Home | History | Annotate | Download | only in gc
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "heap.h"
     18 
     19 #include <limits>
     20 #if defined(__BIONIC__) || defined(__GLIBC__)
     21 #include <malloc.h>  // For mallinfo()
     22 #endif
     23 #include <memory>
     24 #include <vector>
     25 
     26 #include "android-base/stringprintf.h"
     27 
     28 #include "allocation_listener.h"
     29 #include "art_field-inl.h"
     30 #include "backtrace_helper.h"
     31 #include "base/allocator.h"
     32 #include "base/arena_allocator.h"
     33 #include "base/dumpable.h"
     34 #include "base/file_utils.h"
     35 #include "base/histogram-inl.h"
     36 #include "base/logging.h"  // For VLOG.
     37 #include "base/memory_tool.h"
     38 #include "base/mutex.h"
     39 #include "base/os.h"
     40 #include "base/stl_util.h"
     41 #include "base/systrace.h"
     42 #include "base/time_utils.h"
     43 #include "base/utils.h"
     44 #include "common_throws.h"
     45 #include "debugger.h"
     46 #include "dex/dex_file-inl.h"
     47 #include "entrypoints/quick/quick_alloc_entrypoints.h"
     48 #include "gc/accounting/card_table-inl.h"
     49 #include "gc/accounting/heap_bitmap-inl.h"
     50 #include "gc/accounting/mod_union_table-inl.h"
     51 #include "gc/accounting/read_barrier_table.h"
     52 #include "gc/accounting/remembered_set.h"
     53 #include "gc/accounting/space_bitmap-inl.h"
     54 #include "gc/collector/concurrent_copying.h"
     55 #include "gc/collector/mark_sweep.h"
     56 #include "gc/collector/partial_mark_sweep.h"
     57 #include "gc/collector/semi_space.h"
     58 #include "gc/collector/sticky_mark_sweep.h"
     59 #include "gc/racing_check.h"
     60 #include "gc/reference_processor.h"
     61 #include "gc/scoped_gc_critical_section.h"
     62 #include "gc/space/bump_pointer_space.h"
     63 #include "gc/space/dlmalloc_space-inl.h"
     64 #include "gc/space/image_space.h"
     65 #include "gc/space/large_object_space.h"
     66 #include "gc/space/region_space.h"
     67 #include "gc/space/rosalloc_space-inl.h"
     68 #include "gc/space/space-inl.h"
     69 #include "gc/space/zygote_space.h"
     70 #include "gc/task_processor.h"
     71 #include "gc/verification.h"
     72 #include "gc_pause_listener.h"
     73 #include "gc_root.h"
     74 #include "handle_scope-inl.h"
     75 #include "heap-inl.h"
     76 #include "heap-visit-objects-inl.h"
     77 #include "image.h"
     78 #include "intern_table.h"
     79 #include "jit/jit.h"
     80 #include "jit/jit_code_cache.h"
     81 #include "jni/java_vm_ext.h"
     82 #include "mirror/class-inl.h"
     83 #include "mirror/object-inl.h"
     84 #include "mirror/object-refvisitor-inl.h"
     85 #include "mirror/object_array-inl.h"
     86 #include "mirror/reference-inl.h"
     87 #include "nativehelper/scoped_local_ref.h"
     88 #include "obj_ptr-inl.h"
     89 #include "reflection.h"
     90 #include "runtime.h"
     91 #include "scoped_thread_state_change-inl.h"
     92 #include "thread_list.h"
     93 #include "verify_object-inl.h"
     94 #include "well_known_classes.h"
     95 
     96 namespace art {
     97 
     98 namespace gc {
     99 
    100 static constexpr size_t kCollectorTransitionStressIterations = 0;
    101 static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
    102 
    103 DEFINE_RUNTIME_DEBUG_FLAG(Heap, kStressCollectorTransition);
    104 
    105 // Minimum amount of remaining bytes before a concurrent GC is triggered.
    106 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
    107 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
    108 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
    109 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
    110 // threads (lower pauses, use less memory bandwidth).
    111 static double GetStickyGcThroughputAdjustment(bool use_generational_cc) {
    112   return use_generational_cc ? 0.5 : 1.0;
    113 }
    114 // Whether or not we compact the zygote in PreZygoteFork.
    115 static constexpr bool kCompactZygote = kMovingCollector;
    116 // How many reserve entries are at the end of the allocation stack, these are only needed if the
    117 // allocation stack overflows.
    118 static constexpr size_t kAllocationStackReserveSize = 1024;
    119 // Default mark stack size in bytes.
    120 static const size_t kDefaultMarkStackSize = 64 * KB;
    121 // Define space name.
    122 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
    123 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
    124 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
    125 static const char* kNonMovingSpaceName = "non moving space";
    126 static const char* kZygoteSpaceName = "zygote space";
    127 static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
    128 static constexpr bool kGCALotMode = false;
    129 // GC alot mode uses a small allocation stack to stress test a lot of GC.
    130 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
    131     sizeof(mirror::HeapReference<mirror::Object>);
    132 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
    133 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
    134     sizeof(mirror::HeapReference<mirror::Object>);
    135 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
    136     sizeof(mirror::HeapReference<mirror::Object>);
    137 
    138 // For deterministic compilation, we need the heap to be at a well-known address.
    139 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
    140 // Dump the rosalloc stats on SIGQUIT.
    141 static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
    142 
    143 static const char* kRegionSpaceName = "main space (region space)";
    144 
    145 // If true, we log all GCs in the both the foreground and background. Used for debugging.
    146 static constexpr bool kLogAllGCs = false;
    147 
    148 // How much we grow the TLAB if we can do it.
    149 static constexpr size_t kPartialTlabSize = 16 * KB;
    150 static constexpr bool kUsePartialTlabs = true;
    151 
    152 // Use Max heap for 2 seconds, this is smaller than the usual 5s window since we don't want to leave
    153 // allocate with relaxed ergonomics for that long.
    154 static constexpr size_t kPostForkMaxHeapDurationMS = 2000;
    155 
    156 #if defined(__LP64__) || !defined(ADDRESS_SANITIZER)
    157 // 300 MB (0x12c00000) - (default non-moving space capacity).
    158 uint8_t* const Heap::kPreferredAllocSpaceBegin =
    159     reinterpret_cast<uint8_t*>(300 * MB - kDefaultNonMovingSpaceCapacity);
    160 #else
    161 #ifdef __ANDROID__
    162 // For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000.
    163 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000);
    164 #else
    165 // For 32-bit host, use 0x40000000 because asan uses most of the space below this.
    166 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x40000000);
    167 #endif
    168 #endif
    169 
    170 static inline bool CareAboutPauseTimes() {
    171   return Runtime::Current()->InJankPerceptibleProcessState();
    172 }
    173 
    174 Heap::Heap(size_t initial_size,
    175            size_t growth_limit,
    176            size_t min_free,
    177            size_t max_free,
    178            double target_utilization,
    179            double foreground_heap_growth_multiplier,
    180            size_t capacity,
    181            size_t non_moving_space_capacity,
    182            const std::vector<std::string>& boot_class_path,
    183            const std::vector<std::string>& boot_class_path_locations,
    184            const std::string& image_file_name,
    185            const InstructionSet image_instruction_set,
    186            CollectorType foreground_collector_type,
    187            CollectorType background_collector_type,
    188            space::LargeObjectSpaceType large_object_space_type,
    189            size_t large_object_threshold,
    190            size_t parallel_gc_threads,
    191            size_t conc_gc_threads,
    192            bool low_memory_mode,
    193            size_t long_pause_log_threshold,
    194            size_t long_gc_log_threshold,
    195            bool ignore_target_footprint,
    196            bool use_tlab,
    197            bool verify_pre_gc_heap,
    198            bool verify_pre_sweeping_heap,
    199            bool verify_post_gc_heap,
    200            bool verify_pre_gc_rosalloc,
    201            bool verify_pre_sweeping_rosalloc,
    202            bool verify_post_gc_rosalloc,
    203            bool gc_stress_mode,
    204            bool measure_gc_performance,
    205            bool use_homogeneous_space_compaction_for_oom,
    206            bool use_generational_cc,
    207            uint64_t min_interval_homogeneous_space_compaction_by_oom,
    208            bool dump_region_info_before_gc,
    209            bool dump_region_info_after_gc,
    210            space::ImageSpaceLoadingOrder image_space_loading_order)
    211     : non_moving_space_(nullptr),
    212       rosalloc_space_(nullptr),
    213       dlmalloc_space_(nullptr),
    214       main_space_(nullptr),
    215       collector_type_(kCollectorTypeNone),
    216       foreground_collector_type_(foreground_collector_type),
    217       background_collector_type_(background_collector_type),
    218       desired_collector_type_(foreground_collector_type_),
    219       pending_task_lock_(nullptr),
    220       parallel_gc_threads_(parallel_gc_threads),
    221       conc_gc_threads_(conc_gc_threads),
    222       low_memory_mode_(low_memory_mode),
    223       long_pause_log_threshold_(long_pause_log_threshold),
    224       long_gc_log_threshold_(long_gc_log_threshold),
    225       process_cpu_start_time_ns_(ProcessCpuNanoTime()),
    226       pre_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
    227       post_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
    228       pre_gc_weighted_allocated_bytes_(0.0),
    229       post_gc_weighted_allocated_bytes_(0.0),
    230       ignore_target_footprint_(ignore_target_footprint),
    231       zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
    232       zygote_space_(nullptr),
    233       large_object_threshold_(large_object_threshold),
    234       disable_thread_flip_count_(0),
    235       thread_flip_running_(false),
    236       collector_type_running_(kCollectorTypeNone),
    237       last_gc_cause_(kGcCauseNone),
    238       thread_running_gc_(nullptr),
    239       last_gc_type_(collector::kGcTypeNone),
    240       next_gc_type_(collector::kGcTypePartial),
    241       capacity_(capacity),
    242       growth_limit_(growth_limit),
    243       target_footprint_(initial_size),
    244       concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
    245       total_bytes_freed_ever_(0),
    246       total_objects_freed_ever_(0),
    247       num_bytes_allocated_(0),
    248       native_bytes_registered_(0),
    249       old_native_bytes_allocated_(0),
    250       native_objects_notified_(0),
    251       num_bytes_freed_revoke_(0),
    252       verify_missing_card_marks_(false),
    253       verify_system_weaks_(false),
    254       verify_pre_gc_heap_(verify_pre_gc_heap),
    255       verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
    256       verify_post_gc_heap_(verify_post_gc_heap),
    257       verify_mod_union_table_(false),
    258       verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
    259       verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
    260       verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
    261       gc_stress_mode_(gc_stress_mode),
    262       /* For GC a lot mode, we limit the allocation stacks to be kGcAlotInterval allocations. This
    263        * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
    264        * verification is enabled, we limit the size of allocation stacks to speed up their
    265        * searching.
    266        */
    267       max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
    268           : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
    269           kDefaultAllocationStackSize),
    270       current_allocator_(kAllocatorTypeDlMalloc),
    271       current_non_moving_allocator_(kAllocatorTypeNonMoving),
    272       bump_pointer_space_(nullptr),
    273       temp_space_(nullptr),
    274       region_space_(nullptr),
    275       min_free_(min_free),
    276       max_free_(max_free),
    277       target_utilization_(target_utilization),
    278       foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
    279       total_wait_time_(0),
    280       verify_object_mode_(kVerifyObjectModeDisabled),
    281       disable_moving_gc_count_(0),
    282       semi_space_collector_(nullptr),
    283       active_concurrent_copying_collector_(nullptr),
    284       young_concurrent_copying_collector_(nullptr),
    285       concurrent_copying_collector_(nullptr),
    286       is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
    287       use_tlab_(use_tlab),
    288       main_space_backup_(nullptr),
    289       min_interval_homogeneous_space_compaction_by_oom_(
    290           min_interval_homogeneous_space_compaction_by_oom),
    291       last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
    292       pending_collector_transition_(nullptr),
    293       pending_heap_trim_(nullptr),
    294       use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
    295       use_generational_cc_(use_generational_cc),
    296       running_collection_is_blocking_(false),
    297       blocking_gc_count_(0U),
    298       blocking_gc_time_(0U),
    299       last_update_time_gc_count_rate_histograms_(  // Round down by the window duration.
    300           (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
    301       gc_count_last_window_(0U),
    302       blocking_gc_count_last_window_(0U),
    303       gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
    304       blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
    305                                         kGcCountRateMaxBucketCount),
    306       alloc_tracking_enabled_(false),
    307       alloc_record_depth_(AllocRecordObjectMap::kDefaultAllocStackDepth),
    308       backtrace_lock_(nullptr),
    309       seen_backtrace_count_(0u),
    310       unique_backtrace_count_(0u),
    311       gc_disabled_for_shutdown_(false),
    312       dump_region_info_before_gc_(dump_region_info_before_gc),
    313       dump_region_info_after_gc_(dump_region_info_after_gc) {
    314   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    315     LOG(INFO) << "Heap() entering";
    316   }
    317   if (kUseReadBarrier) {
    318     CHECK_EQ(foreground_collector_type_, kCollectorTypeCC);
    319     CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground);
    320   }
    321   verification_.reset(new Verification(this));
    322   CHECK_GE(large_object_threshold, kMinLargeObjectThreshold);
    323   ScopedTrace trace(__FUNCTION__);
    324   Runtime* const runtime = Runtime::Current();
    325   // If we aren't the zygote, switch to the default non zygote allocator. This may update the
    326   // entrypoints.
    327   const bool is_zygote = runtime->IsZygote();
    328   if (!is_zygote) {
    329     // Background compaction is currently not supported for command line runs.
    330     if (background_collector_type_ != foreground_collector_type_) {
    331       VLOG(heap) << "Disabling background compaction for non zygote";
    332       background_collector_type_ = foreground_collector_type_;
    333     }
    334   }
    335   ChangeCollector(desired_collector_type_);
    336   live_bitmap_.reset(new accounting::HeapBitmap(this));
    337   mark_bitmap_.reset(new accounting::HeapBitmap(this));
    338 
    339   // We don't have hspace compaction enabled with GSS or CC.
    340   if (foreground_collector_type_ == kCollectorTypeGSS ||
    341       foreground_collector_type_ == kCollectorTypeCC) {
    342     use_homogeneous_space_compaction_for_oom_ = false;
    343   }
    344   bool support_homogeneous_space_compaction =
    345       background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
    346       use_homogeneous_space_compaction_for_oom_;
    347   // We may use the same space the main space for the non moving space if we don't need to compact
    348   // from the main space.
    349   // This is not the case if we support homogeneous compaction or have a moving background
    350   // collector type.
    351   bool separate_non_moving_space = is_zygote ||
    352       support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
    353       IsMovingGc(background_collector_type_);
    354   if (foreground_collector_type_ == kCollectorTypeGSS) {
    355     separate_non_moving_space = false;
    356   }
    357 
    358   // Requested begin for the alloc space, to follow the mapped image and oat files
    359   uint8_t* request_begin = nullptr;
    360   // Calculate the extra space required after the boot image, see allocations below.
    361   size_t heap_reservation_size = 0u;
    362   if (separate_non_moving_space) {
    363     heap_reservation_size = non_moving_space_capacity;
    364   } else if ((foreground_collector_type_ != kCollectorTypeCC) &&
    365              (is_zygote || foreground_collector_type_ == kCollectorTypeGSS)) {
    366     heap_reservation_size = capacity_;
    367   }
    368   heap_reservation_size = RoundUp(heap_reservation_size, kPageSize);
    369   // Load image space(s).
    370   std::vector<std::unique_ptr<space::ImageSpace>> boot_image_spaces;
    371   MemMap heap_reservation;
    372   if (space::ImageSpace::LoadBootImage(boot_class_path,
    373                                        boot_class_path_locations,
    374                                        image_file_name,
    375                                        image_instruction_set,
    376                                        image_space_loading_order,
    377                                        runtime->ShouldRelocate(),
    378                                        /*executable=*/ !runtime->IsAotCompiler(),
    379                                        is_zygote,
    380                                        heap_reservation_size,
    381                                        &boot_image_spaces,
    382                                        &heap_reservation)) {
    383     DCHECK_EQ(heap_reservation_size, heap_reservation.IsValid() ? heap_reservation.Size() : 0u);
    384     DCHECK(!boot_image_spaces.empty());
    385     request_begin = boot_image_spaces.back()->GetImageHeader().GetOatFileEnd();
    386     DCHECK(!heap_reservation.IsValid() || request_begin == heap_reservation.Begin())
    387         << "request_begin=" << static_cast<const void*>(request_begin)
    388         << " heap_reservation.Begin()=" << static_cast<const void*>(heap_reservation.Begin());
    389     for (std::unique_ptr<space::ImageSpace>& space : boot_image_spaces) {
    390       boot_image_spaces_.push_back(space.get());
    391       AddSpace(space.release());
    392     }
    393   } else {
    394     if (foreground_collector_type_ == kCollectorTypeCC) {
    395       // Need to use a low address so that we can allocate a contiguous 2 * Xmx space
    396       // when there's no image (dex2oat for target).
    397       request_begin = kPreferredAllocSpaceBegin;
    398     }
    399     // Gross hack to make dex2oat deterministic.
    400     if (foreground_collector_type_ == kCollectorTypeMS && Runtime::Current()->IsAotCompiler()) {
    401       // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
    402       // b/26849108
    403       request_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
    404     }
    405   }
    406 
    407   /*
    408   requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    409                                      +-  nonmoving space (non_moving_space_capacity)+-
    410                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    411                                      +-????????????????????????????????????????????+-
    412                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    413                                      +-main alloc space / bump space 1 (capacity_) +-
    414                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    415                                      +-????????????????????????????????????????????+-
    416                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    417                                      +-main alloc space2 / bump space 2 (capacity_)+-
    418                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    419   */
    420 
    421   MemMap main_mem_map_1;
    422   MemMap main_mem_map_2;
    423 
    424   std::string error_str;
    425   MemMap non_moving_space_mem_map;
    426   if (separate_non_moving_space) {
    427     ScopedTrace trace2("Create separate non moving space");
    428     // If we are the zygote, the non moving space becomes the zygote space when we run
    429     // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
    430     // rename the mem map later.
    431     const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName;
    432     // Reserve the non moving mem map before the other two since it needs to be at a specific
    433     // address.
    434     DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
    435     if (heap_reservation.IsValid()) {
    436       non_moving_space_mem_map = heap_reservation.RemapAtEnd(
    437           heap_reservation.Begin(), space_name, PROT_READ | PROT_WRITE, &error_str);
    438     } else {
    439       non_moving_space_mem_map = MapAnonymousPreferredAddress(
    440           space_name, request_begin, non_moving_space_capacity, &error_str);
    441     }
    442     CHECK(non_moving_space_mem_map.IsValid()) << error_str;
    443     DCHECK(!heap_reservation.IsValid());
    444     // Try to reserve virtual memory at a lower address if we have a separate non moving space.
