Home | History | Annotate | Download | only in gc
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_GC_HEAP_H_
     18 #define ART_RUNTIME_GC_HEAP_H_
     19 
     20 #include <iosfwd>
     21 #include <string>
     22 #include <unordered_set>
     23 #include <vector>
     24 
     25 #include <android-base/logging.h>
     26 
     27 #include "allocator_type.h"
     28 #include "base/atomic.h"
     29 #include "base/macros.h"
     30 #include "base/mutex.h"
     31 #include "base/runtime_debug.h"
     32 #include "base/safe_map.h"
     33 #include "base/time_utils.h"
     34 #include "gc/collector/gc_type.h"
     35 #include "gc/collector/iteration.h"
     36 #include "gc/collector_type.h"
     37 #include "gc/gc_cause.h"
     38 #include "gc/space/image_space_loading_order.h"
     39 #include "gc/space/large_object_space.h"
     40 #include "handle.h"
     41 #include "obj_ptr.h"
     42 #include "offsets.h"
     43 #include "process_state.h"
     44 #include "read_barrier_config.h"
     45 #include "runtime_globals.h"
     46 #include "verify_object.h"
     47 
     48 namespace art {
     49 
     50 class ConditionVariable;
     51 enum class InstructionSet;
     52 class IsMarkedVisitor;
     53 class Mutex;
     54 class RootVisitor;
     55 class StackVisitor;
     56 class Thread;
     57 class ThreadPool;
     58 class TimingLogger;
     59 class VariableSizedHandleScope;
     60 
     61 namespace mirror {
     62 class Class;
     63 class Object;
     64 }  // namespace mirror
     65 
     66 namespace gc {
     67 
     68 class AllocationListener;
     69 class AllocRecordObjectMap;
     70 class GcPauseListener;
     71 class ReferenceProcessor;
     72 class TaskProcessor;
     73 class Verification;
     74 
     75 namespace accounting {
     76 template <typename T> class AtomicStack;
     77 typedef AtomicStack<mirror::Object> ObjectStack;
     78 class CardTable;
     79 class HeapBitmap;
     80 class ModUnionTable;
     81 class ReadBarrierTable;
     82 class RememberedSet;
     83 }  // namespace accounting
     84 
     85 namespace collector {
     86 class ConcurrentCopying;
     87 class GarbageCollector;
     88 class MarkSweep;
     89 class SemiSpace;
     90 }  // namespace collector
     91 
     92 namespace allocator {
     93 class RosAlloc;
     94 }  // namespace allocator
     95 
     96 namespace space {
     97 class AllocSpace;
     98 class BumpPointerSpace;
     99 class ContinuousMemMapAllocSpace;
    100 class DiscontinuousSpace;
    101 class DlMallocSpace;
    102 class ImageSpace;
    103 class LargeObjectSpace;
    104 class MallocSpace;
    105 class RegionSpace;
    106 class RosAllocSpace;
    107 class Space;
    108 class ZygoteSpace;
    109 }  // namespace space
    110 
    111 enum HomogeneousSpaceCompactResult {
    112   // Success.
    113   kSuccess,
    114   // Reject due to disabled moving GC.
    115   kErrorReject,
    116   // Unsupported due to the current configuration.
    117   kErrorUnsupported,
    118   // System is shutting down.
    119   kErrorVMShuttingDown,
    120 };
    121 
    122 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace
    123 static constexpr bool kUseRosAlloc = true;
    124 
    125 // If true, use thread-local allocation stack.
    126 static constexpr bool kUseThreadLocalAllocationStack = true;
    127 
    128 class Heap {
    129  public:
    130   static constexpr size_t kDefaultStartingSize = kPageSize;
    131   static constexpr size_t kDefaultInitialSize = 2 * MB;
    132   static constexpr size_t kDefaultMaximumSize = 256 * MB;
    133   static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB;
    134   static constexpr size_t kDefaultMaxFree = 2 * MB;
    135   static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4;
    136   static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5);
    137   static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100);
    138   static constexpr size_t kDefaultTLABSize = 32 * KB;
    139   static constexpr double kDefaultTargetUtilization = 0.5;
    140   static constexpr double kDefaultHeapGrowthMultiplier = 2.0;
    141   // Primitive arrays larger than this size are put in the large object space.
    142   static constexpr size_t kMinLargeObjectThreshold = 3 * kPageSize;
    143   static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold;
    144   // Whether or not parallel GC is enabled. If not, then we never create the thread pool.
    145   static constexpr bool kDefaultEnableParallelGC = false;
    146   static uint8_t* const kPreferredAllocSpaceBegin;
    147 
    148   // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
    149   // since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
    150   static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType =
    151       USE_ART_LOW_4G_ALLOCATOR ?
    152           space::LargeObjectSpaceType::kFreeList
    153         : space::LargeObjectSpaceType::kMap;
    154 
    155   // Used so that we don't overflow the allocation time atomic integer.
    156   static constexpr size_t kTimeAdjust = 1024;
    157 
    158   // Client should call NotifyNativeAllocation every kNotifyNativeInterval allocations.
    159   // Should be chosen so that time_to_call_mallinfo / kNotifyNativeInterval is on the same order
    160   // as object allocation time. time_to_call_mallinfo seems to be on the order of 1 usec.
    161 #ifdef __ANDROID__
    162   static constexpr uint32_t kNotifyNativeInterval = 32;
    163 #else
    164   // Some host mallinfo() implementations are slow. And memory is less scarce.
    165   static constexpr uint32_t kNotifyNativeInterval = 128;
    166 #endif
    167 
    168   // RegisterNativeAllocation checks immediately whether GC is needed if size exceeds the
    169   // following. kCheckImmediatelyThreshold * kNotifyNativeInterval should be small enough to
    170   // make it safe to allocate that many bytes between checks.
    171   static constexpr size_t kCheckImmediatelyThreshold = 300000;
    172 
    173   // How often we allow heap trimming to happen (nanoseconds).
    174   static constexpr uint64_t kHeapTrimWait = MsToNs(5000);
    175   // How long we wait after a transition request to perform a collector transition (nanoseconds).
    176   static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000);
    177   // Whether the transition-wait applies or not. Zero wait will stress the
    178   // transition code and collector, but increases jank probability.
    179   DECLARE_RUNTIME_DEBUG_FLAG(kStressCollectorTransition);
    180 
    181   // Create a heap with the requested sizes. The possible empty
    182   // image_file_names names specify Spaces to load based on
    183   // ImageWriter output.
    184   Heap(size_t initial_size,
    185        size_t growth_limit,
    186        size_t min_free,
    187        size_t max_free,
    188        double target_utilization,
    189        double foreground_heap_growth_multiplier,
    190        size_t capacity,
    191        size_t non_moving_space_capacity,
    192        const std::vector<std::string>& boot_class_path,
    193        const std::vector<std::string>& boot_class_path_locations,
    194        const std::string& image_file_name,
    195        InstructionSet image_instruction_set,
    196        CollectorType foreground_collector_type,
    197        CollectorType background_collector_type,
    198        space::LargeObjectSpaceType large_object_space_type,
    199        size_t large_object_threshold,
    200        size_t parallel_gc_threads,
    201        size_t conc_gc_threads,
    202        bool low_memory_mode,
    203        size_t long_pause_threshold,
    204        size_t long_gc_threshold,
    205        bool ignore_target_footprint,
    206        bool use_tlab,
    207        bool verify_pre_gc_heap,
    208        bool verify_pre_sweeping_heap,
    209        bool verify_post_gc_heap,
    210        bool verify_pre_gc_rosalloc,
    211        bool verify_pre_sweeping_rosalloc,
    212        bool verify_post_gc_rosalloc,
    213        bool gc_stress_mode,
    214        bool measure_gc_performance,
    215        bool use_homogeneous_space_compaction,
    216        bool use_generational_cc,
    217        uint64_t min_interval_homogeneous_space_compaction_by_oom,
    218        bool dump_region_info_before_gc,
    219        bool dump_region_info_after_gc,
    220        space::ImageSpaceLoadingOrder image_space_loading_order);
    221 
    222   ~Heap();
    223 
    224   // Allocates and initializes storage for an object instance.
