallInst::TailCallKind TCK = CallInst::TCK_None;
   4554       if (CCInfo & 1 << bitc::CALL_TAIL)
   4555         TCK = CallInst::TCK_Tail;
   4556       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
   4557         TCK = CallInst::TCK_MustTail;
   4558       if (CCInfo & (1 << bitc::CALL_NOTAIL))
   4559         TCK = CallInst::TCK_NoTail;
   4560       cast<CallInst>(I)->setTailCallKind(TCK);
   4561       cast<CallInst>(I)->setAttributes(PAL);
   4562       if (FMF.any()) {
   4563         if (!isa<FPMathOperator>(I))
   4564           return error("Fast-math-flags specified for call without "
   4565                        "floating-point scalar or vector return type");
   4566         I->setFastMathFlags(FMF);
   4567       }
   4568       break;
   4569     }
   4570     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
   4571       if (Record.size() < 3)
   4572         return error("Invalid record");
   4573       Type *OpTy = getTypeByID(Record[0]);
   4574       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
   4575       Type *ResTy = getTypeByID(Record[2]);
   4576       if (!OpTy || !Op || !ResTy)
   4577         return error("Invalid record");
   4578       I = new VAArgInst(Op, ResTy);
   4579       InstructionList.push_back(I);
   4580       break;
   4581     }
   4582 
   4583     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
   4584       // A call or an invoke can be optionally prefixed with some variable
   4585       // number of operand bundle blocks.  These blocks are read into
   4586       // OperandBundles and consumed at the next call or invoke instruction.
   4587 
   4588       if (Record.size() < 1 || Record[0] >= BundleTags.size())
   4589         return error("Invalid record");
   4590 
   4591       std::vector<Value *> Inputs;
   4592 
   4593       unsigned OpNum = 1;
   4594       while (OpNum != Record.size()) {
   4595         Value *Op;
   4596         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   4597           return error("Invalid record");
   4598         Inputs.push_back(Op);
   4599       }
   4600 
   4601       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
   4602       continue;
   4603     }
   4604     }
   4605 
   4606     // Add instruction to end of current BB.  If there is no current BB, reject
   4607     // this file.
   4608     if (!CurBB) {
   4609       I->deleteValue();
   4610       return error("Invalid instruction with no BB");
   4611     }
   4612     if (!OperandBundles.empty()) {
   4613       I->deleteValue();
   4614       return error("Operand bundles found with no consumer");
   4615     }
   4616     CurBB->getInstList().push_back(I);
   4617 
   4618     // If this was a terminator instruction, move to the next block.
   4619     if (isa<TerminatorInst>(I)) {
   4620       ++CurBBNo;
   4621       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
   4622     }
   4623 
   4624     // Non-void values get registered in the value table for future use.
   4625     if (I && !I->getType()->isVoidTy())
   4626       ValueList.assignValue(I, NextValueNo++);
   4627   }
   4628 
   4629 OutOfRecordLoop:
   4630 
   4631   if (!OperandBundles.empty())
   4632     return error("Operand bundles found with no consumer");
   4633 
   4634   // Check the function list for unresolved values.
   4635   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
   4636     if (!A->getParent()) {
   4637       // We found at least one unresolved value.  Nuke them all to avoid leaks.
   4638       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
   4639         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
   4640           A->replaceAllUsesWith(UndefValue::get(A->getType()));
   4641           delete A;
   4642         }
   4643       }
   4644       return error("Never resolved value found in function");
   4645     }
   4646   }
   4647 
   4648   // Unexpected unresolved metadata about to be dropped.
   4649   if (MDLoader->hasFwdRefs())
   4650     return error("Invalid function metadata: outgoing forward refs");
   4651 
   4652   // Trim the value list down to the size it was before we parsed this function.
   4653   ValueList.shrinkTo(ModuleValueListSize);
   4654   MDLoader->shrinkTo(ModuleMDLoaderSize);
   4655   std::vector<BasicBlock*>().swap(FunctionBBs);
   4656   return Error::success();
   4657 }
   4658 
   4659 /// Find the function body in the bitcode stream
   4660 Error BitcodeReader::findFunctionInStream(
   4661     Function *F,
   4662     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
   4663   while (DeferredFunctionInfoIterator->second == 0) {
   4664     // This is the fallback handling for the old format bitcode that
   4665     // didn't contain the function index in the VST, or when we have
   4666     // an anonymous function which would not have a VST entry.
   4667     // Assert that we have one of those two cases.
   4668     assert(VSTOffset == 0 || !F->hasName());
   4669     // Parse the next body in the stream and set its position in the
   4670     // DeferredFunctionInfo map.
   4671     if (Error Err = rememberAndSkipFunctionBodies())
   4672       return Err;
   4673   }
   4674   return Error::success();
   4675 }
   4676 
   4677 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
   4678   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
   4679     return SyncScope::ID(Val);
   4680   if (Val >= SSIDs.size())
   4681     return SyncScope::System; // Map unknown synchronization scopes to system.
   4682   return SSIDs[Val];
   4683 }
   4684 
   4685 //===----------------------------------------------------------------------===//
   4686 // GVMaterializer implementation
   4687 //===----------------------------------------------------------------------===//
   4688 
   4689 Error BitcodeReader::materialize(GlobalValue *GV) {
   4690   Function *F = dyn_cast<Function>(GV);
   4691   // If it's not a function or is already material, ignore the request.
   4692   if (!F || !F->isMaterializable())
   4693     return Error::success();
   4694 
   4695   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
   4696   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
   4697   // If its position is recorded as 0, its body is somewhere in the stream
   4698   // but we haven't seen it yet.
   4699   if (DFII->second == 0)
   4700     if (Error Err = findFunctionInStream(F, DFII))
   4701       return Err;
   4702 
   4703   // Materialize metadata before parsing any function bodies.
   4704   if (Error Err = materializeMetadata())
   4705     return Err;
   4706 
   4707   // Move the bit stream to the saved position of the deferred function body.
   4708   Stream.JumpToBit(DFII->second);
   4709 
   4710   if (Error Err = parseFunctionBody(F))
   4711     return Err;
   4712   F->setIsMaterializable(false);
   4713 
   4714   if (StripDebugInfo)
   4715     stripDebugInfo(*F);
   4716 
   4717   // Upgrade any old intrinsic calls in the function.