    445     request_begin = kPreferredAllocSpaceBegin + non_moving_space_capacity;
    446   }
    447   // Attempt to create 2 mem maps at or after the requested begin.
    448   if (foreground_collector_type_ != kCollectorTypeCC) {
    449     ScopedTrace trace2("Create main mem map");
    450     if (separate_non_moving_space ||
    451         !(is_zygote || foreground_collector_type_ == kCollectorTypeGSS)) {
    452       main_mem_map_1 = MapAnonymousPreferredAddress(
    453           kMemMapSpaceName[0], request_begin, capacity_, &error_str);
    454     } else {
    455       // If no separate non-moving space and we are the zygote or the collector type is GSS,
    456       // the main space must come right after the image space to avoid a gap.
    457       // This is required since we want the zygote space to be adjacent to the image space.
    458       DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
    459       main_mem_map_1 = MemMap::MapAnonymous(
    460           kMemMapSpaceName[0],
    461           request_begin,
    462           capacity_,
    463           PROT_READ | PROT_WRITE,
    464           /* low_4gb= */ true,
    465           /* reuse= */ false,
    466           heap_reservation.IsValid() ? &heap_reservation : nullptr,
    467           &error_str);
    468     }
    469     CHECK(main_mem_map_1.IsValid()) << error_str;
    470     DCHECK(!heap_reservation.IsValid());
    471   }
    472   if (support_homogeneous_space_compaction ||
    473       background_collector_type_ == kCollectorTypeSS ||
    474       foreground_collector_type_ == kCollectorTypeSS) {
    475     ScopedTrace trace2("Create main mem map 2");
    476     main_mem_map_2 = MapAnonymousPreferredAddress(
    477         kMemMapSpaceName[1], main_mem_map_1.End(), capacity_, &error_str);
    478     CHECK(main_mem_map_2.IsValid()) << error_str;
    479   }
    480 
    481   // Create the non moving space first so that bitmaps don't take up the address range.
    482   if (separate_non_moving_space) {
    483     ScopedTrace trace2("Add non moving space");
    484     // Non moving space is always dlmalloc since we currently don't have support for multiple
    485     // active rosalloc spaces.
    486     const size_t size = non_moving_space_mem_map.Size();
    487     const void* non_moving_space_mem_map_begin = non_moving_space_mem_map.Begin();
    488     non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(std::move(non_moving_space_mem_map),
    489                                                                "zygote / non moving space",
    490                                                                kDefaultStartingSize,
    491                                                                initial_size,
    492                                                                size,
    493                                                                size,
    494                                                                /* can_move_objects= */ false);
    495     CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
    496         << non_moving_space_mem_map_begin;
    497     non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
    498     AddSpace(non_moving_space_);
    499   }
    500   // Create other spaces based on whether or not we have a moving GC.
    501   if (foreground_collector_type_ == kCollectorTypeCC) {
    502     CHECK(separate_non_moving_space);
    503     // Reserve twice the capacity, to allow evacuating every region for explicit GCs.
    504     MemMap region_space_mem_map =
    505         space::RegionSpace::CreateMemMap(kRegionSpaceName, capacity_ * 2, request_begin);
    506     CHECK(region_space_mem_map.IsValid()) << "No region space mem map";
    507     region_space_ = space::RegionSpace::Create(
    508         kRegionSpaceName, std::move(region_space_mem_map), use_generational_cc_);
    509     AddSpace(region_space_);
    510   } else if (IsMovingGc(foreground_collector_type_) &&
    511       foreground_collector_type_ != kCollectorTypeGSS) {
    512     // Create bump pointer spaces.
    513     // We only to create the bump pointer if the foreground collector is a compacting GC.
    514     // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
    515     bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
    516                                                                     std::move(main_mem_map_1));
    517     CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
    518     AddSpace(bump_pointer_space_);
    519     temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
    520                                                             std::move(main_mem_map_2));
    521     CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
    522     AddSpace(temp_space_);
    523     CHECK(separate_non_moving_space);
    524   } else {
    525     CreateMainMallocSpace(std::move(main_mem_map_1), initial_size, growth_limit_, capacity_);
    526     CHECK(main_space_ != nullptr);
    527     AddSpace(main_space_);
    528     if (!separate_non_moving_space) {
    529       non_moving_space_ = main_space_;
    530       CHECK(!non_moving_space_->CanMoveObjects());
    531     }
    532     if (foreground_collector_type_ == kCollectorTypeGSS) {
    533       CHECK_EQ(foreground_collector_type_, background_collector_type_);
    534       // Create bump pointer spaces instead of a backup space.
    535       main_mem_map_2.Reset();
    536       bump_pointer_space_ = space::BumpPointerSpace::Create(
    537           "Bump pointer space 1", kGSSBumpPointerSpaceCapacity);
    538       CHECK(bump_pointer_space_ != nullptr);
    539       AddSpace(bump_pointer_space_);
    540       temp_space_ = space::BumpPointerSpace::Create(
    541           "Bump pointer space 2", kGSSBumpPointerSpaceCapacity);
    542       CHECK(temp_space_ != nullptr);
    543       AddSpace(temp_space_);
    544     } else if (main_mem_map_2.IsValid()) {
    545       const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
    546       main_space_backup_.reset(CreateMallocSpaceFromMemMap(std::move(main_mem_map_2),
    547                                                            initial_size,
    548                                                            growth_limit_,
    549                                                            capacity_,
    550                                                            name,
    551                                                            /* can_move_objects= */ true));
    552       CHECK(main_space_backup_.get() != nullptr);
    553       // Add the space so its accounted for in the heap_begin and heap_end.
    554       AddSpace(main_space_backup_.get());
    555     }
    556   }
    557   CHECK(non_moving_space_ != nullptr);
    558   CHECK(!non_moving_space_->CanMoveObjects());
    559   // Allocate the large object space.
    560   if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
    561     large_object_space_ = space::FreeListSpace::Create("free list large object space", capacity_);
    562     CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
    563   } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
    564     large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
    565     CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
    566   } else {
    567     // Disable the large object space by making the cutoff excessively large.
    568     large_object_threshold_ = std::numeric_limits<size_t>::max();
    569     large_object_space_ = nullptr;
    570   }
    571   if (large_object_space_ != nullptr) {
    572     AddSpace(large_object_space_);
    573   }
    574   // Compute heap capacity. Continuous spaces are sorted in order of Begin().
    575   CHECK(!continuous_spaces_.empty());
    576   // Relies on the spaces being sorted.
    577   uint8_t* heap_begin = continuous_spaces_.front()->Begin();
    578   uint8_t* heap_end = continuous_spaces_.back()->Limit();
    579   size_t heap_capacity = heap_end - heap_begin;
    580   // Remove the main backup space since it slows down the GC to have unused extra spaces.
    581   // TODO: Avoid needing to do this.
    582   if (main_space_backup_.get() != nullptr) {
    583     RemoveSpace(main_space_backup_.get());
    584   }
    585   // Allocate the card table.
    586   // We currently don't support dynamically resizing the card table.
    587   // Since we don't know where in the low_4gb the app image will be located, make the card table
    588   // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
    589   UNUSED(heap_capacity);
    590   // Start at 4 KB, we can be sure there are no spaces mapped this low since the address range is
    591   // reserved by the kernel.
    592   static constexpr size_t kMinHeapAddress = 4 * KB;
    593   card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
    594                                                   4 * GB - kMinHeapAddress));
    595   CHECK(card_table_.get() != nullptr) << "Failed to create card table";
    596   if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
    597     rb_table_.reset(new accounting::ReadBarrierTable());
    598     DCHECK(rb_table_->IsAllCleared());
    599   }
    600   if (HasBootImageSpace()) {
    601     // Don't add the image mod union table if we are running without an image, this can crash if
    602     // we use the CardCache implementation.
    603     for (space::ImageSpace* image_space : GetBootImageSpaces()) {
    604       accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
    605           "Image mod-union table", this, image_space);
    606       CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
    607       AddModUnionTable(mod_union_table);
    608     }
    609   }
    610   if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
    611     accounting::RememberedSet* non_moving_space_rem_set =
    612         new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
    613     CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
    614     AddRememberedSet(non_moving_space_rem_set);
    615   }
    616   // TODO: Count objects in the image space here?
    617   num_bytes_allocated_.store(0, std::memory_order_relaxed);
    618   mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
    619                                                     kDefaultMarkStackSize));
    620   const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
    621   allocation_stack_.reset(accounting::ObjectStack::Create(
    622       "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
    623   live_stack_.reset(accounting::ObjectStack::Create(
    624       "live stack", max_allocation_stack_size_, alloc_stack_capacity));
    625   // It's still too early to take a lock because there are no threads yet, but we can create locks
    626   // now. We don't create it earlier to make it clear that you can't use locks during heap
    627   // initialization.
    628   gc_complete_lock_ = new Mutex("GC complete lock");
    629   gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
    630                                                 *gc_complete_lock_));
    631 
    632   thread_flip_lock_ = new Mutex("GC thread flip lock");
    633   thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
    634                                                 *thread_flip_lock_));
    635   task_processor_.reset(new TaskProcessor());
    636   reference_processor_.reset(new ReferenceProcessor());
    637   pending_task_lock_ = new Mutex("Pending task lock");
    638   if (ignore_target_footprint_) {
    639     SetIdealFootprint(std::numeric_limits<size_t>::max());
    640     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
    641   }
    642   CHECK_NE(target_footprint_.load(std::memory_order_relaxed), 0U);
    643   // Create our garbage collectors.
    644   for (size_t i = 0; i < 2; ++i) {
    645     const bool concurrent = i != 0;
    646     if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
    647         (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
    648       garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
    649       garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
    650       garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
    651     }
    652   }
    653   if (kMovingCollector) {
    654     if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) ||
    655         MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
    656         use_homogeneous_space_compaction_for_oom_) {
    657       // TODO: Clean this up.
    658       const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
    659       semi_space_collector_ = new collector::SemiSpace(this, generational,
    660                                                        generational ? "generational" : "");
    661       garbage_collectors_.push_back(semi_space_collector_);
    662     }
    663     if (MayUseCollector(kCollectorTypeCC)) {
    664       concurrent_copying_collector_ = new collector::ConcurrentCopying(this,
    665                                                                        /*young_gen=*/false,
    666                                                                        use_generational_cc_,
    667                                                                        "",
    668                                                                        measure_gc_performance);
    669       if (use_generational_cc_) {
    670         young_concurrent_copying_collector_ = new collector::ConcurrentCopying(
    671             this,
    672             /*young_gen=*/true,
    673             use_generational_cc_,
    674             "young",
    675             measure_gc_performance);
    676       }
    677       active_concurrent_copying_collector_ = concurrent_copying_collector_;
    678       DCHECK(region_space_ != nullptr);
    679       concurrent_copying_collector_->SetRegionSpace(region_space_);
    680       if (use_generational_cc_) {
    681         young_concurrent_copying_collector_->SetRegionSpace(region_space_);
    682         // At this point, non-moving space should be created.
    683         DCHECK(non_moving_space_ != nullptr);
    684         concurrent_copying_collector_->CreateInterRegionRefBitmaps();
    685       }
    686       garbage_collectors_.push_back(concurrent_copying_collector_);
    687       if (use_generational_cc_) {
    688         garbage_collectors_.push_back(young_concurrent_copying_collector_);
    689       }
    690     }
    691   }
    692   if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
    693       (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
    694     // Check that there's no gap between the image space and the non moving space so that the
    695     // immune region won't break (eg. due to a large object allocated in the gap). This is only
    696     // required when we're the zygote or using GSS.
    697     // Space with smallest Begin().
    698     space::ImageSpace* first_space = nullptr;
    699     for (space::ImageSpace* space : boot_image_spaces_) {
    700       if (first_space == nullptr || space->Begin() < first_space->Begin()) {
    701         first_space = space;
    702       }
    703     }
    704     bool no_gap = MemMap::CheckNoGaps(*first_space->GetMemMap(), *non_moving_space_->GetMemMap());
    705     if (!no_gap) {
    706       PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
    707       MemMap::DumpMaps(LOG_STREAM(ERROR), /* terse= */ true);
    708       LOG(FATAL) << "There's a gap between the image space and the non-moving space";
    709     }
    710   }
    711   instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
    712   if (gc_stress_mode_) {
    713     backtrace_lock_ = new Mutex("GC complete lock");
    714   }
    715   if (is_running_on_memory_tool_ || gc_stress_mode_) {
    716     instrumentation->InstrumentQuickAllocEntryPoints();
    717   }
    718   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    719     LOG(INFO) << "Heap() exiting";
    720   }
    721 }
    722 
    723 MemMap Heap::MapAnonymousPreferredAddress(const char* name,
    724                                           uint8_t* request_begin,
    725                                           size_t capacity,
    726                                           std::string* out_error_str) {
    727   while (true) {
    728     MemMap map = MemMap::MapAnonymous(name,
    729                                       request_begin,
    730                                       capacity,
    731                                       PROT_READ | PROT_WRITE,
    732                                       /*low_4gb=*/ true,
    733                                       /*reuse=*/ false,
    734                                       /*reservation=*/ nullptr,
    735                                       out_error_str);
    736     if (map.IsValid() || request_begin == nullptr) {
    737       return map;
    738     }
    739     // Retry a  second time with no specified request begin.
    740     request_begin = nullptr;
    741   }
    742 }
    743 
    744 bool Heap::MayUseCollector(CollectorType type) const {
    745   return foreground_collector_type_ == type || background_collector_type_ == type;
    746 }
    747 
    748 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap&& mem_map,
    749                                                       size_t initial_size,
    750                                                       size_t growth_limit,
    751                                                       size_t capacity,
    752                                                       const char* name,
    753                                                       bool can_move_objects) {
    754   space::MallocSpace* malloc_space = nullptr;
    755   if (kUseRosAlloc) {
    756     // Create rosalloc space.
    757     malloc_space = space::RosAllocSpace::CreateFromMemMap(std::move(mem_map),
    758                                                           name,
    759                                                           kDefaultStartingSize,
    760                                                           initial_size,
    761                                                           growth_limit,
    762                                                           capacity,
    763                                                           low_memory_mode_,
    764                                                           can_move_objects);
    765   } else {
    766     malloc_space = space::DlMallocSpace::CreateFromMemMap(std::move(mem_map),
    767                                                           name,
    768                                                           kDefaultStartingSize,
    769                                                           initial_size,
    770                                                           growth_limit,
    771                                                           capacity,
    772                                                           can_move_objects);
    773   }
    774   if (collector::SemiSpace::kUseRememberedSet) {
    775     accounting::RememberedSet* rem_set  =
    776         new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
    777     CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
    778     AddRememberedSet(rem_set);
    779   }
    780   CHECK(malloc_space != nullptr) << "Failed to create " << name;
    781   malloc_space->SetFootprintLimit(malloc_space->Capacity());
    782   return malloc_space;
    783 }
    784 
    785 void Heap::CreateMainMallocSpace(MemMap&& mem_map,
    786                                  size_t initial_size,
    787                                  size_t growth_limit,
    788                                  size_t capacity) {
    789   // Is background compaction is enabled?
    790   bool can_move_objects = IsMovingGc(background_collector_type_) !=
    791       IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
    792   // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
    793   // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
    794   // from the main space to the zygote space. If background compaction is enabled, always pass in
    795   // that we can move objets.
    796   if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
    797     // After the zygote we want this to be false if we don't have background compaction enabled so
    798     // that getting primitive array elements is faster.
    799     // We never have homogeneous compaction with GSS and don't need a space with movable objects.
    800     can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
    801   }
    802   if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
    803     RemoveRememberedSet(main_space_);
    804   }
    805   const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
    806   main_space_ = CreateMallocSpaceFromMemMap(std::move(mem_map),
    807                                             initial_size,
    808                                             growth_limit,
    809                                             capacity, name,
    810                                             can_move_objects);
    811   SetSpaceAsDefault(main_space_);
    812   VLOG(heap) << "Created main space " << main_space_;
    813 }
    814 
    815 void Heap::ChangeAllocator(AllocatorType allocator) {
    816   if (current_allocator_ != allocator) {
    817     // These two allocators are only used internally and don't have any entrypoints.
    818     CHECK_NE(allocator, kAllocatorTypeLOS);
    819     CHECK_NE(allocator, kAllocatorTypeNonMoving);
    820     current_allocator_ = allocator;
    821     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    822     SetQuickAllocEntryPointsAllocator(current_allocator_);
    823     Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
    824   }
    825 }
    826 
    827 void Heap::DisableMovingGc() {
    828   CHECK(!kUseReadBarrier);
    829   if (IsMovingGc(foreground_collector_type_)) {
    830     foreground_collector_type_ = kCollectorTypeCMS;
    831   }
    832   if (IsMovingGc(background_collector_type_)) {
    833     background_collector_type_ = foreground_collector_type_;
    834   }
    835   TransitionCollector(foreground_collector_type_);
    836   Thread* const self = Thread::Current();
    837   ScopedThreadStateChange tsc(self, kSuspended);
    838   ScopedSuspendAll ssa(__FUNCTION__);
    839   // Something may have caused the transition to fail.
    840   if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
    841     CHECK(main_space_ != nullptr);
    842     // The allocation stack may have non movable objects in it. We need to flush it since the GC
    843     // can't only handle marking allocation stack objects of one non moving space and one main
    844     // space.
    845     {
    846       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    847       FlushAllocStack();
    848     }
    849     main_space_->DisableMovingObjects();
    850     non_moving_space_ = main_space_;
    851     CHECK(!non_moving_space_->CanMoveObjects());
    852   }
    853 }
    854 
    855 bool Heap::IsCompilingBoot() const {
    856   if (!Runtime::Current()->IsAotCompiler()) {
    857     return false;
    858   }
    859   ScopedObjectAccess soa(Thread::Current());
    860   for (const auto& space : continuous_spaces_) {
    861     if (space->IsImageSpace() || space->IsZygoteSpace()) {
    862       return false;
    863     }
    864   }
    865   return true;
    866 }
    867 
    868 void Heap::IncrementDisableMovingGC(Thread* self) {
    869   // Need to do this holding the lock to prevent races where the GC is about to run / running when
    870   // we attempt to disable it.
    871   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
    872   MutexLock mu(self, *gc_complete_lock_);
    873   ++disable_moving_gc_count_;
    874   if (IsMovingGc(collector_type_running_)) {
    875     WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
    876   }
    877 }
    878 
    879 void Heap::DecrementDisableMovingGC(Thread* self) {
    880   MutexLock mu(self, *gc_complete_lock_);
    881   CHECK_GT(disable_moving_gc_count_, 0U);
    882   --disable_moving_gc_count_;
    883 }
    884 
    885 void Heap::IncrementDisableThreadFlip(Thread* self) {
    886   // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
    887   CHECK(kUseReadBarrier);
    888   bool is_nested = self->GetDisableThreadFlipCount() > 0;
    889   self->IncrementDisableThreadFlipCount();
    890   if (is_nested) {
    891     // If this is a nested JNI critical section enter, we don't need to wait or increment the global
    892     // counter. The global counter is incremented only once for a thread for the outermost enter.