    225   template <bool kInstrumented, typename PreFenceVisitor>
    226   mirror::Object* AllocObject(Thread* self,
    227                               ObjPtr<mirror::Class> klass,
    228                               size_t num_bytes,
    229                               const PreFenceVisitor& pre_fence_visitor)
    230       REQUIRES_SHARED(Locks::mutator_lock_)
    231       REQUIRES(!*gc_complete_lock_,
    232                !*pending_task_lock_,
    233                !*backtrace_lock_,
    234                !Roles::uninterruptible_) {
    235     return AllocObjectWithAllocator<kInstrumented, true>(self,
    236                                                          klass,
    237                                                          num_bytes,
    238                                                          GetCurrentAllocator(),
    239                                                          pre_fence_visitor);
    240   }
    241 
    242   template <bool kInstrumented, typename PreFenceVisitor>
    243   mirror::Object* AllocNonMovableObject(Thread* self,
    244                                         ObjPtr<mirror::Class> klass,
    245                                         size_t num_bytes,
    246                                         const PreFenceVisitor& pre_fence_visitor)
    247       REQUIRES_SHARED(Locks::mutator_lock_)
    248       REQUIRES(!*gc_complete_lock_,
    249                !*pending_task_lock_,
    250                !*backtrace_lock_,
    251                !Roles::uninterruptible_) {
    252     return AllocObjectWithAllocator<kInstrumented, true>(self,
    253                                                          klass,
    254                                                          num_bytes,
    255                                                          GetCurrentNonMovingAllocator(),
    256                                                          pre_fence_visitor);
    257   }
    258 
    259   template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
    260   ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self,
    261                                                          ObjPtr<mirror::Class> klass,
    262                                                          size_t byte_count,
    263                                                          AllocatorType allocator,
    264                                                          const PreFenceVisitor& pre_fence_visitor)
    265       REQUIRES_SHARED(Locks::mutator_lock_)
    266       REQUIRES(!*gc_complete_lock_,
    267                !*pending_task_lock_,
    268                !*backtrace_lock_,
    269                !Roles::uninterruptible_);
    270 
    271   AllocatorType GetCurrentAllocator() const {
    272     return current_allocator_;
    273   }
    274 
    275   AllocatorType GetCurrentNonMovingAllocator() const {
    276     return current_non_moving_allocator_;
    277   }
    278 
    279   // Visit all of the live objects in the heap.
    280   template <typename Visitor>
    281   ALWAYS_INLINE void VisitObjects(Visitor&& visitor)
    282       REQUIRES_SHARED(Locks::mutator_lock_)
    283       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
    284   template <typename Visitor>
    285   ALWAYS_INLINE void VisitObjectsPaused(Visitor&& visitor)
    286       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
    287 
    288   void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count)
    289       REQUIRES_SHARED(Locks::mutator_lock_);
    290 
    291   // Inform the garbage collector of a non-malloc allocated native memory that might become
    292   // reclaimable in the future as a result of Java garbage collection.
    293   void RegisterNativeAllocation(JNIEnv* env, size_t bytes)
    294       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
    295   void RegisterNativeFree(JNIEnv* env, size_t bytes);
    296 
    297   // Notify the garbage collector of malloc allocations that might be reclaimable
    298   // as a result of Java garbage collection. Each such call represents approximately
    299   // kNotifyNativeInterval such allocations.
    300   void NotifyNativeAllocations(JNIEnv* env)
    301       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
    302 
    303   uint32_t GetNotifyNativeInterval() {
    304     return kNotifyNativeInterval;
    305   }
    306 
    307   // Change the allocator, updates entrypoints.
    308   void ChangeAllocator(AllocatorType allocator)
    309       REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_);
    310 
    311   // Transition the garbage collector during runtime, may copy objects from one space to another.
    312   void TransitionCollector(CollectorType collector_type) REQUIRES(!*gc_complete_lock_);
    313 
    314   // Change the collector to be one of the possible options (MS, CMS, SS).
    315   void ChangeCollector(CollectorType collector_type)
    316       REQUIRES(Locks::mutator_lock_);
    317 
    318   // The given reference is believed to be to an object in the Java heap, check the soundness of it.
    319   // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a
    320   // proper lock ordering for it.
    321   void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS;
    322 
    323   // Check sanity of all live references.
    324   void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_);
    325   // Returns how many failures occured.
    326   size_t VerifyHeapReferences(bool verify_referents = true)
    327       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
    328   bool VerifyMissingCardMarks()
    329       REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
    330 
    331   // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock,
    332   // and doesn't abort on error, allowing the caller to report more
    333   // meaningful diagnostics.
    334   bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_);
    335 
    336   // Faster alternative to IsHeapAddress since finding if an object is in the large object space is
    337   // very slow.
    338   bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const
    339       REQUIRES_SHARED(Locks::mutator_lock_);
    340 
    341   // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses).
    342   // Requires the heap lock to be held.
    343   bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
    344                           bool search_allocation_stack = true,
    345                           bool search_live_stack = true,
    346                           bool sorted = false)
    347       REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_);
    348 
    349   // Returns true if there is any chance that the object (obj) will move.
    350   bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_);
    351 
    352   // Enables us to compacting GC until objects are released.
    353   void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
    354   void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_);
    355 
    356   // Temporarily disable thread flip for JNI critical calls.
    357   void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
    358   void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_);
    359   void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_);
    360   void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_);
    361 
    362   // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits.
    363   // Mutator lock is required for GetContinuousSpaces.
    364   void ClearMarkedObjects()
    365       REQUIRES(Locks::heap_bitmap_lock_)
    366       REQUIRES_SHARED(Locks::mutator_lock_);
    367 
    368   // Initiates an explicit garbage collection.
    369   void CollectGarbage(bool clear_soft_references, GcCause cause = kGcCauseExplicit)
    370       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
    371 
    372   // Does a concurrent GC, should only be called by the GC daemon thread
    373   // through runtime.
    374   void ConcurrentGC(Thread* self, GcCause cause, bool force_full)
    375       REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_, !*pending_task_lock_);
    376 
    377   // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount.
    378   // The boolean decides whether to use IsAssignableFrom or == when comparing classes.
    379   void CountInstances(const std::vector<Handle<mirror::Class>>& classes,
    380                       bool use_is_assignable_from,
    381                       uint64_t* counts)
    382       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
    383       REQUIRES_SHARED(Locks::mutator_lock_);
    384 
    385   // Implements VMDebug.getInstancesOfClasses and JDWP RT_Instances.
    386   void GetInstances(VariableSizedHandleScope& scope,
    387                     Handle<mirror::Class> c,
    388                     bool use_is_assignable_from,
    389                     int32_t max_count,
    390                     std::vector<Handle<mirror::Object>>& instances)
    391       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
    392       REQUIRES_SHARED(Locks::mutator_lock_);
    393 
    394   // Implements JDWP OR_ReferringObjects.
    395   void GetReferringObjects(VariableSizedHandleScope& scope,
    396                            Handle<mirror::Object> o,
    397                            int32_t max_count,
    398                            std::vector<Handle<mirror::Object>>& referring_objects)
    399       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_)
    400       REQUIRES_SHARED(Locks::mutator_lock_);
    401 
    402   // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to
    403   // implement dalvik.system.VMRuntime.clearGrowthLimit.
    404   void ClearGrowthLimit();
    405 
    406   // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces
    407   // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit.
    408   void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_);
    409 
    410   // Target ideal heap utilization ratio, implements
    411   // dalvik.system.VMRuntime.getTargetHeapUtilization.
    412   double GetTargetHeapUtilization() const {
    413     return target_utilization_;
    414   }
    415 
    416   // Data structure memory usage tracking.
    417   void RegisterGCAllocation(size_t bytes);
    418   void RegisterGCDeAllocation(size_t bytes);
    419 
    420   // Set the heap's private space pointers to be the same as the space based on it's type. Public
    421   // due to usage by tests.