   4718   for (auto &I : UpgradedIntrinsics) {
   4719     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
   4720          UI != UE;) {
   4721       User *U = *UI;
   4722       ++UI;
   4723       if (CallInst *CI = dyn_cast<CallInst>(U))
   4724         UpgradeIntrinsicCall(CI, I.second);
   4725     }
   4726   }
   4727 
   4728   // Update calls to the remangled intrinsics
   4729   for (auto &I : RemangledIntrinsics)
   4730     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
   4731          UI != UE;)
   4732       // Don't expect any other users than call sites
   4733       CallSite(*UI++).setCalledFunction(I.second);
   4734 
   4735   // Finish fn->subprogram upgrade for materialized functions.
   4736   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
   4737     F->setSubprogram(SP);
   4738 
   4739   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
   4740   if (!MDLoader->isStrippingTBAA()) {
   4741     for (auto &I : instructions(F)) {
   4742       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
   4743       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
   4744         continue;
   4745       MDLoader->setStripTBAA(true);
   4746       stripTBAA(F->getParent());
   4747     }
   4748   }
   4749 
   4750   // Bring in any functions that this function forward-referenced via
   4751   // blockaddresses.
   4752   return materializeForwardReferencedFunctions();
   4753 }
   4754 
   4755 Error BitcodeReader::materializeModule() {
   4756   if (Error Err = materializeMetadata())
   4757     return Err;
   4758 
   4759   // Promise to materialize all forward references.
   4760   WillMaterializeAllForwardRefs = true;
   4761 
   4762   // Iterate over the module, deserializing any functions that are still on
   4763   // disk.
   4764   for (Function &F : *TheModule) {
   4765     if (Error Err = materialize(&F))
   4766       return Err;
   4767   }
   4768   // At this point, if there are any function bodies, parse the rest of
   4769   // the bits in the module past the last function block we have recorded
   4770   // through either lazy scanning or the VST.
   4771   if (LastFunctionBlockBit || NextUnreadBit)
   4772     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
   4773                                     ? LastFunctionBlockBit
   4774                                     : NextUnreadBit))
   4775       return Err;
   4776 
   4777   // Check that all block address forward references got resolved (as we
   4778   // promised above).
   4779   if (!BasicBlockFwdRefs.empty())
   4780     return error("Never resolved function from blockaddress");
   4781 
   4782   // Upgrade any intrinsic calls that slipped through (should not happen!) and
   4783   // delete the old functions to clean up. We can't do this unless the entire
   4784   // module is materialized because there could always be another function body
   4785   // with calls to the old function.
   4786   for (auto &I : UpgradedIntrinsics) {
   4787     for (auto *U : I.first->users()) {
   4788       if (CallInst *CI = dyn_cast<CallInst>(U))
   4789         UpgradeIntrinsicCall(CI, I.second);
   4790     }
   4791     if (!I.first->use_empty())
   4792       I.first->replaceAllUsesWith(I.second);
   4793     I.first->eraseFromParent();
   4794   }
   4795   UpgradedIntrinsics.clear();
   4796   // Do the same for remangled intrinsics
   4797   for (auto &I : RemangledIntrinsics) {
   4798     I.first->replaceAllUsesWith(I.second);
   4799     I.first->eraseFromParent();
   4800   }
   4801   RemangledIntrinsics.clear();
   4802 
   4803   UpgradeDebugInfo(*TheModule);
   4804 
   4805   UpgradeModuleFlags(*TheModule);
   4806 
   4807   UpgradeRetainReleaseMarker(*TheModule);
   4808 
   4809   return Error::success();
   4810 }
   4811 
   4812 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
   4813   return IdentifiedStructTypes;
   4814 }
   4815 
   4816 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
   4817     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
   4818     StringRef ModulePath, unsigned ModuleId)
   4819     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
   4820       ModulePath(ModulePath), ModuleId(ModuleId) {}
   4821 
   4822 void ModuleSummaryIndexBitcodeReader::addThisModule() {
   4823   TheIndex.addModule(ModulePath, ModuleId);
   4824 }
   4825 
   4826 ModuleSummaryIndex::ModuleInfo *
   4827 ModuleSummaryIndexBitcodeReader::getThisModule() {
   4828   return TheIndex.getModule(ModulePath);
   4829 }
   4830 
   4831 std::pair<ValueInfo, GlobalValue::GUID>
   4832 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
   4833   auto VGI = ValueIdToValueInfoMap[ValueId];
   4834   assert(VGI.first);
   4835   return VGI;
   4836 }
   4837 
   4838 void ModuleSummaryIndexBitcodeReader::setValueGUID(
   4839     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
   4840     StringRef SourceFileName) {
   4841   std::string GlobalId =
   4842       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
   4843   auto ValueGUID = GlobalValue::getGUID(GlobalId);
   4844   auto OriginalNameID = ValueGUID;
   4845   if (GlobalValue::isLocalLinkage(Linkage))
   4846     OriginalNameID = GlobalValue::getGUID(ValueName);
   4847   if (PrintSummaryGUIDs)
   4848     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
   4849            << ValueName << "\n";
   4850 
   4851   // UseStrtab is false for legacy summary formats and value names are
   4852   // created on stack. In that case we save the name in a string saver in
   4853   // the index so that the value name can be recorded.
   4854   ValueIdToValueInfoMap[ValueID] = std::make_pair(
   4855       TheIndex.getOrInsertValueInfo(
   4856           ValueGUID,
   4857           UseStrtab ? ValueName : TheIndex.saveString(ValueName.str())),
   4858       OriginalNameID);
   4859 }
   4860 
   4861 // Specialized value symbol table parser used when reading module index
   4862 // blocks where we don't actually create global values. The parsed information
   4863 // is saved in the bitcode reader for use when later parsing summaries.
   4864 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
   4865     uint64_t Offset,
   4866     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
   4867   // With a strtab the VST is not required to parse the summary.
   4868   if (UseStrtab)
   4869     return Error::success();
   4870 
   4871   assert(Offset > 0 && "Expected non-zero VST offset");
   4872   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
   4873 
   4874   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
   4875     return error("Invalid record");
   4876 
   4877   SmallVector<uint64_t, 64> Record;
   4878 
   4879   // Read all the records for this value table.
   4880   SmallString<128> ValueName;
   4881 
   4882   while (true) {
   4883     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   4884 
   4885     switch (Entry.Kind) {
   4886     case BitstreamEntry::SubBlock: // Handled for us already.
   4887     case BitstreamEntry::Error:
   4888       return error("Malformed block");
   4889     case BitstreamEntry::EndBlock:
   4890       // Done parsing VST, jump back to wherever we came from.
   4891       Stream.JumpToBit(CurrentBit);
   4892       return Error::success();
   4893     case BitstreamEntry::Record:
   4894       // The interesting case.