    893     return;
    894   }
    895   ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
    896   MutexLock mu(self, *thread_flip_lock_);
    897   thread_flip_cond_->CheckSafeToWait(self);
    898   bool has_waited = false;
    899   uint64_t wait_start = NanoTime();
    900   if (thread_flip_running_) {
    901     ScopedTrace trace("IncrementDisableThreadFlip");
    902     while (thread_flip_running_) {
    903       has_waited = true;
    904       thread_flip_cond_->Wait(self);
    905     }
    906   }
    907   ++disable_thread_flip_count_;
    908   if (has_waited) {
    909     uint64_t wait_time = NanoTime() - wait_start;
    910     total_wait_time_ += wait_time;
    911     if (wait_time > long_pause_log_threshold_) {
    912       LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
    913     }
    914   }
    915 }
    916 
    917 void Heap::DecrementDisableThreadFlip(Thread* self) {
    918   // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
    919   // the GC waiting before doing a thread flip.
    920   CHECK(kUseReadBarrier);
    921   self->DecrementDisableThreadFlipCount();
    922   bool is_outermost = self->GetDisableThreadFlipCount() == 0;
    923   if (!is_outermost) {
    924     // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
    925     // The global counter is decremented only once for a thread for the outermost exit.
    926     return;
    927   }
    928   MutexLock mu(self, *thread_flip_lock_);
    929   CHECK_GT(disable_thread_flip_count_, 0U);
    930   --disable_thread_flip_count_;
    931   if (disable_thread_flip_count_ == 0) {
    932     // Potentially notify the GC thread blocking to begin a thread flip.
    933     thread_flip_cond_->Broadcast(self);
    934   }
    935 }
    936 
    937 void Heap::ThreadFlipBegin(Thread* self) {
    938   // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
    939   // > 0, block. Otherwise, go ahead.
    940   CHECK(kUseReadBarrier);
    941   ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
    942   MutexLock mu(self, *thread_flip_lock_);
    943   thread_flip_cond_->CheckSafeToWait(self);
    944   bool has_waited = false;
    945   uint64_t wait_start = NanoTime();
    946   CHECK(!thread_flip_running_);
    947   // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
    948   // GC. This like a writer preference of a reader-writer lock.
    949   thread_flip_running_ = true;
    950   while (disable_thread_flip_count_ > 0) {
    951     has_waited = true;
    952     thread_flip_cond_->Wait(self);
    953   }
    954   if (has_waited) {
    955     uint64_t wait_time = NanoTime() - wait_start;
    956     total_wait_time_ += wait_time;
    957     if (wait_time > long_pause_log_threshold_) {
    958       LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
    959     }
    960   }
    961 }
    962 
    963 void Heap::ThreadFlipEnd(Thread* self) {
    964   // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
    965   // waiting before doing a JNI critical.
    966   CHECK(kUseReadBarrier);
    967   MutexLock mu(self, *thread_flip_lock_);
    968   CHECK(thread_flip_running_);
    969   thread_flip_running_ = false;
    970   // Potentially notify mutator threads blocking to enter a JNI critical section.
    971   thread_flip_cond_->Broadcast(self);
    972 }
    973 
    974 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
    975   if (old_process_state != new_process_state) {
    976     const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
    977     for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
    978       // Start at index 1 to avoid "is always false" warning.
    979       // Have iteration 1 always transition the collector.
    980       TransitionCollector((((i & 1) == 1) == jank_perceptible)
    981           ? foreground_collector_type_
    982           : background_collector_type_);
    983       usleep(kCollectorTransitionStressWait);
    984     }
    985     if (jank_perceptible) {
    986       // Transition back to foreground right away to prevent jank.
    987       RequestCollectorTransition(foreground_collector_type_, 0);
    988     } else {
    989       // Don't delay for debug builds since we may want to stress test the GC.
    990       // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
    991       // special handling which does a homogenous space compaction once but then doesn't transition
    992       // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't
    993       // transition the collector.
    994       RequestCollectorTransition(background_collector_type_,
    995                                  kStressCollectorTransition
    996                                      ? 0
    997                                      : kCollectorTransitionWait);
    998     }
    999   }
   1000 }
   1001 
   1002 void Heap::CreateThreadPool() {
   1003   const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
   1004   if (num_threads != 0) {
   1005     thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
   1006   }
   1007 }
   1008 
   1009 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
   1010   space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
   1011   space::ContinuousSpace* space2 = non_moving_space_;
   1012   // TODO: Generalize this to n bitmaps?
   1013   CHECK(space1 != nullptr);
   1014   CHECK(space2 != nullptr);
   1015   MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
   1016                  (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
   1017                  stack);
   1018 }
   1019 
   1020 void Heap::DeleteThreadPool() {
   1021   thread_pool_.reset(nullptr);
   1022 }
   1023 
   1024 void Heap::AddSpace(space::Space* space) {
   1025   CHECK(space != nullptr);
   1026   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1027   if (space->IsContinuousSpace()) {
   1028     DCHECK(!space->IsDiscontinuousSpace());
   1029     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
   1030     // Continuous spaces don't necessarily have bitmaps.
   1031     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
   1032     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
   1033     // The region space bitmap is not added since VisitObjects visits the region space objects with
   1034     // special handling.
   1035     if (live_bitmap != nullptr && !space->IsRegionSpace()) {
   1036       CHECK(mark_bitmap != nullptr);
   1037       live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
   1038       mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
   1039     }
   1040     continuous_spaces_.push_back(continuous_space);
   1041     // Ensure that spaces remain sorted in increasing order of start address.
   1042     std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
   1043               [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
   1044       return a->Begin() < b->Begin();
   1045     });
   1046   } else {
   1047     CHECK(space->IsDiscontinuousSpace());
   1048     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
   1049     live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
   1050     mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
   1051     discontinuous_spaces_.push_back(discontinuous_space);
   1052   }
   1053   if (space->IsAllocSpace()) {
   1054     alloc_spaces_.push_back(space->AsAllocSpace());
   1055   }
   1056 }
   1057 
   1058 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
   1059   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1060   if (continuous_space->IsDlMallocSpace()) {
   1061     dlmalloc_space_ = continuous_space->AsDlMallocSpace();
   1062   } else if (continuous_space->IsRosAllocSpace()) {
   1063     rosalloc_space_ = continuous_space->AsRosAllocSpace();
   1064   }
   1065 }
   1066 
   1067 void Heap::RemoveSpace(space::Space* space) {
   1068   DCHECK(space != nullptr);
   1069   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1070   if (space->IsContinuousSpace()) {
   1071     DCHECK(!space->IsDiscontinuousSpace());
   1072     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
   1073     // Continuous spaces don't necessarily have bitmaps.
   1074     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
   1075     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
   1076     if (live_bitmap != nullptr && !space->IsRegionSpace()) {
   1077       DCHECK(mark_bitmap != nullptr);
   1078       live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
   1079       mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
   1080     }
   1081     auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
   1082     DCHECK(it != continuous_spaces_.end());
   1083     continuous_spaces_.erase(it);
   1084   } else {
   1085     DCHECK(space->IsDiscontinuousSpace());
   1086     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
   1087     live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
   1088     mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
   1089     auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
   1090                         discontinuous_space);
   1091     DCHECK(it != discontinuous_spaces_.end());
   1092     discontinuous_spaces_.erase(it);
   1093   }
   1094   if (space->IsAllocSpace()) {
   1095     auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
   1096     DCHECK(it != alloc_spaces_.end());
   1097     alloc_spaces_.erase(it);
   1098   }
   1099 }
   1100 
   1101 double Heap::CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
   1102                                                uint64_t current_process_cpu_time) const {
   1103   uint64_t bytes_allocated = GetBytesAllocated();
   1104   double weight = current_process_cpu_time - gc_last_process_cpu_time_ns;
   1105   return weight * bytes_allocated;
   1106 }
   1107 
   1108 void Heap::CalculatePreGcWeightedAllocatedBytes() {
   1109   uint64_t current_process_cpu_time = ProcessCpuNanoTime();
   1110   pre_gc_weighted_allocated_bytes_ +=
   1111     CalculateGcWeightedAllocatedBytes(pre_gc_last_process_cpu_time_ns_, current_process_cpu_time);
   1112   pre_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
   1113 }
   1114 
   1115 void Heap::CalculatePostGcWeightedAllocatedBytes() {
   1116   uint64_t current_process_cpu_time = ProcessCpuNanoTime();
   1117   post_gc_weighted_allocated_bytes_ +=
   1118     CalculateGcWeightedAllocatedBytes(post_gc_last_process_cpu_time_ns_, current_process_cpu_time);
   1119   post_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
   1120 }
   1121 
   1122 uint64_t Heap::GetTotalGcCpuTime() {
   1123   uint64_t sum = 0;
   1124   for (auto* collector : garbage_collectors_) {
   1125     sum += collector->GetTotalCpuTime();
   1126   }
   1127   return sum;
   1128 }
   1129 
   1130 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
   1131   // Dump cumulative timings.
   1132   os << "Dumping cumulative Gc timings\n";
   1133   uint64_t total_duration = 0;
   1134   // Dump cumulative loggers for each GC type.
   1135   uint64_t total_paused_time = 0;
   1136   for (auto* collector : garbage_collectors_) {
   1137     total_duration += collector->GetCumulativeTimings().GetTotalNs();
   1138     total_paused_time += collector->GetTotalPausedTimeNs();
   1139     collector->DumpPerformanceInfo(os);
   1140   }
   1141   if (total_duration != 0) {
   1142     const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
   1143     os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
   1144     os << "Mean GC size throughput: "
   1145        << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
   1146     os << "Mean GC object throughput: "
   1147        << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
   1148   }
   1149   uint64_t total_objects_allocated = GetObjectsAllocatedEver();
   1150   os << "Total number of allocations " << total_objects_allocated << "\n";
   1151   os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
   1152   os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
   1153   os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
   1154   os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
   1155   os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
   1156   os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
   1157   os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
   1158   if (HasZygoteSpace()) {
   1159     os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
   1160   }
   1161   os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
   1162   os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
   1163   os << "Total GC count: " << GetGcCount() << "\n";
   1164   os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
   1165   os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
   1166   os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
   1167 
   1168   {
   1169     MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1170     if (gc_count_rate_histogram_.SampleSize() > 0U) {
   1171       os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
   1172       gc_count_rate_histogram_.DumpBins(os);
   1173       os << "\n";
   1174     }
   1175     if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
   1176       os << "Histogram of blocking GC count per "
   1177          << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
   1178       blocking_gc_count_rate_histogram_.DumpBins(os);
   1179       os << "\n";
   1180     }
   1181   }
   1182 
   1183   if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
   1184     rosalloc_space_->DumpStats(os);
   1185   }
   1186 
   1187   os << "Native bytes total: " << GetNativeBytes()
   1188      << " registered: " << native_bytes_registered_.load(std::memory_order_relaxed) << "\n";
   1189 
   1190   os << "Total native bytes at last GC: "
   1191      << old_native_bytes_allocated_.load(std::memory_order_relaxed) << "\n";
   1192 
   1193   BaseMutex::DumpAll(os);
   1194 }
   1195 
   1196 void Heap::ResetGcPerformanceInfo() {
   1197   for (auto* collector : garbage_collectors_) {
   1198     collector->ResetMeasurements();
   1199   }
   1200 
   1201   process_cpu_start_time_ns_ = ProcessCpuNanoTime();
   1202 
   1203   pre_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
   1204   pre_gc_weighted_allocated_bytes_ = 0u;
   1205 
   1206   post_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
   1207   post_gc_weighted_allocated_bytes_ = 0u;
   1208 
   1209   total_bytes_freed_ever_ = 0;
   1210   total_objects_freed_ever_ = 0;
   1211   total_wait_time_ = 0;
   1212   blocking_gc_count_ = 0;
   1213   blocking_gc_time_ = 0;
   1214   gc_count_last_window_ = 0;
   1215   blocking_gc_count_last_window_ = 0;
   1216   last_update_time_gc_count_rate_histograms_ =  // Round down by the window duration.
   1217       (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
   1218   {
   1219     MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1220     gc_count_rate_histogram_.Reset();
   1221     blocking_gc_count_rate_histogram_.Reset();
   1222   }
   1223 }
   1224 
   1225 uint64_t Heap::GetGcCount() const {
   1226   uint64_t gc_count = 0U;
   1227   for (auto* collector : garbage_collectors_) {
   1228     gc_count += collector->GetCumulativeTimings().GetIterations();
   1229   }
   1230   return gc_count;
   1231 }
   1232 
   1233 uint64_t Heap::GetGcTime() const {
   1234   uint64_t gc_time = 0U;
   1235   for (auto* collector : garbage_collectors_) {
   1236     gc_time += collector->GetCumulativeTimings().GetTotalNs();
   1237   }
   1238   return gc_time;
   1239 }
   1240 
   1241 uint64_t Heap::GetBlockingGcCount() const {
   1242   return blocking_gc_count_;
   1243 }
   1244 
   1245 uint64_t Heap::GetBlockingGcTime() const {
   1246   return blocking_gc_time_;
   1247 }
   1248 
   1249 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
   1250   MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1251   if (gc_count_rate_histogram_.SampleSize() > 0U) {
   1252     gc_count_rate_histogram_.DumpBins(os);
   1253   }
   1254 }
   1255 
   1256 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
   1257   MutexLock mu(Thread::Current(), *gc_complete_lock_);
   1258   if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
   1259     blocking_gc_count_rate_histogram_.DumpBins(os);
   1260   }
   1261 }
   1262 
   1263 ALWAYS_INLINE
   1264 static inline AllocationListener* GetAndOverwriteAllocationListener(
   1265     Atomic<AllocationListener*>* storage, AllocationListener* new_value) {
   1266   return storage->exchange(new_value);
   1267 }
   1268 
   1269 Heap::~Heap() {
   1270   VLOG(heap) << "Starting ~Heap()";
   1271   STLDeleteElements(&garbage_collectors_);
   1272   // If we don't reset then the mark stack complains in its destructor.
   1273   allocation_stack_->Reset();
   1274   allocation_records_.reset();
   1275   live_stack_->Reset();
   1276   STLDeleteValues(&mod_union_tables_);
   1277   STLDeleteValues(&remembered_sets_);
   1278   STLDeleteElements(&continuous_spaces_);
   1279   STLDeleteElements(&discontinuous_spaces_);
   1280   delete gc_complete_lock_;
   1281   delete thread_flip_lock_;
   1282   delete pending_task_lock_;
   1283   delete backtrace_lock_;
   1284   uint64_t unique_count = unique_backtrace_count_.load();
   1285   uint64_t seen_count = seen_backtrace_count_.load();
   1286   if (unique_count != 0 || seen_count != 0) {
   1287     LOG(INFO) << "gc stress unique=" << unique_count << " total=" << (unique_count + seen_count);
   1288   }
   1289   VLOG(heap) << "Finished ~Heap()";
   1290 }
   1291 
   1292 
   1293 space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const {
   1294   for (const auto& space : continuous_spaces_) {
   1295     if (space->Contains(addr)) {
   1296       return space;
   1297     }
   1298   }
   1299   return nullptr;
   1300 }
   1301 
   1302 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
   1303                                                             bool fail_ok) const {
   1304   space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr());
   1305   if (space != nullptr) {
   1306     return space;
   1307   }
   1308   if (!fail_ok) {
   1309     LOG(FATAL) << "object " << obj << " not inside any spaces!";
   1310   }
   1311   return nullptr;
   1312 }
   1313 
   1314 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
   1315                                                                   bool fail_ok) const {
   1316   for (const auto& space : discontinuous_spaces_) {
   1317     if (space->Contains(obj.Ptr())) {
   1318       return space;
   1319     }
   1320   }
   1321   if (!fail_ok) {
   1322     LOG(FATAL) << "object " << obj << " not inside any spaces!";
   1323   }
   1324   return nullptr;
   1325 }
   1326 
   1327 space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const {
   1328   space::Space* result = FindContinuousSpaceFromObject(obj, true);
   1329   if (result != nullptr) {
   1330     return result;
   1331   }
   1332   return FindDiscontinuousSpaceFromObject(obj, fail_ok);
   1333 }
   1334 
   1335 space::Space* Heap::FindSpaceFromAddress(const void* addr) const {
   1336   for (const auto& space : continuous_spaces_) {
   1337     if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
   1338       return space;
   1339     }
   1340   }
   1341   for (const auto& space : discontinuous_spaces_) {
   1342     if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
   1343       return space;
   1344     }
   1345   }
   1346   return nullptr;
   1347 }
   1348 
   1349 std::string Heap::DumpSpaceNameFromAddress(const void* addr) const {
   1350   space::Space* space = FindSpaceFromAddress(addr);
   1351   return (space != nullptr) ? space->GetName() : "no space";
   1352 }
   1353 
   1354 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
   1355   // If we're in a stack overflow, do not create a new exception. It would require running the
   1356   // constructor, which will of course still be in a stack overflow.
   1357   if (self->IsHandlingStackOverflow()) {
   1358     self->SetException(
   1359         Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
   1360     return;
   1361   }
   1362 
   1363   std::ostringstream oss;
   1364   size_t total_bytes_free = GetFreeMemory();
   1365   oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
   1366       << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM,"
   1367       << " target footprint " << target_footprint_.load(std::memory_order_relaxed)
   1368       << ", growth limit "
   1369       << growth_limit_;
   1370   // If the allocation failed due to fragmentation, print out the largest continuous allocation.
   1371   if (total_bytes_free >= byte_count) {
   1372     space::AllocSpace* space = nullptr;
   1373     if (allocator_type == kAllocatorTypeNonMoving) {
   1374       space = non_moving_space_;
   1375     } else if (allocator_type == kAllocatorTypeRosAlloc ||
   1376                allocator_type == kAllocatorTypeDlMalloc) {
   1377       space = main_space_;
   1378     } else if (allocator_type == kAllocatorTypeBumpPointer ||
   1379                allocator_type == kAllocatorTypeTLAB) {
   1380       space = bump_pointer_space_;
   1381     } else if (allocator_type == kAllocatorTypeRegion ||
   1382                allocator_type == kAllocatorTypeRegionTLAB) {
   1383       space = region_space_;
   1384     }
   1385     if (space != nullptr) {
   1386       space->LogFragmentationAllocFailure(oss, byte_count);
   1387     }
   1388   }
   1389   self->ThrowOutOfMemoryError(oss.str().c_str());
   1390 }
   1391 
   1392 void Heap::DoPendingCollectorTransition() {
   1393   CollectorType desired_collector_type = desired_collector_type_;
   1394   // Launch homogeneous space compaction if it is desired.
   1395   if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
   1396     if (!CareAboutPauseTimes()) {
   1397       PerformHomogeneousSpaceCompact();
   1398     } else {
   1399       VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
   1400     }
   1401   } else if (desired_collector_type == kCollectorTypeCCBackground) {
   1402     DCHECK(kUseReadBarrier);
   1403     if (!CareAboutPauseTimes()) {
   1404       // Invoke CC full compaction.