    422   void SetSpaceAsDefault(space::ContinuousSpace* continuous_space)
    423       REQUIRES(!Locks::heap_bitmap_lock_);
    424   void AddSpace(space::Space* space)
    425       REQUIRES(!Locks::heap_bitmap_lock_)
    426       REQUIRES(Locks::mutator_lock_);
    427   void RemoveSpace(space::Space* space)
    428     REQUIRES(!Locks::heap_bitmap_lock_)
    429     REQUIRES(Locks::mutator_lock_);
    430 
    431   double GetPreGcWeightedAllocatedBytes() const {
    432     return pre_gc_weighted_allocated_bytes_;
    433   }
    434 
    435   double GetPostGcWeightedAllocatedBytes() const {
    436     return post_gc_weighted_allocated_bytes_;
    437   }
    438 
    439   void CalculatePreGcWeightedAllocatedBytes();
    440   void CalculatePostGcWeightedAllocatedBytes();
    441   uint64_t GetTotalGcCpuTime();
    442 
    443   uint64_t GetProcessCpuStartTime() const {
    444     return process_cpu_start_time_ns_;
    445   }
    446 
    447   uint64_t GetPostGCLastProcessCpuTime() const {
    448     return post_gc_last_process_cpu_time_ns_;
    449   }
    450 
    451   // Set target ideal heap utilization ratio, implements
    452   // dalvik.system.VMRuntime.setTargetHeapUtilization.
    453   void SetTargetHeapUtilization(float target);
    454 
    455   // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate
    456   // from the system. Doesn't allow the space to exceed its growth limit.
    457   void SetIdealFootprint(size_t max_allowed_footprint);
    458 
    459   // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
    460   // waited for.
    461   collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) REQUIRES(!*gc_complete_lock_);
    462 
    463   // Update the heap's process state to a new value, may cause compaction to occur.
    464   void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state)
    465       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_);
    466 
    467   bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS {
    468     // No lock since vector empty is thread safe.
    469     return !continuous_spaces_.empty();
    470   }
    471 
    472   const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const
    473       REQUIRES_SHARED(Locks::mutator_lock_) {
    474     return continuous_spaces_;
    475   }
    476 
    477   const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const {
    478     return discontinuous_spaces_;
    479   }
    480 
    481   const collector::Iteration* GetCurrentGcIteration() const {
    482     return &current_gc_iteration_;
    483   }
    484   collector::Iteration* GetCurrentGcIteration() {
    485     return &current_gc_iteration_;
    486   }
    487 
    488   // Enable verification of object references when the runtime is sufficiently initialized.
    489   void EnableObjectValidation() {
    490     verify_object_mode_ = kVerifyObjectSupport;
    491     if (verify_object_mode_ > kVerifyObjectModeDisabled) {
    492       VerifyHeap();
    493     }
    494   }
    495 
    496   // Disable object reference verification for image writing.
    497   void DisableObjectValidation() {
    498     verify_object_mode_ = kVerifyObjectModeDisabled;
    499   }
    500 
    501   // Other checks may be performed if we know the heap should be in a sane state.
    502   bool IsObjectValidationEnabled() const {
    503     return verify_object_mode_ > kVerifyObjectModeDisabled;
    504   }
    505 
    506   // Returns true if low memory mode is enabled.
    507   bool IsLowMemoryMode() const {
    508     return low_memory_mode_;
    509   }
    510 
    511   // Returns the heap growth multiplier, this affects how much we grow the heap after a GC.
    512   // Scales heap growth, min free, and max free.
    513   double HeapGrowthMultiplier() const;
    514 
    515   // Freed bytes can be negative in cases where we copy objects from a compacted space to a
    516   // free-list backed space.
    517   void RecordFree(uint64_t freed_objects, int64_t freed_bytes);
    518 
    519   // Record the bytes freed by thread-local buffer revoke.
    520   void RecordFreeRevoke();
    521 
    522   accounting::CardTable* GetCardTable() const {
    523     return card_table_.get();
    524   }
    525 
    526   accounting::ReadBarrierTable* GetReadBarrierTable() const {
    527     return rb_table_.get();
    528   }
    529 
    530   void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object);
    531 
    532   // Returns the number of bytes currently allocated.
    533   // The result should be treated as an approximation, if it is being concurrently updated.
    534   size_t GetBytesAllocated() const {
    535     return num_bytes_allocated_.load(std::memory_order_relaxed);
    536   }
    537 
    538   bool GetUseGenerationalCC() const {
    539     return use_generational_cc_;
    540   }
    541 
    542   // Returns the number of objects currently allocated.
    543   size_t GetObjectsAllocated() const
    544       REQUIRES(!Locks::heap_bitmap_lock_);
    545 
    546   // Returns the total number of objects allocated since the heap was created.
    547   uint64_t GetObjectsAllocatedEver() const;
    548 
    549   // Returns the total number of bytes allocated since the heap was created.
    550   uint64_t GetBytesAllocatedEver() const;
    551 
    552   // Returns the total number of objects freed since the heap was created.
    553   uint64_t GetObjectsFreedEver() const {
    554     return total_objects_freed_ever_;
    555   }
    556 
    557   // Returns the total number of bytes freed since the heap was created.
    558   uint64_t GetBytesFreedEver() const {
    559     return total_bytes_freed_ever_;
    560   }
    561 
    562   space::RegionSpace* GetRegionSpace() const {
    563     return region_space_;
    564   }
    565 
    566   // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can
    567   // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx
    568   // were specified. Android apps start with a growth limit (small heap size) which is
    569   // cleared/extended for large apps.
    570   size_t GetMaxMemory() const {
    571     // There are some race conditions in the allocation code that can cause bytes allocated to
    572     // become larger than growth_limit_ in rare cases.
    573     return std::max(GetBytesAllocated(), growth_limit_);
    574   }
    575 
    576   // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently
    577   // consumed by an application.
    578   size_t GetTotalMemory() const;
    579 
    580   // Returns approximately how much free memory we have until the next GC happens.
    581   size_t GetFreeMemoryUntilGC() const {
    582     return UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
    583                               GetBytesAllocated());
    584   }
    585 
    586   // Returns approximately how much free memory we have until the next OOME happens.
    587   size_t GetFreeMemoryUntilOOME() const {
    588     return UnsignedDifference(growth_limit_, GetBytesAllocated());
    589   }
    590 
    591   // Returns how much free memory we have until we need to grow the heap to perform an allocation.
    592   // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory.
    593   size_t GetFreeMemory() const {
    594     return UnsignedDifference(GetTotalMemory(),
    595                               num_bytes_allocated_.load(std::memory_order_relaxed));
    596   }
    597 
    598   // Get the space that corresponds to an object's address. Current implementation searches all
    599   // spaces in turn. If fail_ok is false then failing to find a space will cause an abort.
    600   // TODO: consider using faster data structure like binary tree.
    601   space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>, bool fail_ok) const
    602       REQUIRES_SHARED(Locks::mutator_lock_);
    603 
    604   space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const
    605       REQUIRES_SHARED(Locks::mutator_lock_);
    606 
    607   space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>,
    608                                                               bool fail_ok) const
    609       REQUIRES_SHARED(Locks::mutator_lock_);
    610 
    611   space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const
    612       REQUIRES_SHARED(Locks::mutator_lock_);
    613 
    614   space::Space* FindSpaceFromAddress(const void* ptr) const
    615       REQUIRES_SHARED(Locks::mutator_lock_);
    616 
    617   std::string DumpSpaceNameFromAddress(const void* addr) const
    618       REQUIRES_SHARED(Locks::mutator_lock_);
    619 
    620   void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_);
    621 
    622   // Do a pending collector transition.
    623   void DoPendingCollectorTransition() REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
    624 
    625   // Deflate monitors, ... and trim the spaces.
    626   void Trim(Thread* self) REQUIRES(!*gc_complete_lock_);
    627 
    628   void RevokeThreadLocalBuffers(Thread* thread);
    629   void RevokeRosAllocThreadLocalBuffers(Thread* thread);
    630   void RevokeAllThreadLocalBuffers();
    631   void AssertThreadLocalBuffersAreRevoked(Thread* thread);
    632   void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
    633   void RosAllocVerification(TimingLogger* timings, const char* name)
    634       REQUIRES(Locks::mutator_lock_);
    635 
    636   accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
    637     return live_bitmap_.get();
    638   }
    639 
    640   accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
    641     return mark_bitmap_.get();
    642   }
    643 
    644   accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
    645     return live_stack_.get();
    646   }
    647 
    648   void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS;
    649 
    650   // Mark and empty stack.