   4895       break;
   4896     }
   4897 
   4898     // Read a record.
   4899     Record.clear();
   4900     switch (Stream.readRecord(Entry.ID, Record)) {
   4901     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
   4902       break;
   4903     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
   4904       if (convertToString(Record, 1, ValueName))
   4905         return error("Invalid record");
   4906       unsigned ValueID = Record[0];
   4907       assert(!SourceFileName.empty());
   4908       auto VLI = ValueIdToLinkageMap.find(ValueID);
   4909       assert(VLI != ValueIdToLinkageMap.end() &&
   4910              "No linkage found for VST entry?");
   4911       auto Linkage = VLI->second;
   4912       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
   4913       ValueName.clear();
   4914       break;
   4915     }
   4916     case bitc::VST_CODE_FNENTRY: {
   4917       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
   4918       if (convertToString(Record, 2, ValueName))
   4919         return error("Invalid record");
   4920       unsigned ValueID = Record[0];
   4921       assert(!SourceFileName.empty());
   4922       auto VLI = ValueIdToLinkageMap.find(ValueID);
   4923       assert(VLI != ValueIdToLinkageMap.end() &&
   4924              "No linkage found for VST entry?");
   4925       auto Linkage = VLI->second;
   4926       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
   4927       ValueName.clear();
   4928       break;
   4929     }
   4930     case bitc::VST_CODE_COMBINED_ENTRY: {
   4931       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
   4932       unsigned ValueID = Record[0];
   4933       GlobalValue::GUID RefGUID = Record[1];
   4934       // The "original name", which is the second value of the pair will be
   4935       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
   4936       ValueIdToValueInfoMap[ValueID] =
   4937           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
   4938       break;
   4939     }
   4940     }
   4941   }
   4942 }
   4943 
   4944 // Parse just the blocks needed for building the index out of the module.
   4945 // At the end of this routine the module Index is populated with a map
   4946 // from global value id to GlobalValueSummary objects.
   4947 Error ModuleSummaryIndexBitcodeReader::parseModule() {
   4948   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   4949     return error("Invalid record");
   4950 
   4951   SmallVector<uint64_t, 64> Record;
   4952   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
   4953   unsigned ValueId = 0;
   4954 
   4955   // Read the index for this module.
   4956   while (true) {
   4957     BitstreamEntry Entry = Stream.advance();
   4958 
   4959     switch (Entry.Kind) {
   4960     case BitstreamEntry::Error:
   4961       return error("Malformed block");
   4962     case BitstreamEntry::EndBlock:
   4963       return Error::success();
   4964 
   4965     case BitstreamEntry::SubBlock:
   4966       switch (Entry.ID) {
   4967       default: // Skip unknown content.
   4968         if (Stream.SkipBlock())
   4969           return error("Invalid record");
   4970         break;
   4971       case bitc::BLOCKINFO_BLOCK_ID:
   4972         // Need to parse these to get abbrev ids (e.g. for VST)
   4973         if (readBlockInfo())
   4974           return error("Malformed block");
   4975         break;
   4976       case bitc::VALUE_SYMTAB_BLOCK_ID:
   4977         // Should have been parsed earlier via VSTOffset, unless there
   4978         // is no summary section.
   4979         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
   4980                 !SeenGlobalValSummary) &&
   4981                "Expected early VST parse via VSTOffset record");
   4982         if (Stream.SkipBlock())
   4983           return error("Invalid record");
   4984         break;
   4985       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
   4986       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
   4987         // Add the module if it is a per-module index (has a source file name).
   4988         if (!SourceFileName.empty())
   4989           addThisModule();
   4990         assert(!SeenValueSymbolTable &&
   4991                "Already read VST when parsing summary block?");
   4992         // We might not have a VST if there were no values in the
   4993         // summary. An empty summary block generated when we are
   4994         // performing ThinLTO compiles so we don't later invoke
   4995         // the regular LTO process on them.
   4996         if (VSTOffset > 0) {
   4997           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
   4998             return Err;
   4999           SeenValueSymbolTable = true;
   5000         }
   5001         SeenGlobalValSummary = true;
   5002         if (Error Err = parseEntireSummary(Entry.ID))
   5003           return Err;
   5004         break;
   5005       case bitc::MODULE_STRTAB_BLOCK_ID:
   5006         if (Error Err = parseModuleStringTable())
   5007           return Err;
   5008         break;
   5009       }
   5010       continue;
   5011 
   5012     case BitstreamEntry::Record: {
   5013         Record.clear();
   5014         auto BitCode = Stream.readRecord(Entry.ID, Record);
   5015         switch (BitCode) {
   5016         default:
   5017           break; // Default behavior, ignore unknown content.
   5018         case bitc::MODULE_CODE_VERSION: {
   5019           if (Error Err = parseVersionRecord(Record).takeError())
   5020             return Err;
   5021           break;
   5022         }
   5023         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
   5024         case bitc::MODULE_CODE_SOURCE_FILENAME: {
   5025           SmallString<128> ValueName;
   5026           if (convertToString(Record, 0, ValueName))
   5027             return error("Invalid record");
   5028           SourceFileName = ValueName.c_str();
   5029           break;
   5030         }
   5031         /// MODULE_CODE_HASH: [5*i32]
   5032         case bitc::MODULE_CODE_HASH: {
   5033           if (Record.size() != 5)
   5034             return error("Invalid hash length " + Twine(Record.size()).str());
   5035           auto &Hash = getThisModule()->second.second;
   5036           int Pos = 0;
   5037           for (auto &Val : Record) {
   5038             assert(!(Val >> 32) && "Unexpected high bits set");
   5039             Hash[Pos++] = Val;
   5040           }
   5041           break;
   5042         }
   5043         /// MODULE_CODE_VSTOFFSET: [offset]
   5044         case bitc::MODULE_CODE_VSTOFFSET:
   5045           if (Record.size() < 1)
   5046             return error("Invalid record");
   5047           // Note that we subtract 1 here because the offset is relative to one
   5048           // word before the start of the identification or module block, which
   5049           // was historically always the start of the regular bitcode header.