   1405       CollectGarbageInternal(collector::kGcTypeFull,
   1406                              kGcCauseCollectorTransition,
   1407                              /*clear_soft_references=*/false);
   1408     } else {
   1409       VLOG(gc) << "CC background compaction ignored due to jank perceptible process state";
   1410     }
   1411   } else {
   1412     TransitionCollector(desired_collector_type);
   1413   }
   1414 }
   1415 
   1416 void Heap::Trim(Thread* self) {
   1417   Runtime* const runtime = Runtime::Current();
   1418   if (!CareAboutPauseTimes()) {
   1419     // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
   1420     // about pauses.
   1421     ScopedTrace trace("Deflating monitors");
   1422     // Avoid race conditions on the lock word for CC.
   1423     ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim);
   1424     ScopedSuspendAll ssa(__FUNCTION__);
   1425     uint64_t start_time = NanoTime();
   1426     size_t count = runtime->GetMonitorList()->DeflateMonitors();
   1427     VLOG(heap) << "Deflating " << count << " monitors took "
   1428         << PrettyDuration(NanoTime() - start_time);
   1429   }
   1430   TrimIndirectReferenceTables(self);
   1431   TrimSpaces(self);
   1432   // Trim arenas that may have been used by JIT or verifier.
   1433   runtime->GetArenaPool()->TrimMaps();
   1434 }
   1435 
   1436 class TrimIndirectReferenceTableClosure : public Closure {
   1437  public:
   1438   explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
   1439   }
   1440   void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
   1441     thread->GetJniEnv()->TrimLocals();
   1442     // If thread is a running mutator, then act on behalf of the trim thread.
   1443     // See the code in ThreadList::RunCheckpoint.
   1444     barrier_->Pass(Thread::Current());
   1445   }
   1446 
   1447  private:
   1448   Barrier* const barrier_;
   1449 };
   1450 
   1451 void Heap::TrimIndirectReferenceTables(Thread* self) {
   1452   ScopedObjectAccess soa(self);
   1453   ScopedTrace trace(__PRETTY_FUNCTION__);
   1454   JavaVMExt* vm = soa.Vm();
   1455   // Trim globals indirect reference table.
   1456   vm->TrimGlobals();
   1457   // Trim locals indirect reference tables.
   1458   Barrier barrier(0);
   1459   TrimIndirectReferenceTableClosure closure(&barrier);
   1460   ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
   1461   size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
   1462   if (barrier_count != 0) {
   1463     barrier.Increment(self, barrier_count);
   1464   }
   1465 }
   1466 
   1467 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
   1468   // Need to do this before acquiring the locks since we don't want to get suspended while
   1469   // holding any locks.
   1470   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
   1471   MutexLock mu(self, *gc_complete_lock_);
   1472   // Ensure there is only one GC at a time.
   1473   WaitForGcToCompleteLocked(cause, self);
   1474   collector_type_running_ = collector_type;
   1475   last_gc_cause_ = cause;
   1476   thread_running_gc_ = self;
   1477 }
   1478 
   1479 void Heap::TrimSpaces(Thread* self) {
   1480   // Pretend we are doing a GC to prevent background compaction from deleting the space we are
   1481   // trimming.
   1482   StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
   1483   ScopedTrace trace(__PRETTY_FUNCTION__);
   1484   const uint64_t start_ns = NanoTime();
   1485   // Trim the managed spaces.
   1486   uint64_t total_alloc_space_allocated = 0;
   1487   uint64_t total_alloc_space_size = 0;
   1488   uint64_t managed_reclaimed = 0;
   1489   {
   1490     ScopedObjectAccess soa(self);
   1491     for (const auto& space : continuous_spaces_) {
   1492       if (space->IsMallocSpace()) {
   1493         gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   1494         if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
   1495           // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
   1496           // for a long period of time.
   1497           managed_reclaimed += malloc_space->Trim();
   1498         }
   1499         total_alloc_space_size += malloc_space->Size();
   1500       }
   1501     }
   1502   }
   1503   total_alloc_space_allocated = GetBytesAllocated();
   1504   if (large_object_space_ != nullptr) {
   1505     total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
   1506   }
   1507   if (bump_pointer_space_ != nullptr) {
   1508     total_alloc_space_allocated -= bump_pointer_space_->Size();
   1509   }
   1510   if (region_space_ != nullptr) {
   1511     total_alloc_space_allocated -= region_space_->GetBytesAllocated();
   1512   }
   1513   const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
   1514       static_cast<float>(total_alloc_space_size);
   1515   uint64_t gc_heap_end_ns = NanoTime();
   1516   // We never move things in the native heap, so we can finish the GC at this point.
   1517   FinishGC(self, collector::kGcTypeNone);
   1518 
   1519   VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
   1520       << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
   1521       << static_cast<int>(100 * managed_utilization) << "%.";
   1522 }
   1523 
   1524 bool Heap::IsValidObjectAddress(const void* addr) const {
   1525   if (addr == nullptr) {
   1526     return true;
   1527   }
   1528   return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr;
   1529 }
   1530 
   1531 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const {
   1532   return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr;
   1533 }
   1534 
   1535 bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
   1536                               bool search_allocation_stack,
   1537                               bool search_live_stack,
   1538                               bool sorted) {
   1539   if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) {
   1540     return false;
   1541   }
   1542   if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) {
   1543     mirror::Class* klass = obj->GetClass<kVerifyNone>();
   1544     if (obj == klass) {
   1545       // This case happens for java.lang.Class.
   1546       return true;
   1547     }
   1548     return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
   1549   } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) {
   1550     // If we are in the allocated region of the temp space, then we are probably live (e.g. during
   1551     // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
   1552     return temp_space_->Contains(obj.Ptr());
   1553   }
   1554   if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) {
   1555     return true;
   1556   }
   1557   space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
   1558   space::DiscontinuousSpace* d_space = nullptr;
   1559   if (c_space != nullptr) {
   1560     if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
   1561       return true;
   1562     }
   1563   } else {
   1564     d_space = FindDiscontinuousSpaceFromObject(obj, true);
   1565     if (d_space != nullptr) {
   1566       if (d_space->GetLiveBitmap()->Test(obj.Ptr())) {
   1567         return true;
   1568       }
   1569     }
   1570   }
   1571   // This is covering the allocation/live stack swapping that is done without mutators suspended.
   1572   for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
   1573     if (i > 0) {
   1574       NanoSleep(MsToNs(10));
   1575     }
   1576     if (search_allocation_stack) {
   1577       if (sorted) {
   1578         if (allocation_stack_->ContainsSorted(obj.Ptr())) {
   1579           return true;
   1580         }
   1581       } else if (allocation_stack_->Contains(obj.Ptr())) {
   1582         return true;
   1583       }
   1584     }
   1585 
   1586     if (search_live_stack) {
   1587       if (sorted) {
   1588         if (live_stack_->ContainsSorted(obj.Ptr())) {
   1589           return true;
   1590         }
   1591       } else if (live_stack_->Contains(obj.Ptr())) {
   1592         return true;
   1593       }
   1594     }
   1595   }
   1596   // We need to check the bitmaps again since there is a race where we mark something as live and
   1597   // then clear the stack containing it.
   1598   if (c_space != nullptr) {
   1599     if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
   1600       return true;
   1601     }
   1602   } else {
   1603     d_space = FindDiscontinuousSpaceFromObject(obj, true);
   1604     if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) {
   1605       return true;
   1606     }
   1607   }
   1608   return false;
   1609 }
   1610 
   1611 std::string Heap::DumpSpaces() const {
   1612   std::ostringstream oss;
   1613   DumpSpaces(oss);
   1614   return oss.str();
   1615 }
   1616 
   1617 void Heap::DumpSpaces(std::ostream& stream) const {
   1618   for (const auto& space : continuous_spaces_) {
   1619     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1620     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   1621     stream << space << " " << *space << "\n";
   1622     if (live_bitmap != nullptr) {
   1623       stream << live_bitmap << " " << *live_bitmap << "\n";
   1624     }
   1625     if (mark_bitmap != nullptr) {
   1626       stream << mark_bitmap << " " << *mark_bitmap << "\n";
   1627     }
   1628   }
   1629   for (const auto& space : discontinuous_spaces_) {
   1630     stream << space << " " << *space << "\n";
   1631   }
   1632 }
   1633 
   1634 void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) {
   1635   if (verify_object_mode_ == kVerifyObjectModeDisabled) {
   1636     return;
   1637   }
   1638 
   1639   // Ignore early dawn of the universe verifications.
   1640   if (UNLIKELY(num_bytes_allocated_.load(std::memory_order_relaxed) < 10 * KB)) {
   1641     return;
   1642   }
   1643   CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned";
   1644   mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
   1645   CHECK(c != nullptr) << "Null class in object " << obj;
   1646   CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
   1647   CHECK(VerifyClassClass(c));
   1648 
   1649   if (verify_object_mode_ > kVerifyObjectModeFast) {
   1650     // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
   1651     CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
   1652   }
   1653 }
   1654 
   1655 void Heap::VerifyHeap() {
   1656   ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1657   auto visitor = [&](mirror::Object* obj) {
   1658     VerifyObjectBody(obj);
   1659   };
   1660   // Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already
   1661   // NO_THREAD_SAFETY_ANALYSIS.
   1662   auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS {
   1663     GetLiveBitmap()->Visit(visitor);
   1664   };
   1665   no_thread_safety_analysis();
   1666 }
   1667 
   1668 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
   1669   // Use signed comparison since freed bytes can be negative when background compaction foreground
   1670   // transitions occurs. This is typically due to objects moving from a bump pointer space to a
   1671   // free list backed space, which may increase memory footprint due to padding and binning.
   1672   RACING_DCHECK_LE(freed_bytes,
   1673                    static_cast<int64_t>(num_bytes_allocated_.load(std::memory_order_relaxed)));
   1674   // Note: This relies on 2s complement for handling negative freed_bytes.
   1675   num_bytes_allocated_.fetch_sub(static_cast<ssize_t>(freed_bytes), std::memory_order_relaxed);
   1676   if (Runtime::Current()->HasStatsEnabled()) {
   1677     RuntimeStats* thread_stats = Thread::Current()->GetStats();
   1678     thread_stats->freed_objects += freed_objects;
   1679     thread_stats->freed_bytes += freed_bytes;
   1680     // TODO: Do this concurrently.
   1681     RuntimeStats* global_stats = Runtime::Current()->GetStats();
   1682     global_stats->freed_objects += freed_objects;
   1683     global_stats->freed_bytes += freed_bytes;
   1684   }
   1685 }
   1686 
   1687 void Heap::RecordFreeRevoke() {
   1688   // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
   1689   // ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
   1690   // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
   1691   // all the way to zero exactly as the remainder will be subtracted at the next GC.
   1692   size_t bytes_freed = num_bytes_freed_revoke_.load(std::memory_order_relaxed);
   1693   CHECK_GE(num_bytes_freed_revoke_.fetch_sub(bytes_freed, std::memory_order_relaxed),
   1694            bytes_freed) << "num_bytes_freed_revoke_ underflow";
   1695   CHECK_GE(num_bytes_allocated_.fetch_sub(bytes_freed, std::memory_order_relaxed),
   1696            bytes_freed) << "num_bytes_allocated_ underflow";
   1697   GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
   1698 }
   1699 
   1700 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
   1701   if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
   1702     return rosalloc_space_;
   1703   }
   1704   for (const auto& space : continuous_spaces_) {
   1705     if (space->AsContinuousSpace()->IsRosAllocSpace()) {
   1706       if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
   1707         return space->AsContinuousSpace()->AsRosAllocSpace();
   1708       }
   1709     }
   1710   }
   1711   return nullptr;
   1712 }
   1713 
   1714 static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) {
   1715   instrumentation::Instrumentation* const instrumentation =
   1716       Runtime::Current()->GetInstrumentation();
   1717   return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
   1718 }
   1719 
   1720 mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
   1721                                              AllocatorType allocator,
   1722                                              bool instrumented,
   1723                                              size_t alloc_size,
   1724                                              size_t* bytes_allocated,
   1725                                              size_t* usable_size,
   1726                                              size_t* bytes_tl_bulk_allocated,
   1727                                              ObjPtr<mirror::Class>* klass) {
   1728   bool was_default_allocator = allocator == GetCurrentAllocator();
   1729   // Make sure there is no pending exception since we may need to throw an OOME.
   1730   self->AssertNoPendingException();
   1731   DCHECK(klass != nullptr);
   1732   StackHandleScope<1> hs(self);
   1733   HandleWrapperObjPtr<mirror::Class> h(hs.NewHandleWrapper(klass));
   1734   // The allocation failed. If the GC is running, block until it completes, and then retry the
   1735   // allocation.
   1736   collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
   1737   // If we were the default allocator but the allocator changed while we were suspended,
   1738   // abort the allocation.
   1739   if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1740       (!instrumented && EntrypointsInstrumented())) {
   1741     return nullptr;
   1742   }
   1743   if (last_gc != collector::kGcTypeNone) {
   1744     // A GC was in progress and we blocked, retry allocation now that memory has been freed.
   1745     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1746                                                      usable_size, bytes_tl_bulk_allocated);
   1747     if (ptr != nullptr) {
   1748       return ptr;
   1749     }
   1750   }
   1751 
   1752   collector::GcType tried_type = next_gc_type_;
   1753   const bool gc_ran =
   1754       CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
   1755   if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1756       (!instrumented && EntrypointsInstrumented())) {
   1757     return nullptr;
   1758   }
   1759   if (gc_ran) {
   1760     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1761                                                      usable_size, bytes_tl_bulk_allocated);
   1762     if (ptr != nullptr) {
   1763       return ptr;
   1764     }
   1765   }
   1766 
   1767   // Loop through our different Gc types and try to Gc until we get enough free memory.
   1768   for (collector::GcType gc_type : gc_plan_) {
   1769     if (gc_type == tried_type) {
   1770       continue;
   1771     }
   1772     // Attempt to run the collector, if we succeed, re-try the allocation.
   1773     const bool plan_gc_ran =
   1774         CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
   1775     if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1776         (!instrumented && EntrypointsInstrumented())) {
   1777       return nullptr;
   1778     }
   1779     if (plan_gc_ran) {
   1780       // Did we free sufficient memory for the allocation to succeed?
   1781       mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1782                                                        usable_size, bytes_tl_bulk_allocated);
   1783       if (ptr != nullptr) {
   1784         return ptr;
   1785       }
   1786     }
   1787   }
   1788   // Allocations have failed after GCs;  this is an exceptional state.
   1789   // Try harder, growing the heap if necessary.
   1790   mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1791                                                   usable_size, bytes_tl_bulk_allocated);
   1792   if (ptr != nullptr) {
   1793     return ptr;
   1794   }
   1795   // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
   1796   // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
   1797   // VM spec requires that all SoftReferences have been collected and cleared before throwing
   1798   // OOME.
   1799   VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
   1800            << " allocation";
   1801   // TODO: Run finalization, but this may cause more allocations to occur.
   1802   // We don't need a WaitForGcToComplete here either.
   1803   DCHECK(!gc_plan_.empty());
   1804   CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
   1805   if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1806       (!instrumented && EntrypointsInstrumented())) {
   1807     return nullptr;
   1808   }
   1809   ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
   1810                                   bytes_tl_bulk_allocated);
   1811   if (ptr == nullptr) {
   1812     const uint64_t current_time = NanoTime();
   1813     switch (allocator) {
   1814       case kAllocatorTypeRosAlloc:
   1815         // Fall-through.
   1816       case kAllocatorTypeDlMalloc: {
   1817         if (use_homogeneous_space_compaction_for_oom_ &&
   1818             current_time - last_time_homogeneous_space_compaction_by_oom_ >
   1819             min_interval_homogeneous_space_compaction_by_oom_) {
   1820           last_time_homogeneous_space_compaction_by_oom_ = current_time;
   1821           HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
   1822           // Thread suspension could have occurred.
   1823           if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1824               (!instrumented && EntrypointsInstrumented())) {
   1825             return nullptr;
   1826           }
   1827           switch (result) {
   1828             case HomogeneousSpaceCompactResult::kSuccess:
   1829               // If the allocation succeeded, we delayed an oom.
   1830               ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1831                                               usable_size, bytes_tl_bulk_allocated);
   1832               if (ptr != nullptr) {
   1833                 count_delayed_oom_++;
   1834               }
   1835               break;
   1836             case HomogeneousSpaceCompactResult::kErrorReject:
   1837               // Reject due to disabled moving GC.
   1838               break;
   1839             case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
   1840               // Throw OOM by default.
   1841               break;
   1842             default: {
   1843               UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
   1844                   << static_cast<size_t>(result);
   1845               UNREACHABLE();
   1846             }
   1847           }
   1848           // Always print that we ran homogeneous space compation since this can cause jank.
   1849           VLOG(heap) << "Ran heap homogeneous space compaction, "
   1850                     << " requested defragmentation "
   1851                     << count_requested_homogeneous_space_compaction_.load()
   1852                     << " performed defragmentation "
   1853                     << count_performed_homogeneous_space_compaction_.load()
   1854                     << " ignored homogeneous space compaction "
   1855                     << count_ignored_homogeneous_space_compaction_.load()
   1856                     << " delayed count = "
   1857                     << count_delayed_oom_.load();
   1858         }
   1859         break;
   1860       }
   1861       case kAllocatorTypeNonMoving: {
   1862         if (kUseReadBarrier) {
   1863           // DisableMovingGc() isn't compatible with CC.
   1864           break;
   1865         }
   1866         // Try to transition the heap if the allocation failure was due to the space being full.
   1867         if (!IsOutOfMemoryOnAllocation(allocator, alloc_size, /*grow=*/ false)) {
   1868           // If we aren't out of memory then the OOM was probably from the non moving space being
   1869           // full. Attempt to disable compaction and turn the main space into a non moving space.
   1870           DisableMovingGc();
   1871           // Thread suspension could have occurred.
   1872           if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
   1873               (!instrumented && EntrypointsInstrumented())) {
   1874             return nullptr;
   1875           }
   1876           // If we are still a moving GC then something must have caused the transition to fail.
   1877           if (IsMovingGc(collector_type_)) {
   1878             MutexLock mu(self, *gc_complete_lock_);
   1879             // If we couldn't disable moving GC, just throw OOME and return null.
   1880             LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
   1881                          << disable_moving_gc_count_;
   1882           } else {
   1883             LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
   1884             ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1885                                             usable_size, bytes_tl_bulk_allocated);
   1886           }
   1887         }
   1888         break;
   1889       }
   1890       default: {
   1891         // Do nothing for others allocators.
   1892       }
   1893     }
   1894   }
   1895   // If the allocation hasn't succeeded by this point, throw an OOM error.