    651   void FlushAllocStack()
    652       REQUIRES_SHARED(Locks::mutator_lock_)
    653       REQUIRES(Locks::heap_bitmap_lock_);
    654 
    655   // Revoke all the thread-local allocation stacks.
    656   void RevokeAllThreadLocalAllocationStacks(Thread* self)
    657       REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_);
    658 
    659   // Mark all the objects in the allocation stack in the specified bitmap.
    660   // TODO: Refactor?
    661   void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1,
    662                       accounting::SpaceBitmap<kObjectAlignment>* bitmap2,
    663                       accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects,
    664                       accounting::ObjectStack* stack)
    665       REQUIRES_SHARED(Locks::mutator_lock_)
    666       REQUIRES(Locks::heap_bitmap_lock_);
    667 
    668   // Mark the specified allocation stack as live.
    669   void MarkAllocStackAsLive(accounting::ObjectStack* stack)
    670       REQUIRES_SHARED(Locks::mutator_lock_)
    671       REQUIRES(Locks::heap_bitmap_lock_);
    672 
    673   // Unbind any bound bitmaps.
    674   void UnBindBitmaps()
    675       REQUIRES(Locks::heap_bitmap_lock_)
    676       REQUIRES_SHARED(Locks::mutator_lock_);
    677 
    678   // Returns the boot image spaces. There may be multiple boot image spaces.
    679   const std::vector<space::ImageSpace*>& GetBootImageSpaces() const {
    680     return boot_image_spaces_;
    681   }
    682 
    683   bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const
    684       REQUIRES_SHARED(Locks::mutator_lock_);
    685 
    686   bool IsInBootImageOatFile(const void* p) const
    687       REQUIRES_SHARED(Locks::mutator_lock_);
    688 
    689   void GetBootImagesSize(uint32_t* boot_image_begin,
    690                          uint32_t* boot_image_end,
    691                          uint32_t* boot_oat_begin,
    692                          uint32_t* boot_oat_end);
    693 
    694   // Permenantly disable moving garbage collection.
    695   void DisableMovingGc() REQUIRES(!*gc_complete_lock_);
    696 
    697   space::DlMallocSpace* GetDlMallocSpace() const {
    698     return dlmalloc_space_;
    699   }
    700 
    701   space::RosAllocSpace* GetRosAllocSpace() const {
    702     return rosalloc_space_;
    703   }
    704 
    705   // Return the corresponding rosalloc space.
    706   space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const
    707       REQUIRES_SHARED(Locks::mutator_lock_);
    708 
    709   space::MallocSpace* GetNonMovingSpace() const {
    710     return non_moving_space_;
    711   }
    712 
    713   space::LargeObjectSpace* GetLargeObjectsSpace() const {
    714     return large_object_space_;
    715   }
    716 
    717   // Returns the free list space that may contain movable objects (the
    718   // one that's not the non-moving space), either rosalloc_space_ or
    719   // dlmalloc_space_.
    720   space::MallocSpace* GetPrimaryFreeListSpace() {
    721     if (kUseRosAlloc) {
    722       DCHECK(rosalloc_space_ != nullptr);
    723       // reinterpret_cast is necessary as the space class hierarchy
    724       // isn't known (#included) yet here.
    725       return reinterpret_cast<space::MallocSpace*>(rosalloc_space_);
    726     } else {
    727       DCHECK(dlmalloc_space_ != nullptr);
    728       return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_);
    729     }
    730   }
    731 
    732   void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_);
    733   std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_);
    734 
    735   // GC performance measuring
    736   void DumpGcPerformanceInfo(std::ostream& os)
    737       REQUIRES(!*gc_complete_lock_);
    738   void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_);
    739 
    740   // Thread pool.
    741   void CreateThreadPool();
    742   void DeleteThreadPool();
    743   ThreadPool* GetThreadPool() {
    744     return thread_pool_.get();
    745   }
    746   size_t GetParallelGCThreadCount() const {
    747     return parallel_gc_threads_;
    748   }
    749   size_t GetConcGCThreadCount() const {
    750     return conc_gc_threads_;
    751   }
    752   accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space);
    753   void AddModUnionTable(accounting::ModUnionTable* mod_union_table);
    754 
    755   accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space);
    756   void AddRememberedSet(accounting::RememberedSet* remembered_set);
    757   // Also deletes the remebered set.
    758   void RemoveRememberedSet(space::Space* space);
    759 
    760   bool IsCompilingBoot() const;
    761   bool HasBootImageSpace() const {
    762     return !boot_image_spaces_.empty();
    763   }
    764 
    765   ReferenceProcessor* GetReferenceProcessor() {
    766     return reference_processor_.get();
    767   }
    768   TaskProcessor* GetTaskProcessor() {
    769     return task_processor_.get();
    770   }
    771 
    772   bool HasZygoteSpace() const {
    773     return zygote_space_ != nullptr;
    774   }
    775 
    776   // Returns the active concurrent copying collector.
    777   collector::ConcurrentCopying* ConcurrentCopyingCollector() {
    778     if (use_generational_cc_) {
    779       DCHECK((active_concurrent_copying_collector_ == concurrent_copying_collector_) ||
    780              (active_concurrent_copying_collector_ == young_concurrent_copying_collector_));
    781     } else {
    782       DCHECK_EQ(active_concurrent_copying_collector_, concurrent_copying_collector_);
    783     }
    784     return active_concurrent_copying_collector_;
    785   }
    786 
    787   CollectorType CurrentCollectorType() {
    788     return collector_type_;
    789   }
    790 
    791   bool IsGcConcurrentAndMoving() const {
    792     if (IsGcConcurrent() && IsMovingGc(collector_type_)) {
    793       // Assume no transition when a concurrent moving collector is used.
    794       DCHECK_EQ(collector_type_, foreground_collector_type_);
    795       return true;
    796     }
    797     return false;
    798   }
    799 
    800   bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) {
    801     MutexLock mu(self, *gc_complete_lock_);
    802     return disable_moving_gc_count_ > 0;
    803   }
    804 
    805   // Request an asynchronous trim.
    806   void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_);
    807 
    808   // Request asynchronous GC.
    809   void RequestConcurrentGC(Thread* self, GcCause cause, bool force_full)
    810       REQUIRES(!*pending_task_lock_);
    811 
    812   // Whether or not we may use a garbage collector, used so that we only create collectors we need.
    813   bool MayUseCollector(CollectorType type) const;
    814 
    815   // Used by tests to reduce timinig-dependent flakiness in OOME behavior.
    816   void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) {
    817     min_interval_homogeneous_space_compaction_by_oom_ = interval;
    818   }
    819 
    820   // Helpers for android.os.Debug.getRuntimeStat().
    821   uint64_t GetGcCount() const;
    822   uint64_t GetGcTime() const;
    823   uint64_t GetBlockingGcCount() const;
    824   uint64_t GetBlockingGcTime() const;
    825   void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
    826   void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_);
    827 
    828   // Allocation tracking support
    829   // Callers to this function use double-checked locking to ensure safety on allocation_records_
    830   bool IsAllocTrackingEnabled() const {
    831     return alloc_tracking_enabled_.load(std::memory_order_relaxed);
    832   }
    833 
    834   void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) {
    835     alloc_tracking_enabled_.store(enabled, std::memory_order_relaxed);
    836   }
    837 
    838   // Return the current stack depth of allocation records.
    839   size_t GetAllocTrackerStackDepth() const {
    840     return alloc_record_depth_;
    841   }
    842 
    843   // Return the current stack depth of allocation records.