   5050           VSTOffset = Record[0] - 1;
   5051           break;
   5052         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
   5053         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
   5054         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
   5055         // v2: [strtab offset, strtab size, v1]
   5056         case bitc::MODULE_CODE_GLOBALVAR:
   5057         case bitc::MODULE_CODE_FUNCTION:
   5058         case bitc::MODULE_CODE_ALIAS: {
   5059           StringRef Name;
   5060           ArrayRef<uint64_t> GVRecord;
   5061           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
   5062           if (GVRecord.size() <= 3)
   5063             return error("Invalid record");
   5064           uint64_t RawLinkage = GVRecord[3];
   5065           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
   5066           if (!UseStrtab) {
   5067             ValueIdToLinkageMap[ValueId++] = Linkage;
   5068             break;
   5069           }
   5070 
   5071           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
   5072           break;
   5073         }
   5074         }
   5075       }
   5076       continue;
   5077     }
   5078   }
   5079 }
   5080 
   5081 std::vector<ValueInfo>
   5082 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
   5083   std::vector<ValueInfo> Ret;
   5084   Ret.reserve(Record.size());
   5085   for (uint64_t RefValueId : Record)
   5086     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
   5087   return Ret;
   5088 }
   5089 
   5090 std::vector<FunctionSummary::EdgeTy>
   5091 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
   5092                                               bool IsOldProfileFormat,
   5093                                               bool HasProfile, bool HasRelBF) {
   5094   std::vector<FunctionSummary::EdgeTy> Ret;
   5095   Ret.reserve(Record.size());
   5096   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
   5097     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
   5098     uint64_t RelBF = 0;
   5099     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
   5100     if (IsOldProfileFormat) {
   5101       I += 1; // Skip old callsitecount field
   5102       if (HasProfile)
   5103         I += 1; // Skip old profilecount field
   5104     } else if (HasProfile)
   5105       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
   5106     else if (HasRelBF)
   5107       RelBF = Record[++I];
   5108     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
   5109   }
   5110   return Ret;
   5111 }
   5112 
   5113 static void
   5114 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
   5115                                        WholeProgramDevirtResolution &Wpd) {
   5116   uint64_t ArgNum = Record[Slot++];
   5117   WholeProgramDevirtResolution::ByArg &B =
   5118       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
   5119   Slot += ArgNum;
   5120 
   5121   B.TheKind =
   5122       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
   5123   B.Info = Record[Slot++];
   5124   B.Byte = Record[Slot++];
   5125   B.Bit = Record[Slot++];
   5126 }
   5127 
   5128 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
   5129                                               StringRef Strtab, size_t &Slot,
   5130                                               TypeIdSummary &TypeId) {
   5131   uint64_t Id = Record[Slot++];
   5132   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
   5133 
   5134   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
   5135   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
   5136                         static_cast<size_t>(Record[Slot + 1])};
   5137   Slot += 2;
   5138 
   5139   uint64_t ResByArgNum = Record[Slot++];
   5140   for (uint64_t I = 0; I != ResByArgNum; ++I)
   5141     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
   5142 }
   5143 
   5144 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
   5145                                      StringRef Strtab,
   5146                                      ModuleSummaryIndex &TheIndex) {
   5147   size_t Slot = 0;
   5148   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
   5149       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
   5150   Slot += 2;
   5151 
   5152   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
   5153   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
   5154   TypeId.TTRes.AlignLog2 = Record[Slot++];
   5155   TypeId.TTRes.SizeM1 = Record[Slot++];
   5156   TypeId.TTRes.BitMask = Record[Slot++];
   5157   TypeId.TTRes.InlineBits = Record[Slot++];
   5158 
   5159   while (Slot < Record.size())
   5160     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
   5161 }
   5162 
   5163 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
   5164 // objects in the index.
   5165 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
   5166   if (Stream.EnterSubBlock(ID))
   5167     return error("Invalid record");
   5168   SmallVector<uint64_t, 64> Record;
   5169 
   5170   // Parse version
   5171   {
   5172     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   5173     if (Entry.Kind != BitstreamEntry::Record)
   5174       return error("Invalid Summary Block: record for version expected");
   5175     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
   5176       return error("Invalid Summary Block: version expected");
   5177   }
   5178   const uint64_t Version = Record[0];
   5179   const bool IsOldProfileFormat = Version == 1;
   5180   if (Version < 1 || Version > 4)
   5181     return error("Invalid summary version " + Twine(Version) +
   5182                  ", 1, 2, 3 or 4 expected");
   5183   Record.clear();
   5184 
   5185   // Keep around the last seen summary to be used when we see an optional
   5186   // "OriginalName" attachement.
   5187   GlobalValueSummary *LastSeenSummary = nullptr;
   5188   GlobalValue::GUID LastSeenGUID = 0;
   5189 
   5190   // We can expect to see any number of type ID information records before
   5191   // each function summary records; these variables store the information
   5192   // collected so far so that it can be used to create the summary object.
   5193   std::vector<GlobalValue::GUID> PendingTypeTests;
   5194   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
   5195       PendingTypeCheckedLoadVCalls;
   5196   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
   5197       PendingTypeCheckedLoadConstVCalls;
   5198 
   5199   while (true) {
   5200     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   5201 
   5202     switch (Entry.Kind) {
   5203     case BitstreamEntry::SubBlock: // Handled for us already.
   5204     case BitstreamEntry::Error:
   5205       return error("Malformed block");
   5206     case BitstreamEntry::EndBlock:
   5207       return Error::success();
   5208     case BitstreamEntry::Record:
   5209       // The interesting case.
   5210       break;
   5211     }
   5212 
   5213     // Read a record. The record format depends on whether this
   5214     // is a per-module index or a combined index file. In the per-module
   5215     // case the records contain the associated value's ID for correlation
   5216     // with VST entries. In the combined index the correlation is done
   5217     // via the bitcode offset of the summary records (which were saved
   5218     // in the combined index VST entries). The records also contain
   5219     // information used for ThinLTO renaming and importing.
   5220     Record.clear();
   5221     auto BitCode = Stream.readRecord(Entry.ID, Record);
   5222     switch (BitCode) {
   5223     default: // Default behavior: ignore.
   5224       break;
   5225     case bitc::FS_FLAGS: {  // [flags]
   5226       uint64_t Flags = Record[0];
   5227       // Scan flags (set only on the combined index).
   5228       assert(Flags <= 0x3 && "Unexpected bits in flag");
   5229 
   5230       // 1 bit: WithGlobalValueDeadStripping flag.
   5231       if (Flags & 0x1)
   5232         TheIndex.setWithGlobalValueDeadStripping();
   5233       // 1 bit: SkipModuleByDistributedBackend flag.