   1896   if (ptr == nullptr) {
   1897     ThrowOutOfMemoryError(self, alloc_size, allocator);
   1898   }
   1899   return ptr;
   1900 }
   1901 
   1902 void Heap::SetTargetHeapUtilization(float target) {
   1903   DCHECK_GT(target, 0.1f);  // asserted in Java code
   1904   DCHECK_LT(target, 1.0f);
   1905   target_utilization_ = target;
   1906 }
   1907 
   1908 size_t Heap::GetObjectsAllocated() const {
   1909   Thread* const self = Thread::Current();
   1910   ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
   1911   // Prevent GC running during GetObjectsAllocated since we may get a checkpoint request that tells
   1912   // us to suspend while we are doing SuspendAll. b/35232978
   1913   gc::ScopedGCCriticalSection gcs(Thread::Current(),
   1914                                   gc::kGcCauseGetObjectsAllocated,
   1915                                   gc::kCollectorTypeGetObjectsAllocated);
   1916   // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
   1917   ScopedSuspendAll ssa(__FUNCTION__);
   1918   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1919   size_t total = 0;
   1920   for (space::AllocSpace* space : alloc_spaces_) {
   1921     total += space->GetObjectsAllocated();
   1922   }
   1923   return total;
   1924 }
   1925 
   1926 uint64_t Heap::GetObjectsAllocatedEver() const {
   1927   uint64_t total = GetObjectsFreedEver();
   1928   // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
   1929   if (Thread::Current() != nullptr) {
   1930     total += GetObjectsAllocated();
   1931   }
   1932   return total;
   1933 }
   1934 
   1935 uint64_t Heap::GetBytesAllocatedEver() const {
   1936   return GetBytesFreedEver() + GetBytesAllocated();
   1937 }
   1938 
   1939 // Check whether the given object is an instance of the given class.
   1940 static bool MatchesClass(mirror::Object* obj,
   1941                          Handle<mirror::Class> h_class,
   1942                          bool use_is_assignable_from) REQUIRES_SHARED(Locks::mutator_lock_) {
   1943   mirror::Class* instance_class = obj->GetClass();
   1944   CHECK(instance_class != nullptr);
   1945   ObjPtr<mirror::Class> klass = h_class.Get();
   1946   if (use_is_assignable_from) {
   1947     return klass != nullptr && klass->IsAssignableFrom(instance_class);
   1948   }
   1949   return instance_class == klass;
   1950 }
   1951 
   1952 void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes,
   1953                           bool use_is_assignable_from,
   1954                           uint64_t* counts) {
   1955   auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
   1956     for (size_t i = 0; i < classes.size(); ++i) {
   1957       if (MatchesClass(obj, classes[i], use_is_assignable_from)) {
   1958         ++counts[i];
   1959       }
   1960     }
   1961   };
   1962   VisitObjects(instance_counter);
   1963 }
   1964 
   1965 void Heap::GetInstances(VariableSizedHandleScope& scope,
   1966                         Handle<mirror::Class> h_class,
   1967                         bool use_is_assignable_from,
   1968                         int32_t max_count,
   1969                         std::vector<Handle<mirror::Object>>& instances) {
   1970   DCHECK_GE(max_count, 0);
   1971   auto instance_collector = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
   1972     if (MatchesClass(obj, h_class, use_is_assignable_from)) {
   1973       if (max_count == 0 || instances.size() < static_cast<size_t>(max_count)) {
   1974         instances.push_back(scope.NewHandle(obj));
   1975       }
   1976     }
   1977   };
   1978   VisitObjects(instance_collector);
   1979 }
   1980 
   1981 void Heap::GetReferringObjects(VariableSizedHandleScope& scope,
   1982                                Handle<mirror::Object> o,
   1983                                int32_t max_count,
   1984                                std::vector<Handle<mirror::Object>>& referring_objects) {
   1985   class ReferringObjectsFinder {
   1986    public:
   1987     ReferringObjectsFinder(VariableSizedHandleScope& scope_in,
   1988                            Handle<mirror::Object> object_in,
   1989                            int32_t max_count_in,
   1990                            std::vector<Handle<mirror::Object>>& referring_objects_in)
   1991         REQUIRES_SHARED(Locks::mutator_lock_)
   1992         : scope_(scope_in),
   1993           object_(object_in),
   1994           max_count_(max_count_in),
   1995           referring_objects_(referring_objects_in) {}
   1996 
   1997     // For Object::VisitReferences.
   1998     void operator()(ObjPtr<mirror::Object> obj,
   1999                     MemberOffset offset,
   2000                     bool is_static ATTRIBUTE_UNUSED) const
   2001         REQUIRES_SHARED(Locks::mutator_lock_) {
   2002       mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
   2003       if (ref == object_.Get() && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
   2004         referring_objects_.push_back(scope_.NewHandle(obj));
   2005       }
   2006     }
   2007 
   2008     void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
   2009         const {}
   2010     void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
   2011 
   2012    private:
   2013     VariableSizedHandleScope& scope_;
   2014     Handle<mirror::Object> const object_;
   2015     const uint32_t max_count_;
   2016     std::vector<Handle<mirror::Object>>& referring_objects_;
   2017     DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
   2018   };
   2019   ReferringObjectsFinder finder(scope, o, max_count, referring_objects);
   2020   auto referring_objects_finder = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
   2021     obj->VisitReferences(finder, VoidFunctor());
   2022   };
   2023   VisitObjects(referring_objects_finder);
   2024 }
   2025 
   2026 void Heap::CollectGarbage(bool clear_soft_references, GcCause cause) {
   2027   // Even if we waited for a GC we still need to do another GC since weaks allocated during the
   2028   // last GC will not have necessarily been cleared.
   2029   CollectGarbageInternal(gc_plan_.back(), cause, clear_soft_references);
   2030 }
   2031 
   2032 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
   2033   return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
   2034       foreground_collector_type_ == kCollectorTypeCMS;
   2035 }
   2036 
   2037 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
   2038   Thread* self = Thread::Current();
   2039   // Inc requested homogeneous space compaction.
   2040   count_requested_homogeneous_space_compaction_++;
   2041   // Store performed homogeneous space compaction at a new request arrival.
   2042   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   2043   // TODO: Clang prebuilt for r316199 produces bogus thread safety analysis warning for holding both
   2044   // exclusive and shared lock in the same scope. Remove the assertion as a temporary workaround.
   2045   // http://b/71769596
   2046   // Locks::mutator_lock_->AssertNotHeld(self);
   2047   {
   2048     ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
   2049     MutexLock mu(self, *gc_complete_lock_);
   2050     // Ensure there is only one GC at a time.
   2051     WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
   2052     // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable
   2053     // count is non zero.
   2054     // If the collector type changed to something which doesn't benefit from homogeneous space
   2055     // compaction, exit.
   2056     if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
   2057         !main_space_->CanMoveObjects()) {
   2058       return kErrorReject;
   2059     }
   2060     if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
   2061       return kErrorUnsupported;
   2062     }
   2063     collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
   2064   }
   2065   if (Runtime::Current()->IsShuttingDown(self)) {
   2066     // Don't allow heap transitions to happen if the runtime is shutting down since these can
   2067     // cause objects to get finalized.
   2068     FinishGC(self, collector::kGcTypeNone);
   2069     return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
   2070   }
   2071   collector::GarbageCollector* collector;
   2072   {
   2073     ScopedSuspendAll ssa(__FUNCTION__);
   2074     uint64_t start_time = NanoTime();
   2075     // Launch compaction.
   2076     space::MallocSpace* to_space = main_space_backup_.release();
   2077     space::MallocSpace* from_space = main_space_;
   2078     to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2079     const uint64_t space_size_before_compaction = from_space->Size();
   2080     AddSpace(to_space);
   2081     // Make sure that we will have enough room to copy.
   2082     CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
   2083     collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
   2084     const uint64_t space_size_after_compaction = to_space->Size();
   2085     main_space_ = to_space;
   2086     main_space_backup_.reset(from_space);
   2087     RemoveSpace(from_space);
   2088     SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
   2089     // Update performed homogeneous space compaction count.
   2090     count_performed_homogeneous_space_compaction_++;
   2091     // Print statics log and resume all threads.
   2092     uint64_t duration = NanoTime() - start_time;
   2093     VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
   2094                << PrettySize(space_size_before_compaction) << " -> "
   2095                << PrettySize(space_size_after_compaction) << " compact-ratio: "
   2096                << std::fixed << static_cast<double>(space_size_after_compaction) /
   2097                static_cast<double>(space_size_before_compaction);
   2098   }
   2099   // Finish GC.
   2100   // Get the references we need to enqueue.
   2101   SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
   2102   GrowForUtilization(semi_space_collector_);
   2103   LogGC(kGcCauseHomogeneousSpaceCompact, collector);
   2104   FinishGC(self, collector::kGcTypeFull);
   2105   // Enqueue any references after losing the GC locks.
   2106   clear->Run(self);
   2107   clear->Finalize();
   2108   {
   2109     ScopedObjectAccess soa(self);
   2110     soa.Vm()->UnloadNativeLibraries();
   2111   }
   2112   return HomogeneousSpaceCompactResult::kSuccess;
   2113 }
   2114 
   2115 void Heap::TransitionCollector(CollectorType collector_type) {
   2116   if (collector_type == collector_type_) {
   2117     return;
   2118   }
   2119   // Collector transition must not happen with CC
   2120   CHECK(!kUseReadBarrier);
   2121   VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
   2122              << " -> " << static_cast<int>(collector_type);
   2123   uint64_t start_time = NanoTime();
   2124   uint32_t before_allocated = num_bytes_allocated_.load(std::memory_order_relaxed);
   2125   Runtime* const runtime = Runtime::Current();
   2126   Thread* const self = Thread::Current();
   2127   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   2128   // TODO: Clang prebuilt for r316199 produces bogus thread safety analysis warning for holding both
   2129   // exclusive and shared lock in the same scope. Remove the assertion as a temporary workaround.
   2130   // http://b/71769596
   2131   // Locks::mutator_lock_->AssertNotHeld(self);
   2132   // Busy wait until we can GC (StartGC can fail if we have a non-zero
   2133   // compacting_gc_disable_count_, this should rarely occurs).
   2134   for (;;) {
   2135     {
   2136       ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
   2137       MutexLock mu(self, *gc_complete_lock_);
   2138       // Ensure there is only one GC at a time.
   2139       WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
   2140       // Currently we only need a heap transition if we switch from a moving collector to a
   2141       // non-moving one, or visa versa.
   2142       const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
   2143       // If someone else beat us to it and changed the collector before we could, exit.
   2144       // This is safe to do before the suspend all since we set the collector_type_running_ before
   2145       // we exit the loop. If another thread attempts to do the heap transition before we exit,
   2146       // then it would get blocked on WaitForGcToCompleteLocked.
   2147       if (collector_type == collector_type_) {
   2148         return;
   2149       }
   2150       // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
   2151       if (!copying_transition || disable_moving_gc_count_ == 0) {
   2152         // TODO: Not hard code in semi-space collector?
   2153         collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
   2154         break;
   2155       }
   2156     }
   2157     usleep(1000);
   2158   }
   2159   if (runtime->IsShuttingDown(self)) {
   2160     // Don't allow heap transitions to happen if the runtime is shutting down since these can
   2161     // cause objects to get finalized.
   2162     FinishGC(self, collector::kGcTypeNone);
   2163     return;
   2164   }
   2165   collector::GarbageCollector* collector = nullptr;
   2166   {
   2167     ScopedSuspendAll ssa(__FUNCTION__);
   2168     switch (collector_type) {
   2169       case kCollectorTypeSS: {
   2170         if (!IsMovingGc(collector_type_)) {
   2171           // Create the bump pointer space from the backup space.
   2172           CHECK(main_space_backup_ != nullptr);
   2173           MemMap mem_map = main_space_backup_->ReleaseMemMap();
   2174           // We are transitioning from non moving GC -> moving GC, since we copied from the bump
   2175           // pointer space last transition it will be protected.
   2176           CHECK(mem_map.IsValid());
   2177           mem_map.Protect(PROT_READ | PROT_WRITE);
   2178           bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
   2179                                                                           std::move(mem_map));
   2180           AddSpace(bump_pointer_space_);
   2181           collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
   2182           // Use the now empty main space mem map for the bump pointer temp space.
   2183           mem_map = main_space_->ReleaseMemMap();
   2184           // Unset the pointers just in case.
   2185           if (dlmalloc_space_ == main_space_) {
   2186             dlmalloc_space_ = nullptr;
   2187           } else if (rosalloc_space_ == main_space_) {
   2188             rosalloc_space_ = nullptr;
   2189           }
   2190           // Remove the main space so that we don't try to trim it, this doens't work for debug
   2191           // builds since RosAlloc attempts to read the magic number from a protected page.
   2192           RemoveSpace(main_space_);
   2193           RemoveRememberedSet(main_space_);
   2194           delete main_space_;  // Delete the space since it has been removed.
   2195           main_space_ = nullptr;
   2196           RemoveRememberedSet(main_space_backup_.get());
   2197           main_space_backup_.reset(nullptr);  // Deletes the space.
   2198           temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
   2199                                                                   std::move(mem_map));
   2200           AddSpace(temp_space_);
   2201         }
   2202         break;
   2203       }
   2204       case kCollectorTypeMS:
   2205         // Fall through.
   2206       case kCollectorTypeCMS: {
   2207         if (IsMovingGc(collector_type_)) {
   2208           CHECK(temp_space_ != nullptr);
   2209           MemMap mem_map = temp_space_->ReleaseMemMap();
   2210           RemoveSpace(temp_space_);
   2211           temp_space_ = nullptr;
   2212           mem_map.Protect(PROT_READ | PROT_WRITE);
   2213           CreateMainMallocSpace(std::move(mem_map),
   2214                                 kDefaultInitialSize,
   2215                                 std::min(mem_map.Size(), growth_limit_),
   2216                                 mem_map.Size());
   2217           // Compact to the main space from the bump pointer space, don't need to swap semispaces.
   2218           AddSpace(main_space_);
   2219           collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
   2220           mem_map = bump_pointer_space_->ReleaseMemMap();
   2221           RemoveSpace(bump_pointer_space_);
   2222           bump_pointer_space_ = nullptr;
   2223           const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
   2224           // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
   2225           if (kIsDebugBuild && kUseRosAlloc) {
   2226             mem_map.Protect(PROT_READ | PROT_WRITE);
   2227           }
   2228           main_space_backup_.reset(CreateMallocSpaceFromMemMap(
   2229               std::move(mem_map),
   2230               kDefaultInitialSize,
   2231               std::min(mem_map.Size(), growth_limit_),
   2232               mem_map.Size(),
   2233               name,
   2234               true));
   2235           if (kIsDebugBuild && kUseRosAlloc) {
   2236             main_space_backup_->GetMemMap()->Protect(PROT_NONE);
   2237           }
   2238         }
   2239         break;
   2240       }
   2241       default: {
   2242         LOG(FATAL) << "Attempted to transition to invalid collector type "
   2243                    << static_cast<size_t>(collector_type);
   2244         UNREACHABLE();
   2245       }
   2246     }
   2247     ChangeCollector(collector_type);
   2248   }
   2249   // Can't call into java code with all threads suspended or the GC ongoing.
   2250   SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
   2251   uint64_t duration = NanoTime() - start_time;
   2252   GrowForUtilization(semi_space_collector_);
   2253   DCHECK(collector != nullptr);
   2254   LogGC(kGcCauseCollectorTransition, collector);
   2255   FinishGC(self, collector::kGcTypeFull);
   2256   // Now call into java and enqueue the references.
   2257   clear->Run(self);
   2258   clear->Finalize();
   2259   {
   2260     ScopedObjectAccess soa(self);
   2261     soa.Vm()->UnloadNativeLibraries();
   2262   }
   2263   int32_t after_allocated = num_bytes_allocated_.load(std::memory_order_relaxed);
   2264   int32_t delta_allocated = before_allocated - after_allocated;
   2265   std::string saved_str;
   2266   if (delta_allocated >= 0) {
   2267     saved_str = " saved at least " + PrettySize(delta_allocated);
   2268   } else {
   2269     saved_str = " expanded " + PrettySize(-delta_allocated);
   2270   }
   2271   VLOG(heap) << "Collector transition to " << collector_type << " took "
   2272              << PrettyDuration(duration) << saved_str;
   2273 }
   2274 
   2275 void Heap::ChangeCollector(CollectorType collector_type) {
   2276   // TODO: Only do this with all mutators suspended to avoid races.
   2277   if (collector_type != collector_type_) {
   2278     collector_type_ = collector_type;
   2279     gc_plan_.clear();
   2280     switch (collector_type_) {
   2281       case kCollectorTypeCC: {
   2282         if (use_generational_cc_) {
   2283           gc_plan_.push_back(collector::kGcTypeSticky);
   2284         }
   2285         gc_plan_.push_back(collector::kGcTypeFull);
   2286         if (use_tlab_) {
   2287           ChangeAllocator(kAllocatorTypeRegionTLAB);
   2288         } else {
   2289           ChangeAllocator(kAllocatorTypeRegion);
   2290         }
   2291         break;
   2292       }
   2293       case kCollectorTypeSS:  // Fall-through.
   2294       case kCollectorTypeGSS: {
   2295         gc_plan_.push_back(collector::kGcTypeFull);
   2296         if (use_tlab_) {
   2297           ChangeAllocator(kAllocatorTypeTLAB);
   2298         } else {
   2299           ChangeAllocator(kAllocatorTypeBumpPointer);
   2300         }
   2301         break;
   2302       }
   2303       case kCollectorTypeMS: {
   2304         gc_plan_.push_back(collector::kGcTypeSticky);
   2305         gc_plan_.push_back(collector::kGcTypePartial);
   2306         gc_plan_.push_back(collector::kGcTypeFull);
   2307         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
   2308         break;
   2309       }
   2310       case kCollectorTypeCMS: {
   2311         gc_plan_.push_back(collector::kGcTypeSticky);
   2312         gc_plan_.push_back(collector::kGcTypePartial);
   2313         gc_plan_.push_back(collector::kGcTypeFull);
   2314         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
   2315         break;
   2316       }
   2317       default: {
   2318         UNIMPLEMENTED(FATAL);
   2319         UNREACHABLE();
   2320       }
   2321     }
   2322     if (IsGcConcurrent()) {
   2323       concurrent_start_bytes_ =
   2324           UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
   2325                              kMinConcurrentRemainingBytes);
   2326     } else {
   2327       concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
   2328     }
   2329   }
   2330 }
   2331 
   2332 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
   2333 class ZygoteCompactingCollector final : public collector::SemiSpace {
   2334  public:
   2335   ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
   2336       : SemiSpace(heap, false, "zygote collector"),
   2337         bin_live_bitmap_(nullptr),
   2338         bin_mark_bitmap_(nullptr),
   2339         is_running_on_memory_tool_(is_running_on_memory_tool) {}
   2340 
   2341   void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
   2342     bin_live_bitmap_ = space->GetLiveBitmap();
   2343     bin_mark_bitmap_ = space->GetMarkBitmap();
   2344     uintptr_t prev = reinterpret_cast<uintptr_t>(space->Begin());
   2345     WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   2346     // Note: This requires traversing the space in increasing order of object addresses.