    844   void SetAllocTrackerStackDepth(size_t alloc_record_depth) {
    845     alloc_record_depth_ = alloc_record_depth;
    846   }
    847 
    848   AllocRecordObjectMap* GetAllocationRecords() const REQUIRES(Locks::alloc_tracker_lock_) {
    849     return allocation_records_.get();
    850   }
    851 
    852   void SetAllocationRecords(AllocRecordObjectMap* records)
    853       REQUIRES(Locks::alloc_tracker_lock_);
    854 
    855   void VisitAllocationRecords(RootVisitor* visitor) const
    856       REQUIRES_SHARED(Locks::mutator_lock_)
    857       REQUIRES(!Locks::alloc_tracker_lock_);
    858 
    859   void SweepAllocationRecords(IsMarkedVisitor* visitor) const
    860       REQUIRES_SHARED(Locks::mutator_lock_)
    861       REQUIRES(!Locks::alloc_tracker_lock_);
    862 
    863   void DisallowNewAllocationRecords() const
    864       REQUIRES_SHARED(Locks::mutator_lock_)
    865       REQUIRES(!Locks::alloc_tracker_lock_);
    866 
    867   void AllowNewAllocationRecords() const
    868       REQUIRES_SHARED(Locks::mutator_lock_)
    869       REQUIRES(!Locks::alloc_tracker_lock_);
    870 
    871   void BroadcastForNewAllocationRecords() const
    872       REQUIRES(!Locks::alloc_tracker_lock_);
    873 
    874   void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_);
    875 
    876   // Create a new alloc space and compact default alloc space to it.
    877   HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact() REQUIRES(!*gc_complete_lock_);
    878   bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const;
    879 
    880   // Install an allocation listener.
    881   void SetAllocationListener(AllocationListener* l);
    882   // Remove an allocation listener. Note: the listener must not be deleted, as for performance
    883   // reasons, we assume it stays valid when we read it (so that we don't require a lock).
    884   void RemoveAllocationListener();
    885 
    886   // Install a gc pause listener.
    887   void SetGcPauseListener(GcPauseListener* l);
    888   // Get the currently installed gc pause listener, or null.
    889   GcPauseListener* GetGcPauseListener() {
    890     return gc_pause_listener_.load(std::memory_order_acquire);
    891   }
    892   // Remove a gc pause listener. Note: the listener must not be deleted, as for performance
    893   // reasons, we assume it stays valid when we read it (so that we don't require a lock).
    894   void RemoveGcPauseListener();
    895 
    896   const Verification* GetVerification() const;
    897 
    898   void PostForkChildAction(Thread* self);
    899 
    900  private:
    901   class ConcurrentGCTask;
    902   class CollectorTransitionTask;
    903   class HeapTrimTask;
    904   class TriggerPostForkCCGcTask;
    905 
    906   // Compact source space to target space. Returns the collector used.
    907   collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space,
    908                                        space::ContinuousMemMapAllocSpace* source_space,
    909                                        GcCause gc_cause)
    910       REQUIRES(Locks::mutator_lock_);
    911 
    912   void LogGC(GcCause gc_cause, collector::GarbageCollector* collector);
    913   void StartGC(Thread* self, GcCause cause, CollectorType collector_type)
    914       REQUIRES(!*gc_complete_lock_);
    915   void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_);
    916 
    917   double CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
    918                                            uint64_t current_process_cpu_time) const;
    919 
    920   // Create a mem map with a preferred base address.
    921   static MemMap MapAnonymousPreferredAddress(const char* name,
    922                                              uint8_t* request_begin,
    923                                              size_t capacity,
    924                                              std::string* out_error_str);
    925 
    926   bool SupportHSpaceCompaction() const {
    927     // Returns true if we can do hspace compaction
    928     return main_space_backup_ != nullptr;
    929   }
    930 
    931   // Size_t saturating arithmetic
    932   static ALWAYS_INLINE size_t UnsignedDifference(size_t x, size_t y) {
    933     return x > y ? x - y : 0;
    934   }
    935   static ALWAYS_INLINE size_t UnsignedSum(size_t x, size_t y) {
    936     return x + y >= x ? x + y : std::numeric_limits<size_t>::max();
    937   }
    938 
    939   static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) {
    940     return
    941         allocator_type != kAllocatorTypeRegionTLAB &&
    942         allocator_type != kAllocatorTypeBumpPointer &&
    943         allocator_type != kAllocatorTypeTLAB &&
    944         allocator_type != kAllocatorTypeRegion;
    945   }
    946   static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) {
    947     if (kUseReadBarrier) {
    948       // Read barrier may have the TLAB allocator but is always concurrent. TODO: clean this up.
    949       return true;
    950     }
    951     return
    952         allocator_type != kAllocatorTypeTLAB &&
    953         allocator_type != kAllocatorTypeBumpPointer;
    954   }
    955   static bool IsMovingGc(CollectorType collector_type) {
    956     return
    957         collector_type == kCollectorTypeCC ||
    958         collector_type == kCollectorTypeSS ||
    959         collector_type == kCollectorTypeGSS ||
    960         collector_type == kCollectorTypeCCBackground ||
    961         collector_type == kCollectorTypeHomogeneousSpaceCompact;
    962   }
    963   bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const
    964       REQUIRES_SHARED(Locks::mutator_lock_);
    965 
    966   // Checks whether we should garbage collect:
    967   ALWAYS_INLINE bool ShouldConcurrentGCForJava(size_t new_num_bytes_allocated);
    968   float NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent);
    969   ALWAYS_INLINE void CheckConcurrentGCForJava(Thread* self,
    970                                               size_t new_num_bytes_allocated,
    971                                               ObjPtr<mirror::Object>* obj)
    972       REQUIRES_SHARED(Locks::mutator_lock_)
    973       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_);
    974   void CheckGCForNative(Thread* self)
    975       REQUIRES(!*pending_task_lock_, !*gc_complete_lock_);
    976 
    977   accounting::ObjectStack* GetMarkStack() {
    978     return mark_stack_.get();
    979   }
    980 
    981   // We don't force this to be inlined since it is a slow path.
    982   template <bool kInstrumented, typename PreFenceVisitor>
    983   mirror::Object* AllocLargeObject(Thread* self,
    984                                    ObjPtr<mirror::Class>* klass,
    985                                    size_t byte_count,
    986                                    const PreFenceVisitor& pre_fence_visitor)
    987       REQUIRES_SHARED(Locks::mutator_lock_)
    988       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_);
    989 
    990   // Handles Allocate()'s slow allocation path with GC involved after
    991   // an initial allocation attempt failed.
    992   mirror::Object* AllocateInternalWithGc(Thread* self,
    993                                          AllocatorType allocator,
    994                                          bool instrumented,
    995                                          size_t num_bytes,
    996                                          size_t* bytes_allocated,
    997                                          size_t* usable_size,
    998                                          size_t* bytes_tl_bulk_allocated,
    999                                          ObjPtr<mirror::Class>* klass)
   1000       REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_)
   1001       REQUIRES_SHARED(Locks::mutator_lock_);
   1002 
   1003   // Allocate into a specific space.
   1004   mirror::Object* AllocateInto(Thread* self,
   1005                                space::AllocSpace* space,
   1006                                ObjPtr<mirror::Class> c,
   1007                                size_t bytes)
   1008       REQUIRES_SHARED(Locks::mutator_lock_);
   1009 
   1010   // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the
   1011   // wrong space.
   1012   void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_);
   1013 
   1014   // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so
   1015   // that the switch statement is constant optimized in the entrypoints.
   1016   template <const bool kInstrumented, const bool kGrow>
   1017   ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self,
   1018                                               AllocatorType allocator_type,
   1019                                               size_t alloc_size,
   1020                                               size_t* bytes_allocated,
   1021                                               size_t* usable_size,
   1022                                               size_t* bytes_tl_bulk_allocated)
   1023       REQUIRES_SHARED(Locks::mutator_lock_);
   1024 
   1025   mirror::Object* AllocWithNewTLAB(Thread* self,
   1026                                    size_t alloc_size,
   1027                                    bool grow,
   1028                                    size_t* bytes_allocated,
   1029                                    size_t* usable_size,
   1030                                    size_t* bytes_tl_bulk_allocated)
   1031       REQUIRES_SHARED(Locks::mutator_lock_);
   1032 
   1033   void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type)
   1034       REQUIRES_SHARED(Locks::mutator_lock_);
   1035 
   1036   // Are we out of memory, and thus should force a GC or fail?