   5234       if (Flags & 0x2)
   5235         TheIndex.setSkipModuleByDistributedBackend();
   5236       break;
   5237     }
   5238     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
   5239       uint64_t ValueID = Record[0];
   5240       GlobalValue::GUID RefGUID = Record[1];
   5241       ValueIdToValueInfoMap[ValueID] =
   5242           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
   5243       break;
   5244     }
   5245     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
   5246     //                numrefs x valueid, n x (valueid)]
   5247     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
   5248     //                        numrefs x valueid,
   5249     //                        n x (valueid, hotness)]
   5250     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
   5251     //                      numrefs x valueid,
   5252     //                      n x (valueid, relblockfreq)]
   5253     case bitc::FS_PERMODULE:
   5254     case bitc::FS_PERMODULE_RELBF:
   5255     case bitc::FS_PERMODULE_PROFILE: {
   5256       unsigned ValueID = Record[0];
   5257       uint64_t RawFlags = Record[1];
   5258       unsigned InstCount = Record[2];
   5259       uint64_t RawFunFlags = 0;
   5260       unsigned NumRefs = Record[3];
   5261       int RefListStartIndex = 4;
   5262       if (Version >= 4) {
   5263         RawFunFlags = Record[3];
   5264         NumRefs = Record[4];
   5265         RefListStartIndex = 5;
   5266       }
   5267 
   5268       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
   5269       // The module path string ref set in the summary must be owned by the
   5270       // index's module string table. Since we don't have a module path
   5271       // string table section in the per-module index, we create a single
   5272       // module path string table entry with an empty (0) ID to take
   5273       // ownership.
   5274       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
   5275       assert(Record.size() >= RefListStartIndex + NumRefs &&
   5276              "Record size inconsistent with number of references");
   5277       std::vector<ValueInfo> Refs = makeRefList(
   5278           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
   5279       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
   5280       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
   5281       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
   5282           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
   5283           IsOldProfileFormat, HasProfile, HasRelBF);
   5284       auto FS = llvm::make_unique<FunctionSummary>(
   5285           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
   5286           std::move(Calls), std::move(PendingTypeTests),
   5287           std::move(PendingTypeTestAssumeVCalls),
   5288           std::move(PendingTypeCheckedLoadVCalls),
   5289           std::move(PendingTypeTestAssumeConstVCalls),
   5290           std::move(PendingTypeCheckedLoadConstVCalls));
   5291       PendingTypeTests.clear();
   5292       PendingTypeTestAssumeVCalls.clear();
   5293       PendingTypeCheckedLoadVCalls.clear();
   5294       PendingTypeTestAssumeConstVCalls.clear();
   5295       PendingTypeCheckedLoadConstVCalls.clear();
   5296       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
   5297       FS->setModulePath(getThisModule()->first());
   5298       FS->setOriginalName(VIAndOriginalGUID.second);
   5299       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
   5300       break;
   5301     }
   5302     // FS_ALIAS: [valueid, flags, valueid]
   5303     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
   5304     // they expect all aliasee summaries to be available.
   5305     case bitc::FS_ALIAS: {
   5306       unsigned ValueID = Record[0];
   5307       uint64_t RawFlags = Record[1];
   5308       unsigned AliaseeID = Record[2];
   5309       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
   5310       auto AS = llvm::make_unique<AliasSummary>(Flags);
   5311       // The module path string ref set in the summary must be owned by the
   5312       // index's module string table. Since we don't have a module path
   5313       // string table section in the per-module index, we create a single
   5314       // module path string table entry with an empty (0) ID to take
   5315       // ownership.
   5316       AS->setModulePath(getThisModule()->first());
   5317 
   5318       GlobalValue::GUID AliaseeGUID =
   5319           getValueInfoFromValueId(AliaseeID).first.getGUID();
   5320       auto AliaseeInModule =
   5321           TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
   5322       if (!AliaseeInModule)
   5323         return error("Alias expects aliasee summary to be parsed");
   5324       AS->setAliasee(AliaseeInModule);
   5325       AS->setAliaseeGUID(AliaseeGUID);
   5326 
   5327       auto GUID = getValueInfoFromValueId(ValueID);
   5328       AS->setOriginalName(GUID.second);
   5329       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
   5330       break;
   5331     }
   5332     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
   5333     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
   5334       unsigned ValueID = Record[0];
   5335       uint64_t RawFlags = Record[1];
   5336       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
   5337       std::vector<ValueInfo> Refs =
   5338           makeRefList(ArrayRef<uint64_t>(Record).slice(2));
   5339       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
   5340       FS->setModulePath(getThisModule()->first());
   5341       auto GUID = getValueInfoFromValueId(ValueID);
   5342       FS->setOriginalName(GUID.second);
   5343       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
   5344       break;
   5345     }
   5346     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
   5347     //               numrefs x valueid, n x (valueid)]
   5348     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
   5349     //                       numrefs x valueid, n x (valueid, hotness)]
   5350     case bitc::FS_COMBINED:
   5351     case bitc::FS_COMBINED_PROFILE: {
   5352       unsigned ValueID = Record[0];
   5353       uint64_t ModuleId = Record[1];
   5354       uint64_t RawFlags = Record[2];
   5355       unsigned InstCount = Record[3];
   5356       uint64_t RawFunFlags = 0;
   5357       unsigned NumRefs = Record[4];
   5358       int RefListStartIndex = 5;
   5359 
   5360       if (Version >= 4) {
   5361         RawFunFlags = Record[4];
   5362         NumRefs = Record[5];
   5363         RefListStartIndex = 6;
   5364       }
   5365 
   5366       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
   5367       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
   5368       assert(Record.size() >= RefListStartIndex + NumRefs &&
   5369              "Record size inconsistent with number of references");
   5370       std::vector<ValueInfo> Refs = makeRefList(
   5371           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
   5372       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
   5373       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
   5374           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
   5375           IsOldProfileFormat, HasProfile, false);
   5376       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
   5377       auto FS = llvm::make_unique<FunctionSummary>(
   5378           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
   5379           std::move(Edges), std::move(PendingTypeTests),
   5380           std::move(PendingTypeTestAssumeVCalls),
   5381           std::move(PendingTypeCheckedLoadVCalls),
   5382           std::move(PendingTypeTestAssumeConstVCalls),
   5383           std::move(PendingTypeCheckedLoadConstVCalls));
   5384       PendingTypeTests.clear();
   5385       PendingTypeTestAssumeVCalls.clear();
   5386       PendingTypeCheckedLoadVCalls.clear();
   5387       PendingTypeTestAssumeConstVCalls.clear();
   5388       PendingTypeCheckedLoadConstVCalls.clear();
   5389       LastSeenSummary = FS.get();
   5390       LastSeenGUID = VI.getGUID();
   5391       FS->setModulePath(ModuleIdMap[ModuleId]);
   5392       TheIndex.addGlobalValueSummary(VI, std::move(FS));
   5393       break;
   5394     }
   5395     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
   5396     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
   5397     // they expect all aliasee summaries to be available.