   2347     auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
   2348       uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
   2349       size_t bin_size = object_addr - prev;
   2350       // Add the bin consisting of the end of the previous object to the start of the current object.
   2351       AddBin(bin_size, prev);
   2352       prev = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment);
   2353     };
   2354     bin_live_bitmap_->Walk(visitor);
   2355     // Add the last bin which spans after the last object to the end of the space.
   2356     AddBin(reinterpret_cast<uintptr_t>(space->End()) - prev, prev);
   2357   }
   2358 
   2359  private:
   2360   // Maps from bin sizes to locations.
   2361   std::multimap<size_t, uintptr_t> bins_;
   2362   // Live bitmap of the space which contains the bins.
   2363   accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
   2364   // Mark bitmap of the space which contains the bins.
   2365   accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
   2366   const bool is_running_on_memory_tool_;
   2367 
   2368   void AddBin(size_t size, uintptr_t position) {
   2369     if (is_running_on_memory_tool_) {
   2370       MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
   2371     }
   2372     if (size != 0) {
   2373       bins_.insert(std::make_pair(size, position));
   2374     }
   2375   }
   2376 
   2377   bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const override {
   2378     // Don't sweep any spaces since we probably blasted the internal accounting of the free list
   2379     // allocator.
   2380     return false;
   2381   }
   2382 
   2383   mirror::Object* MarkNonForwardedObject(mirror::Object* obj) override
   2384       REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
   2385     size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
   2386     size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
   2387     mirror::Object* forward_address;
   2388     // Find the smallest bin which we can move obj in.
   2389     auto it = bins_.lower_bound(alloc_size);
   2390     if (it == bins_.end()) {
   2391       // No available space in the bins, place it in the target space instead (grows the zygote
   2392       // space).
   2393       size_t bytes_allocated, dummy;
   2394       forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
   2395       if (to_space_live_bitmap_ != nullptr) {
   2396         to_space_live_bitmap_->Set(forward_address);
   2397       } else {
   2398         GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
   2399         GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
   2400       }
   2401     } else {
   2402       size_t size = it->first;
   2403       uintptr_t pos = it->second;
   2404       bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
   2405       forward_address = reinterpret_cast<mirror::Object*>(pos);
   2406       // Set the live and mark bits so that sweeping system weaks works properly.
   2407       bin_live_bitmap_->Set(forward_address);
   2408       bin_mark_bitmap_->Set(forward_address);
   2409       DCHECK_GE(size, alloc_size);
   2410       // Add a new bin with the remaining space.
   2411       AddBin(size - alloc_size, pos + alloc_size);
   2412     }
   2413     // Copy the object over to its new location.
   2414     // Historical note: We did not use `alloc_size` to avoid a Valgrind error.
   2415     memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
   2416     if (kUseBakerReadBarrier) {
   2417       obj->AssertReadBarrierState();
   2418       forward_address->AssertReadBarrierState();
   2419     }
   2420     return forward_address;
   2421   }
   2422 };
   2423 
   2424 void Heap::UnBindBitmaps() {
   2425   TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
   2426   for (const auto& space : GetContinuousSpaces()) {
   2427     if (space->IsContinuousMemMapAllocSpace()) {
   2428       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
   2429       if (alloc_space->HasBoundBitmaps()) {
   2430         alloc_space->UnBindBitmaps();
   2431       }
   2432     }
   2433   }
   2434 }
   2435 
   2436 void Heap::PreZygoteFork() {
   2437   if (!HasZygoteSpace()) {
   2438     // We still want to GC in case there is some unreachable non moving objects that could cause a
   2439     // suboptimal bin packing when we compact the zygote space.
   2440     CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
   2441     // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
   2442     // the trim process may require locking the mutator lock.
   2443     non_moving_space_->Trim();
   2444   }
   2445   Thread* self = Thread::Current();
   2446   MutexLock mu(self, zygote_creation_lock_);
   2447   // Try to see if we have any Zygote spaces.
   2448   if (HasZygoteSpace()) {
   2449     return;
   2450   }
   2451   Runtime::Current()->GetInternTable()->AddNewTable();
   2452   Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
   2453   VLOG(heap) << "Starting PreZygoteFork";
   2454   // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
   2455   // there.
   2456   non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2457   const bool same_space = non_moving_space_ == main_space_;
   2458   if (kCompactZygote) {
   2459     // Temporarily disable rosalloc verification because the zygote
   2460     // compaction will mess up the rosalloc internal metadata.
   2461     ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
   2462     ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
   2463     zygote_collector.BuildBins(non_moving_space_);
   2464     // Create a new bump pointer space which we will compact into.
   2465     space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
   2466                                          non_moving_space_->Limit());
   2467     // Compact the bump pointer space to a new zygote bump pointer space.
   2468     bool reset_main_space = false;
   2469     if (IsMovingGc(collector_type_)) {
   2470       if (collector_type_ == kCollectorTypeCC) {
   2471         zygote_collector.SetFromSpace(region_space_);
   2472       } else {
   2473         zygote_collector.SetFromSpace(bump_pointer_space_);
   2474       }
   2475     } else {
   2476       CHECK(main_space_ != nullptr);
   2477       CHECK_NE(main_space_, non_moving_space_)
   2478           << "Does not make sense to compact within the same space";
   2479       // Copy from the main space.
   2480       zygote_collector.SetFromSpace(main_space_);
   2481       reset_main_space = true;
   2482     }
   2483     zygote_collector.SetToSpace(&target_space);
   2484     zygote_collector.SetSwapSemiSpaces(false);
   2485     zygote_collector.Run(kGcCauseCollectorTransition, false);
   2486     if (reset_main_space) {
   2487       main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2488       madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
   2489       MemMap mem_map = main_space_->ReleaseMemMap();
   2490       RemoveSpace(main_space_);
   2491       space::Space* old_main_space = main_space_;
   2492       CreateMainMallocSpace(std::move(mem_map),
   2493                             kDefaultInitialSize,
   2494                             std::min(mem_map.Size(), growth_limit_),
   2495                             mem_map.Size());
   2496       delete old_main_space;
   2497       AddSpace(main_space_);
   2498     } else {
   2499       if (collector_type_ == kCollectorTypeCC) {
   2500         region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2501         // Evacuated everything out of the region space, clear the mark bitmap.
   2502         region_space_->GetMarkBitmap()->Clear();
   2503       } else {
   2504         bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2505       }
   2506     }
   2507     if (temp_space_ != nullptr) {
   2508       CHECK(temp_space_->IsEmpty());
   2509     }
   2510     total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
   2511     total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
   2512     // Update the end and write out image.
   2513     non_moving_space_->SetEnd(target_space.End());
   2514     non_moving_space_->SetLimit(target_space.Limit());
   2515     VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
   2516   }
   2517   // Change the collector to the post zygote one.
   2518   ChangeCollector(foreground_collector_type_);
   2519   // Save the old space so that we can remove it after we complete creating the zygote space.
   2520   space::MallocSpace* old_alloc_space = non_moving_space_;
   2521   // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
   2522   // the remaining available space.
   2523   // Remove the old space before creating the zygote space since creating the zygote space sets
   2524   // the old alloc space's bitmaps to null.
   2525   RemoveSpace(old_alloc_space);
   2526   if (collector::SemiSpace::kUseRememberedSet) {
   2527     // Sanity bound check.
   2528     FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
   2529     // Remove the remembered set for the now zygote space (the old
   2530     // non-moving space). Note now that we have compacted objects into
   2531     // the zygote space, the data in the remembered set is no longer
   2532     // needed. The zygote space will instead have a mod-union table
   2533     // from this point on.
   2534     RemoveRememberedSet(old_alloc_space);
   2535   }
   2536   // Remaining space becomes the new non moving space.
   2537   zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
   2538                                                      &non_moving_space_);
   2539   CHECK(!non_moving_space_->CanMoveObjects());
   2540   if (same_space) {
   2541     main_space_ = non_moving_space_;
   2542     SetSpaceAsDefault(main_space_);
   2543   }
   2544   delete old_alloc_space;
   2545   CHECK(HasZygoteSpace()) << "Failed creating zygote space";
   2546   AddSpace(zygote_space_);
   2547   non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
   2548   AddSpace(non_moving_space_);
   2549   if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
   2550     // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is
   2551     // safe since we mark all of the objects that may reference non immune objects as gray.
   2552     zygote_space_->GetLiveBitmap()->VisitMarkedRange(
   2553         reinterpret_cast<uintptr_t>(zygote_space_->Begin()),
   2554         reinterpret_cast<uintptr_t>(zygote_space_->Limit()),
   2555         [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
   2556       CHECK(obj->AtomicSetMarkBit(0, 1));
   2557     });
   2558   }
   2559 
   2560   // Create the zygote space mod union table.
   2561   accounting::ModUnionTable* mod_union_table =
   2562       new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_);
   2563   CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
   2564 
   2565   if (collector_type_ != kCollectorTypeCC) {
   2566     // Set all the cards in the mod-union table since we don't know which objects contain references
   2567     // to large objects.
   2568     mod_union_table->SetCards();
   2569   } else {
   2570     // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There
   2571     // may be dirty cards from the zygote compaction or reference processing. These cards are not
   2572     // necessary to have marked since the zygote space may not refer to any objects not in the
   2573     // zygote or image spaces at this point.
   2574     mod_union_table->ProcessCards();
   2575     mod_union_table->ClearTable();
   2576 
   2577     // For CC we never collect zygote large objects. This means we do not need to set the cards for
   2578     // the zygote mod-union table and we can also clear all of the existing image mod-union tables.
   2579     // The existing mod-union tables are only for image spaces and may only reference zygote and
   2580     // image objects.
   2581     for (auto& pair : mod_union_tables_) {
   2582       CHECK(pair.first->IsImageSpace());
   2583       CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage());
   2584       accounting::ModUnionTable* table = pair.second;
   2585       table->ClearTable();
   2586     }
   2587   }
   2588   AddModUnionTable(mod_union_table);
   2589   large_object_space_->SetAllLargeObjectsAsZygoteObjects(self);
   2590   if (collector::SemiSpace::kUseRememberedSet) {
   2591     // Add a new remembered set for the post-zygote non-moving space.
   2592     accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
   2593         new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
   2594                                       non_moving_space_);
   2595     CHECK(post_zygote_non_moving_space_rem_set != nullptr)
   2596         << "Failed to create post-zygote non-moving space remembered set";
   2597     AddRememberedSet(post_zygote_non_moving_space_rem_set);
   2598   }
   2599 }
   2600 
   2601 void Heap::FlushAllocStack() {
   2602   MarkAllocStackAsLive(allocation_stack_.get());
   2603   allocation_stack_->Reset();
   2604 }
   2605 
   2606 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
   2607                           accounting::ContinuousSpaceBitmap* bitmap2,
   2608                           accounting::LargeObjectBitmap* large_objects,
   2609                           accounting::ObjectStack* stack) {
   2610   DCHECK(bitmap1 != nullptr);
   2611   DCHECK(bitmap2 != nullptr);
   2612   const auto* limit = stack->End();
   2613   for (auto* it = stack->Begin(); it != limit; ++it) {
   2614     const mirror::Object* obj = it->AsMirrorPtr();
   2615     if (!kUseThreadLocalAllocationStack || obj != nullptr) {
   2616       if (bitmap1->HasAddress(obj)) {
   2617         bitmap1->Set(obj);
   2618       } else if (bitmap2->HasAddress(obj)) {
   2619         bitmap2->Set(obj);
   2620       } else {
   2621         DCHECK(large_objects != nullptr);
   2622         large_objects->Set(obj);
   2623       }
   2624     }
   2625   }
   2626 }
   2627 
   2628 void Heap::SwapSemiSpaces() {
   2629   CHECK(bump_pointer_space_ != nullptr);
   2630   CHECK(temp_space_ != nullptr);
   2631   std::swap(bump_pointer_space_, temp_space_);
   2632 }
   2633 
   2634 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
   2635                                            space::ContinuousMemMapAllocSpace* source_space,
   2636                                            GcCause gc_cause) {
   2637   CHECK(kMovingCollector);
   2638   if (target_space != source_space) {
   2639     // Don't swap spaces since this isn't a typical semi space collection.
   2640     semi_space_collector_->SetSwapSemiSpaces(false);
   2641     semi_space_collector_->SetFromSpace(source_space);
   2642     semi_space_collector_->SetToSpace(target_space);
   2643     semi_space_collector_->Run(gc_cause, false);
   2644     return semi_space_collector_;
   2645   }
   2646   LOG(FATAL) << "Unsupported";
   2647   UNREACHABLE();
   2648 }
   2649 
   2650 void Heap::TraceHeapSize(size_t heap_size) {
   2651   ATraceIntegerValue("Heap size (KB)", heap_size / KB);
   2652 }
   2653 
   2654 size_t Heap::GetNativeBytes() {
   2655   size_t malloc_bytes;
   2656 #if defined(__BIONIC__) || defined(__GLIBC__)
   2657   size_t mmapped_bytes;
   2658   struct mallinfo mi = mallinfo();
   2659   // In spite of the documentation, the jemalloc version of this call seems to do what we want,
   2660   // and it is thread-safe.
   2661   if (sizeof(size_t) > sizeof(mi.uordblks) && sizeof(size_t) > sizeof(mi.hblkhd)) {
   2662     // Shouldn't happen, but glibc declares uordblks as int.
   2663     // Avoiding sign extension gets us correct behavior for another 2 GB.
   2664     malloc_bytes = (unsigned int)mi.uordblks;
   2665     mmapped_bytes = (unsigned int)mi.hblkhd;
   2666   } else {
   2667     malloc_bytes = mi.uordblks;
   2668     mmapped_bytes = mi.hblkhd;
   2669   }
   2670   // From the spec, we clearly have mmapped_bytes <= malloc_bytes. Reality is sometimes
   2671   // dramatically different. (b/119580449) If so, fudge it.
   2672   if (mmapped_bytes > malloc_bytes) {
   2673     malloc_bytes = mmapped_bytes;
   2674   }
   2675 #else
   2676   // We should hit this case only in contexts in which GC triggering is not critical. Effectively
   2677   // disable GC triggering based on malloc().
   2678   malloc_bytes = 1000;
   2679 #endif
   2680   return malloc_bytes + native_bytes_registered_.load(std::memory_order_relaxed);
   2681   // An alternative would be to get RSS from /proc/self/statm. Empirically, that's no
   2682   // more expensive, and it would allow us to count memory allocated by means other than malloc.
   2683   // However it would change as pages are unmapped and remapped due to memory pressure, among
   2684   // other things. It seems risky to trigger GCs as a result of such changes.
   2685 }
   2686 
   2687 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
   2688                                                GcCause gc_cause,
   2689                                                bool clear_soft_references) {
   2690   Thread* self = Thread::Current();
   2691   Runtime* runtime = Runtime::Current();
   2692   // If the heap can't run the GC, silently fail and return that no GC was run.
   2693   switch (gc_type) {
   2694     case collector::kGcTypePartial: {
   2695       if (!HasZygoteSpace()) {
   2696         return collector::kGcTypeNone;
   2697       }
   2698       break;
   2699     }
   2700     default: {
   2701       // Other GC types don't have any special cases which makes them not runnable. The main case
   2702       // here is full GC.
   2703     }
   2704   }
   2705   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   2706   // TODO: Clang prebuilt for r316199 produces bogus thread safety analysis warning for holding both
   2707   // exclusive and shared lock in the same scope. Remove the assertion as a temporary workaround.
   2708   // http://b/71769596
   2709   // Locks::mutator_lock_->AssertNotHeld(self);
   2710   if (self->IsHandlingStackOverflow()) {
   2711     // If we are throwing a stack overflow error we probably don't have enough remaining stack
   2712     // space to run the GC.
   2713     return collector::kGcTypeNone;
   2714   }
   2715   bool compacting_gc;
   2716   {
   2717     gc_complete_lock_->AssertNotHeld(self);
   2718     ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
   2719     MutexLock mu(self, *gc_complete_lock_);
   2720     // Ensure there is only one GC at a time.
   2721     WaitForGcToCompleteLocked(gc_cause, self);
   2722     compacting_gc = IsMovingGc(collector_type_);
   2723     // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
   2724     if (compacting_gc && disable_moving_gc_count_ != 0) {
   2725       LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
   2726       return collector::kGcTypeNone;
   2727     }
   2728     if (gc_disabled_for_shutdown_) {
   2729       return collector::kGcTypeNone;
   2730     }
   2731     collector_type_running_ = collector_type_;
   2732   }
   2733   if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
   2734     ++runtime->GetStats()->gc_for_alloc_count;
   2735     ++self->GetStats()->gc_for_alloc_count;
   2736   }
   2737   const size_t bytes_allocated_before_gc = GetBytesAllocated();
   2738 
   2739   DCHECK_LT(gc_type, collector::kGcTypeMax);
   2740   DCHECK_NE(gc_type, collector::kGcTypeNone);
   2741 
   2742   collector::GarbageCollector* collector = nullptr;
   2743   // TODO: Clean this up.
   2744   if (compacting_gc) {
   2745     DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
   2746            current_allocator_ == kAllocatorTypeTLAB ||
   2747            current_allocator_ == kAllocatorTypeRegion ||
   2748            current_allocator_ == kAllocatorTypeRegionTLAB);
   2749     switch (collector_type_) {
   2750       case kCollectorTypeSS:
   2751         // Fall-through.
   2752       case kCollectorTypeGSS:
   2753         semi_space_collector_->SetFromSpace(bump_pointer_space_);
   2754         semi_space_collector_->SetToSpace(temp_space_);
   2755         semi_space_collector_->SetSwapSemiSpaces(true);
   2756         collector = semi_space_collector_;
   2757         break;
   2758       case kCollectorTypeCC:
   2759         if (use_generational_cc_) {
   2760           // TODO: Other threads must do the flip checkpoint before they start poking at
   2761           // active_concurrent_copying_collector_. So we should not concurrency here.
   2762           active_concurrent_copying_collector_ = (gc_type == collector::kGcTypeSticky) ?
   2763               young_concurrent_copying_collector_ : concurrent_copying_collector_;
   2764           DCHECK(active_concurrent_copying_collector_->RegionSpace() == region_space_);
   2765         }
   2766         collector = active_concurrent_copying_collector_;
   2767         break;
   2768       default:
   2769         LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
   2770     }
   2771     if (collector != active_concurrent_copying_collector_) {
   2772       temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2773       if (kIsDebugBuild) {
   2774         // Try to read each page of the memory map in case mprotect didn't work properly b/19894268.
   2775         temp_space_->GetMemMap()->TryReadable();
   2776       }
   2777       CHECK(temp_space_->IsEmpty());
   2778     }
   2779     gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
   2780   } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
   2781       current_allocator_ == kAllocatorTypeDlMalloc) {
   2782     collector = FindCollectorByGcType(gc_type);
   2783   } else {
   2784     LOG(FATAL) << "Invalid current allocator " << current_allocator_;
   2785   }
   2786 
   2787   CHECK(collector != nullptr)
   2788       << "Could not find garbage collector with collector_type="
   2789       << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
   2790   collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
   2791   total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
   2792   total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
   2793   RequestTrim(self);
   2794   // Collect cleared references.