   1037   // For concurrent collectors, out of memory is defined by growth_limit_.
   1038   // For nonconcurrent collectors it is defined by target_footprint_ unless grow is
   1039   // set. If grow is set, the limit is growth_limit_ and we adjust target_footprint_
   1040   // to accomodate the allocation.
   1041   ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type,
   1042                                                size_t alloc_size,
   1043                                                bool grow);
   1044 
   1045   // Run the finalizers. If timeout is non zero, then we use the VMRuntime version.
   1046   void RunFinalization(JNIEnv* env, uint64_t timeout);
   1047 
   1048   // Blocks the caller until the garbage collector becomes idle and returns the type of GC we
   1049   // waited for.
   1050   collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self)
   1051       REQUIRES(gc_complete_lock_);
   1052 
   1053   void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time)
   1054       REQUIRES(!*pending_task_lock_);
   1055 
   1056   void RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, ObjPtr<mirror::Object>* obj)
   1057       REQUIRES_SHARED(Locks::mutator_lock_)
   1058       REQUIRES(!*pending_task_lock_);
   1059   bool IsGCRequestPending() const;
   1060 
   1061   // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns
   1062   // which type of Gc was actually ran.
   1063   collector::GcType CollectGarbageInternal(collector::GcType gc_plan,
   1064                                            GcCause gc_cause,
   1065                                            bool clear_soft_references)
   1066       REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_,
   1067                !*pending_task_lock_);
   1068 
   1069   void PreGcVerification(collector::GarbageCollector* gc)
   1070       REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
   1071   void PreGcVerificationPaused(collector::GarbageCollector* gc)
   1072       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
   1073   void PrePauseRosAllocVerification(collector::GarbageCollector* gc)
   1074       REQUIRES(Locks::mutator_lock_);
   1075   void PreSweepingGcVerification(collector::GarbageCollector* gc)
   1076       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
   1077   void PostGcVerification(collector::GarbageCollector* gc)
   1078       REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_);
   1079   void PostGcVerificationPaused(collector::GarbageCollector* gc)
   1080       REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_);
   1081 
   1082   // Find a collector based on GC type.
   1083   collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type);
   1084 
   1085   // Create the main free list malloc space, either a RosAlloc space or DlMalloc space.
   1086   void CreateMainMallocSpace(MemMap&& mem_map,
   1087                              size_t initial_size,
   1088                              size_t growth_limit,
   1089                              size_t capacity);
   1090 
   1091   // Create a malloc space based on a mem map. Does not set the space as default.
   1092   space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap&& mem_map,
   1093                                                   size_t initial_size,
   1094                                                   size_t growth_limit,
   1095                                                   size_t capacity,
   1096                                                   const char* name,
   1097                                                   bool can_move_objects);
   1098 
   1099   // Given the current contents of the alloc space, increase the allowed heap footprint to match
   1100   // the target utilization ratio.  This should only be called immediately after a full garbage
   1101   // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which
   1102   // the GC was run.
   1103   void GrowForUtilization(collector::GarbageCollector* collector_ran,
   1104                           size_t bytes_allocated_before_gc = 0);
   1105 
   1106   size_t GetPercentFree();
   1107 
   1108   // Swap the allocation stack with the live stack.
   1109   void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_);
   1110 
   1111   // Clear cards and update the mod union table. When process_alloc_space_cards is true,
   1112   // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do
   1113   // not process the alloc space if process_alloc_space_cards is false.
   1114   void ProcessCards(TimingLogger* timings,
   1115                     bool use_rem_sets,
   1116                     bool process_alloc_space_cards,
   1117                     bool clear_alloc_space_cards)
   1118       REQUIRES_SHARED(Locks::mutator_lock_);
   1119 
   1120   // Push an object onto the allocation stack.
   1121   void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj)
   1122       REQUIRES_SHARED(Locks::mutator_lock_)
   1123       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
   1124   void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj)
   1125       REQUIRES_SHARED(Locks::mutator_lock_)
   1126       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
   1127   void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, ObjPtr<mirror::Object>* obj)
   1128       REQUIRES_SHARED(Locks::mutator_lock_)
   1129       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_);
   1130 
   1131   void ClearConcurrentGCRequest();
   1132   void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_);
   1133   void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_);
   1134 
   1135   // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark
   1136   // sweep GC, false for other GC types.
   1137   bool IsGcConcurrent() const ALWAYS_INLINE {
   1138     return collector_type_ == kCollectorTypeCC ||
   1139         collector_type_ == kCollectorTypeCMS ||
   1140         collector_type_ == kCollectorTypeCCBackground;
   1141   }
   1142 
   1143   // Trim the managed and native spaces by releasing unused memory back to the OS.
   1144   void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_);
   1145 
   1146   // Trim 0 pages at the end of reference tables.
   1147   void TrimIndirectReferenceTables(Thread* self);
   1148 
   1149   template <typename Visitor>
   1150   ALWAYS_INLINE void VisitObjectsInternal(Visitor&& visitor)
   1151       REQUIRES_SHARED(Locks::mutator_lock_)
   1152       REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_);
   1153   template <typename Visitor>
   1154   ALWAYS_INLINE void VisitObjectsInternalRegionSpace(Visitor&& visitor)
   1155       REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_);
   1156 
   1157   void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_);
   1158 
   1159   // GC stress mode attempts to do one GC per unique backtrace.
   1160   void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj)
   1161       REQUIRES_SHARED(Locks::mutator_lock_)
   1162       REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_);
   1163 
   1164   collector::GcType NonStickyGcType() const {
   1165     return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
   1166   }
   1167 
   1168   // Return the amount of space we allow for native memory when deciding whether to
   1169   // collect. We collect when a weighted sum of Java memory plus native memory exceeds
   1170   // the similarly weighted sum of the Java heap size target and this value.
   1171   ALWAYS_INLINE size_t NativeAllocationGcWatermark() const {
   1172     // We keep the traditional limit of max_free_ in place for small heaps,
   1173     // but allow it to be adjusted upward for large heaps to limit GC overhead.
   1174     return target_footprint_.load(std::memory_order_relaxed) / 8 + max_free_;
   1175   }
   1176 
   1177   ALWAYS_INLINE void IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke);
   1178 
   1179   void TraceHeapSize(size_t heap_size);
   1180 
   1181   // Remove a vlog code from heap-inl.h which is transitively included in half the world.
   1182   static void VlogHeapGrowth(size_t max_allowed_footprint, size_t new_footprint, size_t alloc_size);
   1183 
   1184   // Return our best approximation of the number of bytes of native memory that
   1185   // are currently in use, and could possibly be reclaimed as an indirect result
   1186   // of a garbage collection.
   1187   size_t GetNativeBytes();
   1188 
   1189   // All-known continuous spaces, where objects lie within fixed bounds.
   1190   std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
   1191 
   1192   // All-known discontinuous spaces, where objects may be placed throughout virtual memory.
   1193   std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_);
   1194 
   1195   // All-known alloc spaces, where objects may be or have been allocated.
   1196   std::vector<space::AllocSpace*> alloc_spaces_;
   1197 
   1198   // A space where non-movable objects are allocated, when compaction is enabled it contains
   1199   // Classes, ArtMethods, ArtFields, and non moving objects.
   1200   space::MallocSpace* non_moving_space_;
   1201 
   1202   // Space which we use for the kAllocatorTypeROSAlloc.
   1203   space::RosAllocSpace* rosalloc_space_;
   1204 
   1205   // Space which we use for the kAllocatorTypeDlMalloc.
   1206   space::DlMallocSpace* dlmalloc_space_;
   1207 
   1208   // The main space is the space which the GC copies to and from on process state updates. This
   1209   // space is typically either the dlmalloc_space_ or the rosalloc_space_.
   1210   space::MallocSpace* main_space_;
   1211 
   1212   // The large object space we are currently allocating into.
   1213   space::LargeObjectSpace* large_object_space_;
   1214 
   1215   // The card table, dirtied by the write barrier.