   5398     case bitc::FS_COMBINED_ALIAS: {
   5399       unsigned ValueID = Record[0];
   5400       uint64_t ModuleId = Record[1];
   5401       uint64_t RawFlags = Record[2];
   5402       unsigned AliaseeValueId = Record[3];
   5403       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
   5404       auto AS = llvm::make_unique<AliasSummary>(Flags);
   5405       LastSeenSummary = AS.get();
   5406       AS->setModulePath(ModuleIdMap[ModuleId]);
   5407 
   5408       auto AliaseeGUID =
   5409           getValueInfoFromValueId(AliaseeValueId).first.getGUID();
   5410       auto AliaseeInModule =
   5411           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
   5412       AS->setAliasee(AliaseeInModule);
   5413       AS->setAliaseeGUID(AliaseeGUID);
   5414 
   5415       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
   5416       LastSeenGUID = VI.getGUID();
   5417       TheIndex.addGlobalValueSummary(VI, std::move(AS));
   5418       break;
   5419     }
   5420     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
   5421     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
   5422       unsigned ValueID = Record[0];
   5423       uint64_t ModuleId = Record[1];
   5424       uint64_t RawFlags = Record[2];
   5425       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
   5426       std::vector<ValueInfo> Refs =
   5427           makeRefList(ArrayRef<uint64_t>(Record).slice(3));
   5428       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
   5429       LastSeenSummary = FS.get();
   5430       FS->setModulePath(ModuleIdMap[ModuleId]);
   5431       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
   5432       LastSeenGUID = VI.getGUID();
   5433       TheIndex.addGlobalValueSummary(VI, std::move(FS));
   5434       break;
   5435     }
   5436     // FS_COMBINED_ORIGINAL_NAME: [original_name]
   5437     case bitc::FS_COMBINED_ORIGINAL_NAME: {
   5438       uint64_t OriginalName = Record[0];
   5439       if (!LastSeenSummary)
   5440         return error("Name attachment that does not follow a combined record");
   5441       LastSeenSummary->setOriginalName(OriginalName);
   5442       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
   5443       // Reset the LastSeenSummary
   5444       LastSeenSummary = nullptr;
   5445       LastSeenGUID = 0;
   5446       break;
   5447     }
   5448     case bitc::FS_TYPE_TESTS:
   5449       assert(PendingTypeTests.empty());
   5450       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
   5451                               Record.end());
   5452       break;
   5453 
   5454     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
   5455       assert(PendingTypeTestAssumeVCalls.empty());
   5456       for (unsigned I = 0; I != Record.size(); I += 2)
   5457         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
   5458       break;
   5459 
   5460     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
   5461       assert(PendingTypeCheckedLoadVCalls.empty());
   5462       for (unsigned I = 0; I != Record.size(); I += 2)
   5463         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
   5464       break;
   5465 
   5466     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
   5467       PendingTypeTestAssumeConstVCalls.push_back(
   5468           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
   5469       break;
   5470 
   5471     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
   5472       PendingTypeCheckedLoadConstVCalls.push_back(
   5473           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
   5474       break;
   5475 
   5476     case bitc::FS_CFI_FUNCTION_DEFS: {
   5477       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
   5478       for (unsigned I = 0; I != Record.size(); I += 2)
   5479         CfiFunctionDefs.insert(
   5480             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
   5481       break;
   5482     }
   5483 
   5484     case bitc::FS_CFI_FUNCTION_DECLS: {
   5485       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
   5486       for (unsigned I = 0; I != Record.size(); I += 2)
   5487         CfiFunctionDecls.insert(
   5488             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
   5489       break;
   5490     }
   5491 
   5492     case bitc::FS_TYPE_ID:
   5493       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
   5494       break;
   5495     }
   5496   }
   5497   llvm_unreachable("Exit infinite loop");
   5498 }
   5499 
   5500 // Parse the  module string table block into the Index.
   5501 // This populates the ModulePathStringTable map in the index.
   5502 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
   5503   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
   5504     return error("Invalid record");
   5505 
   5506   SmallVector<uint64_t, 64> Record;
   5507 
   5508   SmallString<128> ModulePath;
   5509   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
   5510 
   5511   while (true) {
   5512     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   5513 
   5514     switch (Entry.Kind) {
   5515     case BitstreamEntry::SubBlock: // Handled for us already.
   5516     case BitstreamEntry::Error:
   5517       return error("Malformed block");
   5518     case BitstreamEntry::EndBlock:
   5519       return Error::success();
   5520     case BitstreamEntry::Record:
   5521       // The interesting case.
   5522       break;
   5523     }
   5524 
   5525     Record.clear();
   5526     switch (Stream.readRecord(Entry.ID, Record)) {
   5527     default: // Default behavior: ignore.
   5528       break;
   5529     case bitc::MST_CODE_ENTRY: {
   5530       // MST_ENTRY: [modid, namechar x N]
   5531       uint64_t ModuleId = Record[0];
   5532 
   5533       if (convertToString(Record, 1, ModulePath))
   5534         return error("Invalid record");
   5535 
   5536       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
   5537       ModuleIdMap[ModuleId] = LastSeenModule->first();
   5538 
   5539       ModulePath.clear();
   5540       break;
   5541     }
   5542     /// MST_CODE_HASH: [5*i32]
   5543     case bitc::MST_CODE_HASH: {
   5544       if (Record.size() != 5)
   5545         return error("Invalid hash length " + Twine(Record.size()).str());
   5546       if (!LastSeenModule)
   5547         return error("Invalid hash that does not follow a module path");
   5548       int Pos = 0;
   5549       for (auto &Val : Record) {
   5550         assert(!(Val >> 32) && "Unexpected high bits set");
   5551         LastSeenModule->second.second[Pos++] = Val;
   5552       }
   5553       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
   5554       LastSeenModule = nullptr;
   5555       break;
   5556     }
   5557     }
   5558   }
   5559   llvm_unreachable("Exit infinite loop");
   5560 }
   5561 
   5562 namespace {
   5563 
   5564 // FIXME: This class is only here to support the transition to llvm::Error. It
   5565 // will be removed once this transition is complete. Clients should prefer to
   5566 // deal with the Error value directly, rather than converting to error_code.