   2795   SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
   2796   // Grow the heap so that we know when to perform the next GC.
   2797   GrowForUtilization(collector, bytes_allocated_before_gc);
   2798   LogGC(gc_cause, collector);
   2799   FinishGC(self, gc_type);
   2800   // Actually enqueue all cleared references. Do this after the GC has officially finished since
   2801   // otherwise we can deadlock.
   2802   clear->Run(self);
   2803   clear->Finalize();
   2804   // Inform DDMS that a GC completed.
   2805   Dbg::GcDidFinish();
   2806 
   2807   old_native_bytes_allocated_.store(GetNativeBytes());
   2808 
   2809   // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
   2810   // deadlocks in case the JNI_OnUnload function does allocations.
   2811   {
   2812     ScopedObjectAccess soa(self);
   2813     soa.Vm()->UnloadNativeLibraries();
   2814   }
   2815   return gc_type;
   2816 }
   2817 
   2818 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
   2819   const size_t duration = GetCurrentGcIteration()->GetDurationNs();
   2820   const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
   2821   // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
   2822   // (mutator time blocked >= long_pause_log_threshold_).
   2823   bool log_gc = kLogAllGCs || gc_cause == kGcCauseExplicit;
   2824   if (!log_gc && CareAboutPauseTimes()) {
   2825     // GC for alloc pauses the allocating thread, so consider it as a pause.
   2826     log_gc = duration > long_gc_log_threshold_ ||
   2827         (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
   2828     for (uint64_t pause : pause_times) {
   2829       log_gc = log_gc || pause >= long_pause_log_threshold_;
   2830     }
   2831   }
   2832   if (log_gc) {
   2833     const size_t percent_free = GetPercentFree();
   2834     const size_t current_heap_size = GetBytesAllocated();
   2835     const size_t total_memory = GetTotalMemory();
   2836     std::ostringstream pause_string;
   2837     for (size_t i = 0; i < pause_times.size(); ++i) {
   2838       pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
   2839                    << ((i != pause_times.size() - 1) ? "," : "");
   2840     }
   2841     LOG(INFO) << gc_cause << " " << collector->GetName()
   2842               << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
   2843               << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
   2844               << current_gc_iteration_.GetFreedLargeObjects() << "("
   2845               << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
   2846               << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
   2847               << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
   2848               << " total " << PrettyDuration((duration / 1000) * 1000);
   2849     VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
   2850   }
   2851 }
   2852 
   2853 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
   2854   MutexLock mu(self, *gc_complete_lock_);
   2855   collector_type_running_ = kCollectorTypeNone;
   2856   if (gc_type != collector::kGcTypeNone) {
   2857     last_gc_type_ = gc_type;
   2858 
   2859     // Update stats.
   2860     ++gc_count_last_window_;
   2861     if (running_collection_is_blocking_) {
   2862       // If the currently running collection was a blocking one,
   2863       // increment the counters and reset the flag.
   2864       ++blocking_gc_count_;
   2865       blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
   2866       ++blocking_gc_count_last_window_;
   2867     }
   2868     // Update the gc count rate histograms if due.
   2869     UpdateGcCountRateHistograms();
   2870   }
   2871   // Reset.
   2872   running_collection_is_blocking_ = false;
   2873   thread_running_gc_ = nullptr;
   2874   // Wake anyone who may have been waiting for the GC to complete.
   2875   gc_complete_cond_->Broadcast(self);
   2876 }
   2877 
   2878 void Heap::UpdateGcCountRateHistograms() {
   2879   // Invariant: if the time since the last update includes more than
   2880   // one windows, all the GC runs (if > 0) must have happened in first
   2881   // window because otherwise the update must have already taken place
   2882   // at an earlier GC run. So, we report the non-first windows with
   2883   // zero counts to the histograms.
   2884   DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
   2885   uint64_t now = NanoTime();
   2886   DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
   2887   uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
   2888   uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
   2889 
   2890   // The computed number of windows can be incoherently high if NanoTime() is not monotonic.
   2891   // Setting a limit on its maximum value reduces the impact on CPU time in such cases.
   2892   if (num_of_windows > kGcCountRateHistogramMaxNumMissedWindows) {
   2893     LOG(WARNING) << "Reducing the number of considered missed Gc histogram windows from "
   2894                  << num_of_windows << " to " << kGcCountRateHistogramMaxNumMissedWindows;
   2895     num_of_windows = kGcCountRateHistogramMaxNumMissedWindows;
   2896   }
   2897 
   2898   if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
   2899     // Record the first window.
   2900     gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1);  // Exclude the current run.
   2901     blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
   2902         blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
   2903     // Record the other windows (with zero counts).
   2904     for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
   2905       gc_count_rate_histogram_.AddValue(0);
   2906       blocking_gc_count_rate_histogram_.AddValue(0);
   2907     }
   2908     // Update the last update time and reset the counters.
   2909     last_update_time_gc_count_rate_histograms_ =
   2910         (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
   2911     gc_count_last_window_ = 1;  // Include the current run.
   2912     blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
   2913   }
   2914   DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
   2915 }
   2916 
   2917 class RootMatchesObjectVisitor : public SingleRootVisitor {
   2918  public:
   2919   explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
   2920 
   2921   void VisitRoot(mirror::Object* root, const RootInfo& info)
   2922       override REQUIRES_SHARED(Locks::mutator_lock_) {
   2923     if (root == obj_) {
   2924       LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
   2925     }
   2926   }
   2927 
   2928  private:
   2929   const mirror::Object* const obj_;
   2930 };
   2931 
   2932 
   2933 class ScanVisitor {
   2934  public:
   2935   void operator()(const mirror::Object* obj) const {
   2936     LOG(ERROR) << "Would have rescanned object " << obj;
   2937   }
   2938 };
   2939 
   2940 // Verify a reference from an object.
   2941 class VerifyReferenceVisitor : public SingleRootVisitor {
   2942  public:
   2943   VerifyReferenceVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
   2944       REQUIRES_SHARED(Locks::mutator_lock_)
   2945       : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
   2946     CHECK_EQ(self_, Thread::Current());
   2947   }
   2948 
   2949   void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, ObjPtr<mirror::Reference> ref) const
   2950       REQUIRES_SHARED(Locks::mutator_lock_) {
   2951     if (verify_referent_) {
   2952       VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset());
   2953     }
   2954   }
   2955 
   2956   void operator()(ObjPtr<mirror::Object> obj,
   2957                   MemberOffset offset,
   2958                   bool is_static ATTRIBUTE_UNUSED) const
   2959       REQUIRES_SHARED(Locks::mutator_lock_) {
   2960     VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset);
   2961   }
   2962 
   2963   bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS {
   2964     return heap_->IsLiveObjectLocked(obj, true, false, true);
   2965   }
   2966 
   2967   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
   2968       REQUIRES_SHARED(Locks::mutator_lock_) {
   2969     if (!root->IsNull()) {
   2970       VisitRoot(root);
   2971     }
   2972   }
   2973   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
   2974       REQUIRES_SHARED(Locks::mutator_lock_) {
   2975     const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
   2976         root->AsMirrorPtr(), RootInfo(kRootVMInternal));
   2977   }
   2978 
   2979   void VisitRoot(mirror::Object* root, const RootInfo& root_info) override
   2980       REQUIRES_SHARED(Locks::mutator_lock_) {
   2981     if (root == nullptr) {
   2982       LOG(ERROR) << "Root is null with info " << root_info.GetType();
   2983     } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
   2984       LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root)
   2985           << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
   2986     }
   2987   }
   2988 
   2989  private:
   2990   // TODO: Fix the no thread safety analysis.
   2991   // Returns false on failure.
   2992   bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
   2993       NO_THREAD_SAFETY_ANALYSIS {
   2994     if (ref == nullptr || IsLive(ref)) {
   2995       // Verify that the reference is live.
   2996       return true;
   2997     }
   2998     CHECK_EQ(self_, Thread::Current());  // fail_count_ is private to the calling thread.
   2999     *fail_count_ += 1;
   3000     if (*fail_count_ == 1) {
   3001       // Only print message for the first failure to prevent spam.
   3002       LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
   3003     }
   3004     if (obj != nullptr) {
   3005       // Only do this part for non roots.
   3006       accounting::CardTable* card_table = heap_->GetCardTable();
   3007       accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
   3008       accounting::ObjectStack* live_stack = heap_->live_stack_.get();
   3009       uint8_t* card_addr = card_table->CardFromAddr(obj);
   3010       LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
   3011                  << offset << "\n card value = " << static_cast<int>(*card_addr);
   3012       if (heap_->IsValidObjectAddress(obj->GetClass())) {
   3013         LOG(ERROR) << "Obj type " << obj->PrettyTypeOf();
   3014       } else {
   3015         LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
   3016       }
   3017 
   3018       // Attempt to find the class inside of the recently freed objects.
   3019       space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
   3020       if (ref_space != nullptr && ref_space->IsMallocSpace()) {
   3021         space::MallocSpace* space = ref_space->AsMallocSpace();
   3022         mirror::Class* ref_class = space->FindRecentFreedObject(ref);
   3023         if (ref_class != nullptr) {
   3024           LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
   3025                      << ref_class->PrettyClass();
   3026         } else {
   3027           LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
   3028         }
   3029       }
   3030 
   3031       if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
   3032           ref->GetClass()->IsClass()) {
   3033         LOG(ERROR) << "Ref type " << ref->PrettyTypeOf();
   3034       } else {
   3035         LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
   3036                    << ") is not a valid heap address";
   3037       }
   3038 
   3039       card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
   3040       void* cover_begin = card_table->AddrFromCard(card_addr);
   3041       void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
   3042           accounting::CardTable::kCardSize);
   3043       LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
   3044           << "-" << cover_end;
   3045       accounting::ContinuousSpaceBitmap* bitmap =
   3046           heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
   3047 
   3048       if (bitmap == nullptr) {
   3049         LOG(ERROR) << "Object " << obj << " has no bitmap";
   3050         if (!VerifyClassClass(obj->GetClass())) {
   3051           LOG(ERROR) << "Object " << obj << " failed class verification!";
   3052         }
   3053       } else {
   3054         // Print out how the object is live.
   3055         if (bitmap->Test(obj)) {
   3056           LOG(ERROR) << "Object " << obj << " found in live bitmap";
   3057         }
   3058         if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
   3059           LOG(ERROR) << "Object " << obj << " found in allocation stack";
   3060         }
   3061         if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
   3062           LOG(ERROR) << "Object " << obj << " found in live stack";
   3063         }
   3064         if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
   3065           LOG(ERROR) << "Ref " << ref << " found in allocation stack";
   3066         }
   3067         if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
   3068           LOG(ERROR) << "Ref " << ref << " found in live stack";
   3069         }
   3070         // Attempt to see if the card table missed the reference.
   3071         ScanVisitor scan_visitor;
   3072         uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
   3073         card_table->Scan<false>(bitmap, byte_cover_begin,
   3074                                 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
   3075       }
   3076 
   3077       // Search to see if any of the roots reference our object.
   3078       RootMatchesObjectVisitor visitor1(obj);
   3079       Runtime::Current()->VisitRoots(&visitor1);
   3080       // Search to see if any of the roots reference our reference.
   3081       RootMatchesObjectVisitor visitor2(ref);
   3082       Runtime::Current()->VisitRoots(&visitor2);
   3083     }
   3084     return false;
   3085   }
   3086 
   3087   Thread* const self_;
   3088   Heap* const heap_;
   3089   size_t* const fail_count_;
   3090   const bool verify_referent_;
   3091 };
   3092 
   3093 // Verify all references within an object, for use with HeapBitmap::Visit.
   3094 class VerifyObjectVisitor {
   3095  public:
   3096   VerifyObjectVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
   3097       : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
   3098 
   3099   void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
   3100     // Note: we are verifying the references in obj but not obj itself, this is because obj must
   3101     // be live or else how did we find it in the live bitmap?
   3102     VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
   3103     // The class doesn't count as a reference but we should verify it anyways.
   3104     obj->VisitReferences(visitor, visitor);
   3105   }
   3106 
   3107   void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
   3108     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   3109     VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
   3110     Runtime::Current()->VisitRoots(&visitor);
   3111   }
   3112 
   3113   uint32_t GetFailureCount() const REQUIRES(Locks::mutator_lock_) {
   3114     CHECK_EQ(self_, Thread::Current());
   3115     return *fail_count_;
   3116   }
   3117 
   3118  private:
   3119   Thread* const self_;
   3120   Heap* const heap_;
   3121   size_t* const fail_count_;
   3122   const bool verify_referent_;
   3123 };
   3124 
   3125 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) {
   3126   // Slow path, the allocation stack push back must have already failed.
   3127   DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr()));
   3128   do {
   3129     // TODO: Add handle VerifyObject.
   3130     StackHandleScope<1> hs(self);
   3131     HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   3132     // Push our object into the reserve region of the allocation stack. This is only required due
   3133     // to heap verification requiring that roots are live (either in the live bitmap or in the
   3134     // allocation stack).
   3135     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
   3136     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
   3137   } while (!allocation_stack_->AtomicPushBack(obj->Ptr()));
   3138 }
   3139 
   3140 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self,
   3141                                                           ObjPtr<mirror::Object>* obj) {
   3142   // Slow path, the allocation stack push back must have already failed.
   3143   DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr()));
   3144   StackReference<mirror::Object>* start_address;
   3145   StackReference<mirror::Object>* end_address;
   3146   while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
   3147                                             &end_address)) {
   3148     // TODO: Add handle VerifyObject.
   3149     StackHandleScope<1> hs(self);
   3150     HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   3151     // Push our object into the reserve region of the allocaiton stack. This is only required due
   3152     // to heap verification requiring that roots are live (either in the live bitmap or in the
   3153     // allocation stack).
   3154     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
   3155     // Push into the reserve allocation stack.
   3156     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
   3157   }
   3158   self->SetThreadLocalAllocationStack(start_address, end_address);
   3159   // Retry on the new thread-local allocation stack.
   3160   CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr()));  // Must succeed.
   3161 }
   3162 
   3163 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
   3164 size_t Heap::VerifyHeapReferences(bool verify_referents) {
   3165   Thread* self = Thread::Current();
   3166   Locks::mutator_lock_->AssertExclusiveHeld(self);
   3167   // Lets sort our allocation stacks so that we can efficiently binary search them.
   3168   allocation_stack_->Sort();
   3169   live_stack_->Sort();
   3170   // Since we sorted the allocation stack content, need to revoke all
   3171   // thread-local allocation stacks.
   3172   RevokeAllThreadLocalAllocationStacks(self);
   3173   size_t fail_count = 0;
   3174   VerifyObjectVisitor visitor(self, this, &fail_count, verify_referents);
   3175   // Verify objects in the allocation stack since these will be objects which were:
   3176   // 1. Allocated prior to the GC (pre GC verification).
   3177   // 2. Allocated during the GC (pre sweep GC verification).
   3178   // We don't want to verify the objects in the live stack since they themselves may be
   3179   // pointing to dead objects if they are not reachable.
   3180   VisitObjectsPaused(visitor);
   3181   // Verify the roots:
   3182   visitor.VerifyRoots();
   3183   if (visitor.GetFailureCount() > 0) {
   3184     // Dump mod-union tables.
   3185     for (const auto& table_pair : mod_union_tables_) {
   3186       accounting::ModUnionTable* mod_union_table = table_pair.second;
   3187       mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": ");
   3188     }
   3189     // Dump remembered sets.
   3190     for (const auto& table_pair : remembered_sets_) {
   3191       accounting::RememberedSet* remembered_set = table_pair.second;
   3192       remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": ");
   3193     }
   3194     DumpSpaces(LOG_STREAM(ERROR));
   3195   }
   3196   return visitor.GetFailureCount();
   3197 }
   3198 
   3199 class VerifyReferenceCardVisitor {
   3200  public:
   3201   VerifyReferenceCardVisitor(Heap* heap, bool* failed)
   3202       REQUIRES_SHARED(Locks::mutator_lock_,
   3203                             Locks::heap_bitmap_lock_)
   3204       : heap_(heap), failed_(failed) {
   3205   }
   3206 
   3207   // There is no card marks for native roots on a class.
   3208   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
   3209       const {}
   3210   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
   3211 
   3212   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
   3213   // annotalysis on visitors.
   3214   void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
   3215       NO_THREAD_SAFETY_ANALYSIS {
   3216     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
   3217     // Filter out class references since changing an object's class does not mark the card as dirty.
   3218     // Also handles large objects, since the only reference they hold is a class reference.
   3219     if (ref != nullptr && !ref->IsClass()) {
   3220       accounting::CardTable* card_table = heap_->GetCardTable();
   3221       // If the object is not dirty and it is referencing something in the live stack other than
   3222       // class, then it must be on a dirty card.
   3223       if (!card_table->AddrIsInCardTable(obj)) {
   3224         LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
   3225         *failed_ = true;
   3226       } else if (!card_table->IsDirty(obj)) {
   3227         // TODO: Check mod-union tables.
   3228         // Card should be either kCardDirty if it got re-dirtied after we aged it, or
   3229         // kCardDirty - 1 if it didnt get touched since we aged it.
   3230         accounting::ObjectStack* live_stack = heap_->live_stack_.get();
   3231         if (live_stack->ContainsSorted(ref)) {
   3232           if (live_stack->ContainsSorted(obj)) {
   3233             LOG(ERROR) << "Object " << obj << " found in live stack";
   3234           }
   3235           if (heap_->GetLiveBitmap()->Test(obj)) {
   3236             LOG(ERROR) << "Object " << obj << " found in live bitmap";
   3237           }
   3238           LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj)
   3239                     << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref)
   3240                     << " in live stack";
   3241 
   3242           // Print which field of the object is dead.
   3243           if (!obj->IsObjectArray()) {
   3244             ObjPtr<mirror::Class> klass = is_static ? obj->AsClass() : obj->GetClass();
   3245             CHECK(klass != nullptr);
   3246             for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
   3247               if (field.GetOffset().Int32Value() == offset.Int32Value()) {
   3248                 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
   3249                            << field.PrettyField();
   3250                 break;
   3251               }
   3252             }
   3253           } else {
   3254             ObjPtr<mirror::ObjectArray<mirror::Object>> object_array =
   3255                 obj->AsObjectArray<mirror::Object>();
   3256             for (int32_t i = 0; i < object_array->GetLength(); ++i) {
   3257               if (object_array->Get(i) == ref) {
   3258                 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
   3259               }
   3260             }
   3261           }
   3262 
   3263           *failed_ = true;
   3264         }
   3265       }
   3266     }
   3267   }
   3268 
   3269  private:
   3270   Heap* const heap_;
   3271   bool* const failed_;
   3272 };
   3273 
   3274 class VerifyLiveStackReferences {
   3275  public:
   3276   explicit VerifyLiveStackReferences(Heap* heap)
   3277       : heap_(heap),
   3278         failed_(false) {}
   3279 
   3280   void operator()(mirror::Object* obj) const
   3281       REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   3282     VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
   3283     obj->VisitReferences(visitor, VoidFunctor());
   3284   }
   3285 
   3286   bool Failed() const {
   3287     return failed_;
   3288   }
   3289 
   3290  private:
   3291   Heap* const heap_;
   3292   bool failed_;
   3293 };
   3294 
   3295 bool Heap::VerifyMissingCardMarks() {
   3296   Thread* self = Thread::Current();
   3297   Locks::mutator_lock_->AssertExclusiveHeld(self);
   3298   // We need to sort the live stack since we binary search it.