   1216   std::unique_ptr<accounting::CardTable> card_table_;
   1217 
   1218   std::unique_ptr<accounting::ReadBarrierTable> rb_table_;
   1219 
   1220   // A mod-union table remembers all of the references from the it's space to other spaces.
   1221   AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap>
   1222       mod_union_tables_;
   1223 
   1224   // A remembered set remembers all of the references from the it's space to the target space.
   1225   AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap>
   1226       remembered_sets_;
   1227 
   1228   // The current collector type.
   1229   CollectorType collector_type_;
   1230   // Which collector we use when the app is in the foreground.
   1231   CollectorType foreground_collector_type_;
   1232   // Which collector we will use when the app is notified of a transition to background.
   1233   CollectorType background_collector_type_;
   1234   // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_.
   1235   CollectorType desired_collector_type_;
   1236 
   1237   // Lock which guards pending tasks.
   1238   Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1239 
   1240   // How many GC threads we may use for paused parts of garbage collection.
   1241   const size_t parallel_gc_threads_;
   1242 
   1243   // How many GC threads we may use for unpaused parts of garbage collection.
   1244   const size_t conc_gc_threads_;
   1245 
   1246   // Boolean for if we are in low memory mode.
   1247   const bool low_memory_mode_;
   1248 
   1249   // If we get a pause longer than long pause log threshold, then we print out the GC after it
   1250   // finishes.
   1251   const size_t long_pause_log_threshold_;
   1252 
   1253   // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes.
   1254   const size_t long_gc_log_threshold_;
   1255 
   1256   // Starting time of the new process; meant to be used for measuring total process CPU time.
   1257   uint64_t process_cpu_start_time_ns_;
   1258 
   1259   // Last time (before and after) GC started; meant to be used to measure the
   1260   // duration between two GCs.
   1261   uint64_t pre_gc_last_process_cpu_time_ns_;
   1262   uint64_t post_gc_last_process_cpu_time_ns_;
   1263 
   1264   // allocated_bytes * (current_process_cpu_time - [pre|post]_gc_last_process_cpu_time)
   1265   double pre_gc_weighted_allocated_bytes_;
   1266   double post_gc_weighted_allocated_bytes_;
   1267 
   1268   // If we ignore the target footprint it lets the heap grow until it hits the heap capacity, this
   1269   // is useful for benchmarking since it reduces time spent in GC to a low %.
   1270   const bool ignore_target_footprint_;
   1271 
   1272   // Lock which guards zygote space creation.
   1273   Mutex zygote_creation_lock_;
   1274 
   1275   // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before
   1276   // zygote space creation.
   1277   space::ZygoteSpace* zygote_space_;
   1278 
   1279   // Minimum allocation size of large object.
   1280   size_t large_object_threshold_;
   1281 
   1282   // Guards access to the state of GC, associated conditional variable is used to signal when a GC
   1283   // completes.
   1284   Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1285   std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_);
   1286 
   1287   // Used to synchronize between JNI critical calls and the thread flip of the CC collector.
   1288   Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1289   std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_);
   1290   // This counter keeps track of how many threads are currently in a JNI critical section. This is
   1291   // incremented once per thread even with nested enters.
   1292   size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_);
   1293   bool thread_flip_running_ GUARDED_BY(thread_flip_lock_);
   1294 
   1295   // Reference processor;
   1296   std::unique_ptr<ReferenceProcessor> reference_processor_;
   1297 
   1298   // Task processor, proxies heap trim requests to the daemon threads.
   1299   std::unique_ptr<TaskProcessor> task_processor_;
   1300 
   1301   // Collector type of the running GC.
   1302   volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_);
   1303 
   1304   // Cause of the last running GC.
   1305   volatile GcCause last_gc_cause_ GUARDED_BY(gc_complete_lock_);
   1306 
   1307   // The thread currently running the GC.
   1308   volatile Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_);
   1309 
   1310   // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on.
   1311   volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_);
   1312   collector::GcType next_gc_type_;
   1313 
   1314   // Maximum size that the heap can reach.
   1315   size_t capacity_;
   1316 
   1317   // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap
   1318   // programs it is "cleared" making it the same as capacity.
   1319   // Only weakly enforced for simultaneous allocations.
   1320   size_t growth_limit_;
   1321 
   1322   // Target size (as in maximum allocatable bytes) for the heap. Weakly enforced as a limit for
   1323   // non-concurrent GC. Used as a guideline for computing concurrent_start_bytes_ in the
   1324   // concurrent GC case.
   1325   Atomic<size_t> target_footprint_;
   1326 
   1327   // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that
   1328   // it completes ahead of an allocation failing.
   1329   // A multiple of this is also used to determine when to trigger a GC in response to native
   1330   // allocation.
   1331   size_t concurrent_start_bytes_;
   1332 
   1333   // Since the heap was created, how many bytes have been freed.
   1334   uint64_t total_bytes_freed_ever_;
   1335 
   1336   // Since the heap was created, how many objects have been freed.
   1337   uint64_t total_objects_freed_ever_;
   1338 
   1339   // Number of bytes currently allocated and not yet reclaimed. Includes active
   1340   // TLABS in their entirety, even if they have not yet been parceled out.
   1341   Atomic<size_t> num_bytes_allocated_;
   1342 
   1343   // Number of registered native bytes allocated. Adjusted after each RegisterNativeAllocation and
   1344   // RegisterNativeFree. Used to  help determine when to trigger GC for native allocations. Should
   1345   // not include bytes allocated through the system malloc, since those are implicitly included.
   1346   Atomic<size_t> native_bytes_registered_;
   1347 
   1348   // Approximately the smallest value of GetNativeBytes() we've seen since the last GC.
   1349   Atomic<size_t> old_native_bytes_allocated_;
   1350 
   1351   // Total number of native objects of which we were notified since the beginning of time, mod 2^32.
   1352   // Allows us to check for GC only roughly every kNotifyNativeInterval allocations.
   1353   Atomic<uint32_t> native_objects_notified_;
   1354 
   1355   // Number of bytes freed by thread local buffer revokes. This will
   1356   // cancel out the ahead-of-time bulk counting of bytes allocated in
   1357   // rosalloc thread-local buffers.  It is temporarily accumulated
   1358   // here to be subtracted from num_bytes_allocated_ later at the next
   1359   // GC.
   1360   Atomic<size_t> num_bytes_freed_revoke_;
   1361 
   1362   // Info related to the current or previous GC iteration.
   1363   collector::Iteration current_gc_iteration_;
   1364 
   1365   // Heap verification flags.
   1366   const bool verify_missing_card_marks_;
   1367   const bool verify_system_weaks_;
   1368   const bool verify_pre_gc_heap_;
   1369   const bool verify_pre_sweeping_heap_;
   1370   const bool verify_post_gc_heap_;
   1371   const bool verify_mod_union_table_;
   1372   bool verify_pre_gc_rosalloc_;
   1373   bool verify_pre_sweeping_rosalloc_;
   1374   bool verify_post_gc_rosalloc_;
   1375   const bool gc_stress_mode_;
   1376 
   1377   // RAII that temporarily disables the rosalloc verification during
   1378   // the zygote fork.
   1379   class ScopedDisableRosAllocVerification {
   1380    private:
   1381     Heap* const heap_;
   1382     const bool orig_verify_pre_gc_;
   1383     const bool orig_verify_pre_sweeping_;
   1384     const bool orig_verify_post_gc_;
   1385 
   1386    public:
   1387     explicit ScopedDisableRosAllocVerification(Heap* heap)
   1388         : heap_(heap),
   1389           orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_),
   1390           orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_),
   1391           orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) {
   1392       heap_->verify_pre_gc_rosalloc_ = false;
   1393       heap_->verify_pre_sweeping_rosalloc_ = false;
   1394       heap_->verify_post_gc_rosalloc_ = false;
   1395     }
   1396     ~ScopedDisableRosAllocVerification() {
   1397       heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_;
   1398       heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_;
   1399       heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_;
   1400     }
   1401   };
   1402 
   1403   // Parallel GC data structures.