   5567 class BitcodeErrorCategoryType : public std::error_category {
   5568   const char *name() const noexcept override {
   5569     return "llvm.bitcode";
   5570   }
   5571 
   5572   std::string message(int IE) const override {
   5573     BitcodeError E = static_cast<BitcodeError>(IE);
   5574     switch (E) {
   5575     case BitcodeError::CorruptedBitcode:
   5576       return "Corrupted bitcode";
   5577     }
   5578     llvm_unreachable("Unknown error type!");
   5579   }
   5580 };
   5581 
   5582 } // end anonymous namespace
   5583 
   5584 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
   5585 
   5586 const std::error_category &llvm::BitcodeErrorCategory() {
   5587   return *ErrorCategory;
   5588 }
   5589 
   5590 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
   5591                                             unsigned Block, unsigned RecordID) {
   5592   if (Stream.EnterSubBlock(Block))
   5593     return error("Invalid record");
   5594 
   5595   StringRef Strtab;
   5596   while (true) {
   5597     BitstreamEntry Entry = Stream.advance();
   5598     switch (Entry.Kind) {
   5599     case BitstreamEntry::EndBlock:
   5600       return Strtab;
   5601 
   5602     case BitstreamEntry::Error:
   5603       return error("Malformed block");
   5604 
   5605     case BitstreamEntry::SubBlock:
   5606       if (Stream.SkipBlock())
   5607         return error("Malformed block");
   5608       break;
   5609 
   5610     case BitstreamEntry::Record:
   5611       StringRef Blob;
   5612       SmallVector<uint64_t, 1> Record;
   5613       if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
   5614         Strtab = Blob;
   5615       break;
   5616     }
   5617   }
   5618 }
   5619 
   5620 //===----------------------------------------------------------------------===//
   5621 // External interface
   5622 //===----------------------------------------------------------------------===//
   5623 
   5624 Expected<std::vector<BitcodeModule>>
   5625 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
   5626   auto FOrErr = getBitcodeFileContents(Buffer);
   5627   if (!FOrErr)
   5628     return FOrErr.takeError();
   5629   return std::move(FOrErr->Mods);
   5630 }
   5631 
   5632 Expected<BitcodeFileContents>
   5633 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
   5634   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
   5635   if (!StreamOrErr)
   5636     return StreamOrErr.takeError();
   5637   BitstreamCursor &Stream = *StreamOrErr;
   5638 
   5639   BitcodeFileContents F;
   5640   while (true) {
   5641     uint64_t BCBegin = Stream.getCurrentByteNo();
   5642 
   5643     // We may be consuming bitcode from a client that leaves garbage at the end
   5644     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
   5645     // the end that there cannot possibly be another module, stop looking.
   5646     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
   5647       return F;
   5648 
   5649     BitstreamEntry Entry = Stream.advance();
   5650     switch (Entry.Kind) {
   5651     case BitstreamEntry::EndBlock:
   5652     case BitstreamEntry::Error:
   5653       return error("Malformed block");
   5654 
   5655     case BitstreamEntry::SubBlock: {
   5656       uint64_t IdentificationBit = -1ull;
   5657       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
   5658         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
   5659         if (Stream.SkipBlock())
   5660           return error("Malformed block");
   5661 
   5662         Entry = Stream.advance();
   5663         if (Entry.Kind != BitstreamEntry::SubBlock ||
   5664             Entry.ID != bitc::MODULE_BLOCK_ID)
   5665           return error("Malformed block");
   5666       }
   5667 
   5668       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
   5669         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
   5670         if (Stream.SkipBlock())
   5671           return error("Malformed block");
   5672 
   5673         F.Mods.push_back({Stream.getBitcodeBytes().slice(
   5674                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
   5675                           Buffer.getBufferIdentifier(), IdentificationBit,
   5676                           ModuleBit});
   5677         continue;
   5678       }
   5679 
   5680       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
   5681         Expected<StringRef> Strtab =
   5682             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
   5683         if (!Strtab)
   5684           return Strtab.takeError();
   5685         // This string table is used by every preceding bitcode module that does
   5686         // not have its own string table. A bitcode file may have multiple
   5687         // string tables if it was created by binary concatenation, for example
   5688         // with "llvm-cat -b".
   5689         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
   5690           if (!I->Strtab.empty())
   5691             break;
   5692           I->Strtab = *Strtab;
   5693         }
   5694         // Similarly, the string table is used by every preceding symbol table;
   5695         // normally there will be just one unless the bitcode file was created
   5696         // by binary concatenation.
   5697         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
   5698           F.StrtabForSymtab = *Strtab;
   5699         continue;
   5700       }
   5701 
   5702       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
   5703         Expected<StringRef> SymtabOrErr =
   5704             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
   5705         if (!SymtabOrErr)
   5706           return SymtabOrErr.takeError();
   5707 
   5708         // We can expect the bitcode file to have multiple symbol tables if it
   5709         // was created by binary concatenation. In that case we silently
   5710         // ignore any subsequent symbol tables, which is fine because this is a
   5711         // low level function. The client is expected to notice that the number
   5712         // of modules in the symbol table does not match the number of modules
   5713         // in the input file and regenerate the symbol table.
   5714         if (F.Symtab.empty())
   5715           F.Symtab = *SymtabOrErr;
   5716         continue;
   5717       }
   5718 
   5719       if (Stream.SkipBlock())
   5720         return error("Malformed block");
   5721       continue;
   5722     }
   5723     case BitstreamEntry::Record:
   5724       Stream.skipRecord(Entry.ID);
   5725       continue;
   5726     }
   5727   }
   5728 }
   5729 
   5730 /// Get a lazy one-at-time loading module from bitcode.
   5731 ///
   5732 /// This isn't always used in a lazy context.  In particular, it's also used by
   5733 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
   5734 /// in forward-referenced functions from block address references.
   5735 ///
   5736 /// \param[in] MaterializeAll Set to \c true if we should materialize
   5737 /// everything.
   5738 Expected<std::unique_ptr<Module>>
   5739 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
   5740                              bool ShouldLazyLoadMetadata, bool IsImporting) {
   5741   BitstreamCursor Stream(Buffer);
   5742 
   5743   std::string ProducerIdentification;
   5744   if (IdentificationBit != -1ull) {
   5745     Stream.JumpToBit(IdentificationBit);
   5746     Expected<std::string> ProducerIdentificationOrErr =
   5747         readIdentificationBlock(Stream);
   5748     if (!ProducerIdentificationOrErr)
   5749       return ProducerIdentificationOrErr.takeError();
   5750 
   5751     ProducerIdentification = *ProducerIdentificationOrErr;
   5752   }
   5753 
   5754   Stream.JumpToBit(ModuleBit);
   5755   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
   5756                               Context);
   5757 
   5758   std::unique_ptr<Module> M =
   5759       llvm::make_unique<Module>(ModuleIdentifier, Context);
   5760   M->setMaterializer(R);
   5761 
   5762   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
   5763   if (Error Err =
   5764           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
   5765     return std::move(Err);
   5766 
   5767   if (MaterializeAll) {
   5768     // Read in the entire module, and destroy the BitcodeReader.
   5769     if (Error Err = M->materializeAll())
   5770       return std::move(Err);
   5771   } else {
   5772     // Resolve forward references from blockaddresses.
   5773     if (Error Err = R->materializeForwardReferencedFunctions())
   5774       return std::move(Err);
   5775   }
   5776   return std::move(M);
   5777 }
   5778 
   5779 Expected<std::unique_ptr<Module>>
   5780 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
   5781                              bool IsImporting) {
   5782   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
   5783 }
   5784 
   5785 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
   5786 // We don't use ModuleIdentifier here because the client may need to control the
   5787 // module path used in the combined summary (e.g. when reading summaries for
   5788 // regular LTO modules).
   5789 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
   5790                                  StringRef ModulePath, uint64_t ModuleId) {
   5791   BitstreamCursor Stream(Buffer);
   5792   Stream.JumpToBit(ModuleBit);
   5793 
   5794   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
   5795                                     ModulePath, ModuleId);
   5796   return R.parseModule();
   5797 }
   5798 
   5799 // Parse the specified bitcode buffer, returning the function info index.
   5800 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
   5801   BitstreamCursor Stream(Buffer);
   5802   Stream.JumpToBit(ModuleBit);
   5803 
   5804   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
   5805   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
   5806                                     ModuleIdentifier, 0);
   5807 
   5808   if (Error Err = R.parseModule())
   5809     return std::move(Err);
   5810 
   5811   return std::move(Index);
   5812 }
   5813 
   5814 // Check if the given bitcode buffer contains a global value summary block.
   5815 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
   5816   BitstreamCursor Stream(Buffer);
   5817   Stream.JumpToBit(ModuleBit);
   5818 
   5819   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   5820     return error("Invalid record");
   5821 
   5822   while (true) {
   5823     BitstreamEntry Entry = Stream.advance();
   5824 
   5825     switch (Entry.Kind) {
   5826     case BitstreamEntry::Error:
   5827       return error("Malformed block");
   5828     case BitstreamEntry::EndBlock:
   5829       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false};
   5830 
   5831     case BitstreamEntry::SubBlock:
   5832       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID)
   5833         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true};
   5834 
   5835       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID)
   5836         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true};
   5837 
   5838       // Ignore other sub-blocks.
   5839       if (Stream.SkipBlock())
   5840         return error("Malformed block");
   5841       continue;
   5842 
   5843     case BitstreamEntry::Record:
   5844       Stream.skipRecord(Entry.ID);
   5845       continue;
   5846     }
   5847   }
   5848 }
   5849 
   5850 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
   5851   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
   5852   if (!MsOrErr)
   5853     return MsOrErr.takeError();
   5854 
   5855   if (MsOrErr->size() != 1)
   5856     return error("Expected a single module");
   5857 
   5858   return (*MsOrErr)[0];
   5859 }
   5860 
   5861 Expected<std::unique_ptr<Module>>
   5862 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
   5863                            bool ShouldLazyLoadMetadata, bool IsImporting) {
   5864   Expected<BitcodeModule> BM = getSingleModule(Buffer);
   5865   if (!BM)
   5866     return BM.takeError();
   5867 
   5868   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
   5869 }
   5870 
   5871 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
   5872     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
   5873     bool ShouldLazyLoadMetadata, bool IsImporting) {
   5874   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
   5875                                      IsImporting);
   5876   if (MOrErr)
   5877     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
   5878   return MOrErr;
   5879 }
   5880 
   5881 Expected<std::unique_ptr<Module>>
   5882 BitcodeModule::parseModule(LLVMContext &Context) {
   5883   return getModuleImpl(Context, true, false, false);
   5884   // TODO: Restore the use-lists to the in-memory state when the bitcode was
   5885   // written.  We must defer until the Module has been fully materialized.
   5886 }
   5887 
   5888 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
   5889                                                          LLVMContext &Context) {
   5890   Expected<BitcodeModule> BM = getSingleModule(Buffer);
   5891   if (!BM)
   5892     return BM.takeError();
   5893 
   5894   return BM->parseModule(Context);
   5895 }
   5896 
   5897 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
   5898   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
   5899   if (!StreamOrErr)
   5900     return StreamOrErr.takeError();
   5901 
   5902   return readTriple(*StreamOrErr);
   5903 }
   5904 
   5905 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
   5906   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
   5907   if (!StreamOrErr)
   5908     return StreamOrErr.takeError();
   5909 
   5910   return hasObjCCategory(*StreamOrErr);
   5911 }
   5912 
   5913 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
   5914   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
   5915   if (!StreamOrErr)
   5916     return StreamOrErr.takeError();
   5917 
   5918   return readIdentificationCode(*StreamOrErr);
   5919 }
   5920 
   5921 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
   5922                                    ModuleSummaryIndex &CombinedIndex,
   5923                                    uint64_t ModuleId) {
   5924   Expected<BitcodeModule> BM = getSingleModule(Buffer);
   5925   if (!BM)
   5926     return BM.takeError();
   5927 
   5928   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
   5929 }
   5930 
   5931 Expected<std::unique_ptr<ModuleSummaryIndex>>
   5932 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
   5933   Expected<BitcodeModule> BM = getSingleModule(Buffer);
   5934   if (!BM)
   5935     return BM.takeError();
   5936 
   5937   return BM->getSummary();
   5938 }
   5939 
   5940 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
   5941   Expected<BitcodeModule> BM = getSingleModule(Buffer);
   5942   if (!BM)
   5943     return BM.takeError();
   5944 
   5945   return BM->getLTOInfo();
   5946 }
   5947 
   5948 Expected<std::unique_ptr<ModuleSummaryIndex>>
   5949 llvm::getModuleSummaryIndexForFile(StringRef Path,
   5950                                    bool IgnoreEmptyThinLTOIndexFile) {
   5951   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
   5952       MemoryBuffer::getFileOrSTDIN(Path);
   5953   if (!FileOrErr)
   5954     return errorCodeToError(FileOrErr.getError());
   5955   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
   5956     return nullptr;
   5957   return getModuleSummaryIndex(**FileOrErr);
   5958 }
   5959