   1404   std::unique_ptr<ThreadPool> thread_pool_;
   1405 
   1406   // A bitmap that is set corresponding to the known live objects since the last GC cycle.
   1407   std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
   1408   // A bitmap that is set corresponding to the marked objects in the current GC cycle.
   1409   std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_);
   1410 
   1411   // Mark stack that we reuse to avoid re-allocating the mark stack.
   1412   std::unique_ptr<accounting::ObjectStack> mark_stack_;
   1413 
   1414   // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us
   1415   // to use the live bitmap as the old mark bitmap.
   1416   const size_t max_allocation_stack_size_;
   1417   std::unique_ptr<accounting::ObjectStack> allocation_stack_;
   1418 
   1419   // Second allocation stack so that we can process allocation with the heap unlocked.
   1420   std::unique_ptr<accounting::ObjectStack> live_stack_;
   1421 
   1422   // Allocator type.
   1423   AllocatorType current_allocator_;
   1424   const AllocatorType current_non_moving_allocator_;
   1425 
   1426   // Which GCs we run in order when an allocation fails.
   1427   std::vector<collector::GcType> gc_plan_;
   1428 
   1429   // Bump pointer spaces.
   1430   space::BumpPointerSpace* bump_pointer_space_;
   1431   // Temp space is the space which the semispace collector copies to.
   1432   space::BumpPointerSpace* temp_space_;
   1433 
   1434   // Region space, used by the concurrent collector.
   1435   space::RegionSpace* region_space_;
   1436 
   1437   // Minimum free guarantees that you always have at least min_free_ free bytes after growing for
   1438   // utilization, regardless of target utilization ratio.
   1439   const size_t min_free_;
   1440 
   1441   // The ideal maximum free size, when we grow the heap for utilization.
   1442   const size_t max_free_;
   1443 
   1444   // Target ideal heap utilization ratio.
   1445   double target_utilization_;
   1446 
   1447   // How much more we grow the heap when we are a foreground app instead of background.
   1448   double foreground_heap_growth_multiplier_;
   1449 
   1450   // Total time which mutators are paused or waiting for GC to complete.
   1451   uint64_t total_wait_time_;
   1452 
   1453   // The current state of heap verification, may be enabled or disabled.
   1454   VerifyObjectMode verify_object_mode_;
   1455 
   1456   // Compacting GC disable count, prevents compacting GC from running iff > 0.
   1457   size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_);
   1458 
   1459   std::vector<collector::GarbageCollector*> garbage_collectors_;
   1460   collector::SemiSpace* semi_space_collector_;
   1461   collector::ConcurrentCopying* active_concurrent_copying_collector_;
   1462   collector::ConcurrentCopying* young_concurrent_copying_collector_;
   1463   collector::ConcurrentCopying* concurrent_copying_collector_;
   1464 
   1465   const bool is_running_on_memory_tool_;
   1466   const bool use_tlab_;
   1467 
   1468   // Pointer to the space which becomes the new main space when we do homogeneous space compaction.
   1469   // Use unique_ptr since the space is only added during the homogeneous compaction phase.
   1470   std::unique_ptr<space::MallocSpace> main_space_backup_;
   1471 
   1472   // Minimal interval allowed between two homogeneous space compactions caused by OOM.
   1473   uint64_t min_interval_homogeneous_space_compaction_by_oom_;
   1474 
   1475   // Times of the last homogeneous space compaction caused by OOM.
   1476   uint64_t last_time_homogeneous_space_compaction_by_oom_;
   1477 
   1478   // Saved OOMs by homogeneous space compaction.
   1479   Atomic<size_t> count_delayed_oom_;
   1480 
   1481   // Count for requested homogeneous space compaction.
   1482   Atomic<size_t> count_requested_homogeneous_space_compaction_;
   1483 
   1484   // Count for ignored homogeneous space compaction.
   1485   Atomic<size_t> count_ignored_homogeneous_space_compaction_;
   1486 
   1487   // Count for performed homogeneous space compaction.
   1488   Atomic<size_t> count_performed_homogeneous_space_compaction_;
   1489 
   1490   // Whether or not a concurrent GC is pending.
   1491   Atomic<bool> concurrent_gc_pending_;
   1492 
   1493   // Active tasks which we can modify (change target time, desired collector type, etc..).
   1494   CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_);
   1495   HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_);
   1496 
   1497   // Whether or not we use homogeneous space compaction to avoid OOM errors.
   1498   bool use_homogeneous_space_compaction_for_oom_;
   1499 
   1500   // If true, enable generational collection when using the Concurrent Copying
   1501   // (CC) collector, i.e. use sticky-bit CC for minor collections and (full) CC
   1502   // for major collections. Set in Heap constructor.
   1503   const bool use_generational_cc_;
   1504 
   1505   // True if the currently running collection has made some thread wait.
   1506   bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_);
   1507   // The number of blocking GC runs.
   1508   uint64_t blocking_gc_count_;
   1509   // The total duration of blocking GC runs.
   1510   uint64_t blocking_gc_time_;
   1511   // The duration of the window for the GC count rate histograms.
   1512   static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000);  // 10s.
   1513   // Maximum number of missed histogram windows for which statistics will be collected.
   1514   static constexpr uint64_t kGcCountRateHistogramMaxNumMissedWindows = 100;
   1515   // The last time when the GC count rate histograms were updated.
   1516   // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s).
   1517   uint64_t last_update_time_gc_count_rate_histograms_;
   1518   // The running count of GC runs in the last window.
   1519   uint64_t gc_count_last_window_;
   1520   // The running count of blocking GC runs in the last window.
   1521   uint64_t blocking_gc_count_last_window_;
   1522   // The maximum number of buckets in the GC count rate histograms.
   1523   static constexpr size_t kGcCountRateMaxBucketCount = 200;
   1524   // The histogram of the number of GC invocations per window duration.
   1525   Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
   1526   // The histogram of the number of blocking GC invocations per window duration.
   1527   Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_);
   1528 
   1529   // Allocation tracking support
   1530   Atomic<bool> alloc_tracking_enabled_;
   1531   std::unique_ptr<AllocRecordObjectMap> allocation_records_;
   1532   size_t alloc_record_depth_;
   1533 
   1534   // GC stress related data structures.
   1535   Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER;
   1536   // Debugging variables, seen backtraces vs unique backtraces.
   1537   Atomic<uint64_t> seen_backtrace_count_;
   1538   Atomic<uint64_t> unique_backtrace_count_;
   1539   // Stack trace hashes that we already saw,
   1540   std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_);
   1541 
   1542   // We disable GC when we are shutting down the runtime in case there are daemon threads still
   1543   // allocating.
   1544   bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_);
   1545 
   1546   // Turned on by -XX:DumpRegionInfoBeforeGC and -XX:DumpRegionInfoAfterGC to
   1547   // emit region info before and after each GC cycle.
   1548   bool dump_region_info_before_gc_;
   1549   bool dump_region_info_after_gc_;
   1550 
   1551   // Boot image spaces.
   1552   std::vector<space::ImageSpace*> boot_image_spaces_;
   1553 
   1554   // An installed allocation listener.
   1555   Atomic<AllocationListener*> alloc_listener_;
   1556   // An installed GC Pause listener.
   1557   Atomic<GcPauseListener*> gc_pause_listener_;
   1558 
   1559   std::unique_ptr<Verification> verification_;
   1560 
   1561   friend class CollectorTransitionTask;
   1562   friend class collector::GarbageCollector;
   1563   friend class collector::ConcurrentCopying;
   1564   friend class collector::MarkSweep;
   1565   friend class collector::SemiSpace;
   1566   friend class GCCriticalSection;
   1567   friend class ReferenceQueue;
   1568   friend class ScopedGCCriticalSection;
   1569   friend class VerifyReferenceCardVisitor;
   1570   friend class VerifyReferenceVisitor;
   1571   friend class VerifyObjectVisitor;
   1572 
   1573   DISALLOW_IMPLICIT_CONSTRUCTORS(Heap);
   1574 };
   1575 
   1576 }  // namespace gc
   1577 }  // namespace art
   1578 
   1579 #endif  // ART_RUNTIME_GC_HEAP_H_
   1580