   3299   live_stack_->Sort();
   3300   // Since we sorted the allocation stack content, need to revoke all
   3301   // thread-local allocation stacks.
   3302   RevokeAllThreadLocalAllocationStacks(self);
   3303   VerifyLiveStackReferences visitor(this);
   3304   GetLiveBitmap()->Visit(visitor);
   3305   // We can verify objects in the live stack since none of these should reference dead objects.
   3306   for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
   3307     if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
   3308       visitor(it->AsMirrorPtr());
   3309     }
   3310   }
   3311   return !visitor.Failed();
   3312 }
   3313 
   3314 void Heap::SwapStacks() {
   3315   if (kUseThreadLocalAllocationStack) {
   3316     live_stack_->AssertAllZero();
   3317   }
   3318   allocation_stack_.swap(live_stack_);
   3319 }
   3320 
   3321 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
   3322   // This must be called only during the pause.
   3323   DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
   3324   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
   3325   MutexLock mu2(self, *Locks::thread_list_lock_);
   3326   std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
   3327   for (Thread* t : thread_list) {
   3328     t->RevokeThreadLocalAllocationStack();
   3329   }
   3330 }
   3331 
   3332 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
   3333   if (kIsDebugBuild) {
   3334     if (rosalloc_space_ != nullptr) {
   3335       rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
   3336     }
   3337     if (bump_pointer_space_ != nullptr) {
   3338       bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
   3339     }
   3340   }
   3341 }
   3342 
   3343 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
   3344   if (kIsDebugBuild) {
   3345     if (bump_pointer_space_ != nullptr) {
   3346       bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
   3347     }
   3348   }
   3349 }
   3350 
   3351 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
   3352   auto it = mod_union_tables_.find(space);
   3353   if (it == mod_union_tables_.end()) {
   3354     return nullptr;
   3355   }
   3356   return it->second;
   3357 }
   3358 
   3359 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
   3360   auto it = remembered_sets_.find(space);
   3361   if (it == remembered_sets_.end()) {
   3362     return nullptr;
   3363   }
   3364   return it->second;
   3365 }
   3366 
   3367 void Heap::ProcessCards(TimingLogger* timings,
   3368                         bool use_rem_sets,
   3369                         bool process_alloc_space_cards,
   3370                         bool clear_alloc_space_cards) {
   3371   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3372   // Clear cards and keep track of cards cleared in the mod-union table.
   3373   for (const auto& space : continuous_spaces_) {
   3374     accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
   3375     accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
   3376     if (table != nullptr) {
   3377       const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
   3378           "ImageModUnionClearCards";
   3379       TimingLogger::ScopedTiming t2(name, timings);
   3380       table->ProcessCards();
   3381     } else if (use_rem_sets && rem_set != nullptr) {
   3382       DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
   3383           << static_cast<int>(collector_type_);
   3384       TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
   3385       rem_set->ClearCards();
   3386     } else if (process_alloc_space_cards) {
   3387       TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
   3388       if (clear_alloc_space_cards) {
   3389         uint8_t* end = space->End();
   3390         if (space->IsImageSpace()) {
   3391           // Image space end is the end of the mirror objects, it is not necessarily page or card
   3392           // aligned. Align up so that the check in ClearCardRange does not fail.
   3393           end = AlignUp(end, accounting::CardTable::kCardSize);
   3394         }
   3395         card_table_->ClearCardRange(space->Begin(), end);
   3396       } else {
   3397         // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
   3398         // cards were dirty before the GC started.
   3399         // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
   3400         // -> clean(cleaning thread).
   3401         // The races are we either end up with: Aged card, unaged card. Since we have the
   3402         // checkpoint roots and then we scan / update mod union tables after. We will always
   3403         // scan either card. If we end up with the non aged card, we scan it it in the pause.
   3404         card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
   3405                                        VoidFunctor());
   3406       }
   3407     }
   3408   }
   3409 }
   3410 
   3411 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
   3412   mirror::Object* MarkObject(mirror::Object* obj) override {
   3413     return obj;
   3414   }
   3415   void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) override {
   3416   }
   3417 };
   3418 
   3419 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
   3420   Thread* const self = Thread::Current();
   3421   TimingLogger* const timings = current_gc_iteration_.GetTimings();
   3422   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3423   if (verify_pre_gc_heap_) {
   3424     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
   3425     size_t failures = VerifyHeapReferences();
   3426     if (failures > 0) {
   3427       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
   3428           << " failures";
   3429     }
   3430   }
   3431   // Check that all objects which reference things in the live stack are on dirty cards.
   3432   if (verify_missing_card_marks_) {
   3433     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
   3434     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3435     SwapStacks();
   3436     // Sort the live stack so that we can quickly binary search it later.
   3437     CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
   3438                                     << " missing card mark verification failed\n" << DumpSpaces();
   3439     SwapStacks();
   3440   }
   3441   if (verify_mod_union_table_) {
   3442     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
   3443     ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
   3444     for (const auto& table_pair : mod_union_tables_) {
   3445       accounting::ModUnionTable* mod_union_table = table_pair.second;
   3446       IdentityMarkHeapReferenceVisitor visitor;
   3447       mod_union_table->UpdateAndMarkReferences(&visitor);
   3448       mod_union_table->Verify();
   3449     }
   3450   }
   3451 }
   3452 
   3453 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
   3454   if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
   3455     collector::GarbageCollector::ScopedPause pause(gc, false);
   3456     PreGcVerificationPaused(gc);
   3457   }
   3458 }
   3459 
   3460 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) {
   3461   // TODO: Add a new runtime option for this?
   3462   if (verify_pre_gc_rosalloc_) {
   3463     RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
   3464   }
   3465 }
   3466 
   3467 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
   3468   Thread* const self = Thread::Current();
   3469   TimingLogger* const timings = current_gc_iteration_.GetTimings();
   3470   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3471   // Called before sweeping occurs since we want to make sure we are not going so reclaim any
   3472   // reachable objects.
   3473   if (verify_pre_sweeping_heap_) {
   3474     TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
   3475     CHECK_NE(self->GetState(), kRunnable);
   3476     {
   3477       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3478       // Swapping bound bitmaps does nothing.
   3479       gc->SwapBitmaps();
   3480     }
   3481     // Pass in false since concurrent reference processing can mean that the reference referents
   3482     // may point to dead objects at the point which PreSweepingGcVerification is called.
   3483     size_t failures = VerifyHeapReferences(false);
   3484     if (failures > 0) {
   3485       LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
   3486           << " failures";
   3487     }
   3488     {
   3489       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   3490       gc->SwapBitmaps();
   3491     }
   3492   }
   3493   if (verify_pre_sweeping_rosalloc_) {
   3494     RosAllocVerification(timings, "PreSweepingRosAllocVerification");
   3495   }
   3496 }
   3497 
   3498 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
   3499   // Only pause if we have to do some verification.
   3500   Thread* const self = Thread::Current();
   3501   TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
   3502   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   3503   if (verify_system_weaks_) {
   3504     ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
   3505     collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
   3506     mark_sweep->VerifySystemWeaks();
   3507   }
   3508   if (verify_post_gc_rosalloc_) {
   3509     RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
   3510   }
   3511   if (verify_post_gc_heap_) {
   3512     TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
   3513     size_t failures = VerifyHeapReferences();
   3514     if (failures > 0) {
   3515       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
   3516           << " failures";
   3517     }
   3518   }
   3519 }
   3520 
   3521 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
   3522   if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
   3523     collector::GarbageCollector::ScopedPause pause(gc, false);
   3524     PostGcVerificationPaused(gc);
   3525   }
   3526 }
   3527 
   3528 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
   3529   TimingLogger::ScopedTiming t(name, timings);
   3530   for (const auto& space : continuous_spaces_) {
   3531     if (space->IsRosAllocSpace()) {
   3532       VLOG(heap) << name << " : " << space->GetName();
   3533       space->AsRosAllocSpace()->Verify();
   3534     }
   3535   }
   3536 }
   3537 
   3538 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
   3539   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
   3540   MutexLock mu(self, *gc_complete_lock_);
   3541   return WaitForGcToCompleteLocked(cause, self);
   3542 }
   3543 
   3544 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
   3545   gc_complete_cond_->CheckSafeToWait(self);
   3546   collector::GcType last_gc_type = collector::kGcTypeNone;
   3547   GcCause last_gc_cause = kGcCauseNone;
   3548   uint64_t wait_start = NanoTime();
   3549   while (collector_type_running_ != kCollectorTypeNone) {
   3550     if (self != task_processor_->GetRunningThread()) {
   3551       // The current thread is about to wait for a currently running
   3552       // collection to finish. If the waiting thread is not the heap
   3553       // task daemon thread, the currently running collection is
   3554       // considered as a blocking GC.
   3555       running_collection_is_blocking_ = true;
   3556       VLOG(gc) << "Waiting for a blocking GC " << cause;
   3557     }
   3558     SCOPED_TRACE << "GC: Wait For Completion " << cause;
   3559     // We must wait, change thread state then sleep on gc_complete_cond_;
   3560     gc_complete_cond_->Wait(self);
   3561     last_gc_type = last_gc_type_;
   3562     last_gc_cause = last_gc_cause_;
   3563   }
   3564   uint64_t wait_time = NanoTime() - wait_start;
   3565   total_wait_time_ += wait_time;
   3566   if (wait_time > long_pause_log_threshold_) {
   3567     LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for "
   3568               << PrettyDuration(wait_time);
   3569   }
   3570   if (self != task_processor_->GetRunningThread()) {
   3571     // The current thread is about to run a collection. If the thread
   3572     // is not the heap task daemon thread, it's considered as a
   3573     // blocking GC (i.e., blocking itself).
   3574     running_collection_is_blocking_ = true;
   3575     // Don't log fake "GC" types that are only used for debugger or hidden APIs. If we log these,
   3576     // it results in log spam. kGcCauseExplicit is already logged in LogGC, so avoid it here too.
   3577     if (cause == kGcCauseForAlloc ||
   3578         cause == kGcCauseForNativeAlloc ||
   3579         cause == kGcCauseDisableMovingGc) {
   3580       VLOG(gc) << "Starting a blocking GC " << cause;
   3581     }
   3582   }
   3583   return last_gc_type;
   3584 }
   3585 
   3586 void Heap::DumpForSigQuit(std::ostream& os) {
   3587   os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
   3588      << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
   3589   DumpGcPerformanceInfo(os);
   3590 }
   3591 
   3592 size_t Heap::GetPercentFree() {
   3593   return static_cast<size_t>(100.0f * static_cast<float>(
   3594       GetFreeMemory()) / target_footprint_.load(std::memory_order_relaxed));
   3595 }
   3596 
   3597 void Heap::SetIdealFootprint(size_t target_footprint) {
   3598   if (target_footprint > GetMaxMemory()) {
   3599     VLOG(gc) << "Clamp target GC heap from " << PrettySize(target_footprint) << " to "
   3600              << PrettySize(GetMaxMemory());
   3601     target_footprint = GetMaxMemory();
   3602   }
   3603   target_footprint_.store(target_footprint, std::memory_order_relaxed);
   3604 }
   3605 
   3606 bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const {
   3607   if (kMovingCollector) {
   3608     space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true);
   3609     if (space != nullptr) {
   3610       // TODO: Check large object?
   3611       return space->CanMoveObjects();
   3612     }
   3613   }
   3614   return false;
   3615 }
   3616 
   3617 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
   3618   for (auto* collector : garbage_collectors_) {
   3619     if (collector->GetCollectorType() == collector_type_ &&
   3620         collector->GetGcType() == gc_type) {
   3621       return collector;
   3622     }
   3623   }
   3624   return nullptr;
   3625 }
   3626 
   3627 double Heap::HeapGrowthMultiplier() const {
   3628   // If we don't care about pause times we are background, so return 1.0.
   3629   if (!CareAboutPauseTimes()) {
   3630     return 1.0;
   3631   }
   3632   return foreground_heap_growth_multiplier_;
   3633 }
   3634 
   3635 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
   3636                               size_t bytes_allocated_before_gc) {
   3637   // We know what our utilization is at this moment.
   3638   // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
   3639   const size_t bytes_allocated = GetBytesAllocated();
   3640   // Trace the new heap size after the GC is finished.
   3641   TraceHeapSize(bytes_allocated);
   3642   uint64_t target_size;
   3643   collector::GcType gc_type = collector_ran->GetGcType();
   3644   // Use the multiplier to grow more for foreground.
   3645   const double multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
   3646   // foreground.
   3647   const size_t adjusted_min_free = static_cast<size_t>(min_free_ * multiplier);
   3648   const size_t adjusted_max_free = static_cast<size_t>(max_free_ * multiplier);
   3649   if (gc_type != collector::kGcTypeSticky) {
   3650     // Grow the heap for non sticky GC.
   3651     uint64_t delta = bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0);
   3652     DCHECK_LE(delta, std::numeric_limits<size_t>::max()) << "bytes_allocated=" << bytes_allocated
   3653         << " target_utilization_=" << target_utilization_;
   3654     target_size = bytes_allocated + delta * multiplier;
   3655     target_size = std::min(target_size,
   3656                            static_cast<uint64_t>(bytes_allocated + adjusted_max_free));
   3657     target_size = std::max(target_size,
   3658                            static_cast<uint64_t>(bytes_allocated + adjusted_min_free));
   3659     next_gc_type_ = collector::kGcTypeSticky;
   3660   } else {
   3661     collector::GcType non_sticky_gc_type = NonStickyGcType();
   3662     // Find what the next non sticky collector will be.
   3663     collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
   3664     if (use_generational_cc_) {
   3665       if (non_sticky_collector == nullptr) {
   3666         non_sticky_collector = FindCollectorByGcType(collector::kGcTypePartial);
   3667       }
   3668       CHECK(non_sticky_collector != nullptr);
   3669     }
   3670     double sticky_gc_throughput_adjustment = GetStickyGcThroughputAdjustment(use_generational_cc_);
   3671 
   3672     // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
   3673     // do another sticky collection next.
   3674     // We also check that the bytes allocated aren't over the target_footprint, or
   3675     // concurrent_start_bytes in case of concurrent GCs, in order to prevent a
   3676     // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
   3677     // if the sticky GC throughput always remained >= the full/partial throughput.
   3678     size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
   3679     if (current_gc_iteration_.GetEstimatedThroughput() * sticky_gc_throughput_adjustment >=
   3680         non_sticky_collector->GetEstimatedMeanThroughput() &&
   3681         non_sticky_collector->NumberOfIterations() > 0 &&
   3682         bytes_allocated <= (IsGcConcurrent() ? concurrent_start_bytes_ : target_footprint)) {
   3683       next_gc_type_ = collector::kGcTypeSticky;
   3684     } else {
   3685       next_gc_type_ = non_sticky_gc_type;
   3686     }
   3687     // If we have freed enough memory, shrink the heap back down.
   3688     if (bytes_allocated + adjusted_max_free < target_footprint) {
   3689       target_size = bytes_allocated + adjusted_max_free;
   3690     } else {
   3691       target_size = std::max(bytes_allocated, target_footprint);
   3692     }
   3693   }
   3694   CHECK_LE(target_size, std::numeric_limits<size_t>::max());
   3695   if (!ignore_target_footprint_) {
   3696     SetIdealFootprint(target_size);
   3697     if (IsGcConcurrent()) {
   3698       const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
   3699           current_gc_iteration_.GetFreedLargeObjectBytes() +
   3700           current_gc_iteration_.GetFreedRevokeBytes();
   3701       // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
   3702       // how many bytes were allocated during the GC we need to add freed_bytes back on.
   3703       CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
   3704       const size_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
   3705           bytes_allocated_before_gc;
   3706       // Calculate when to perform the next ConcurrentGC.
   3707       // Estimate how many remaining bytes we will have when we need to start the next GC.
   3708       size_t remaining_bytes = bytes_allocated_during_gc;
   3709       remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
   3710       remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
   3711       size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
   3712       if (UNLIKELY(remaining_bytes > target_footprint)) {
   3713         // A never going to happen situation that from the estimated allocation rate we will exceed
   3714         // the applications entire footprint with the given estimated allocation rate. Schedule
   3715         // another GC nearly straight away.
   3716         remaining_bytes = std::min(kMinConcurrentRemainingBytes, target_footprint);
   3717       }
   3718       DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory());
   3719       // Start a concurrent GC when we get close to the estimated remaining bytes. When the
   3720       // allocation rate is very high, remaining_bytes could tell us that we should start a GC
   3721       // right away.
   3722       concurrent_start_bytes_ = std::max(target_footprint - remaining_bytes, bytes_allocated);
   3723     }
   3724   }
   3725 }
   3726 
   3727 void Heap::ClampGrowthLimit() {
   3728   // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
   3729   ScopedObjectAccess soa(Thread::Current());
   3730   WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
   3731   capacity_ = growth_limit_;
   3732   for (const auto& space : continuous_spaces_) {
   3733     if (space->IsMallocSpace()) {
   3734       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   3735       malloc_space->ClampGrowthLimit();
   3736     }
   3737   }
   3738   if (collector_type_ == kCollectorTypeCC) {
   3739     DCHECK(region_space_ != nullptr);
   3740     // Twice the capacity as CC needs extra space for evacuating objects.
   3741     region_space_->ClampGrowthLimit(2 * capacity_);
   3742   }
   3743   // This space isn't added for performance reasons.
   3744   if (main_space_backup_.get() != nullptr) {
   3745     main_space_backup_->ClampGrowthLimit();
   3746   }
   3747 }
   3748 
   3749 void Heap::ClearGrowthLimit() {
   3750   if (target_footprint_.load(std::memory_order_relaxed) == growth_limit_
   3751       && growth_limit_ < capacity_) {
   3752     target_footprint_.store(capacity_, std::memory_order_relaxed);
   3753     concurrent_start_bytes_ =
   3754         UnsignedDifference(capacity_, kMinConcurrentRemainingBytes);
   3755   }
   3756   growth_limit_ = capacity_;
   3757   ScopedObjectAccess soa(Thread::Current());
   3758   for (const auto& space : continuous_spaces_) {
   3759     if (space->IsMallocSpace()) {
   3760       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   3761       malloc_space->ClearGrowthLimit();
   3762       malloc_space->SetFootprintLimit(malloc_space->Capacity());
   3763     }
   3764   }
   3765   // This space isn't added for performance reasons.
   3766   if (main_space_backup_.get() != nullptr) {
   3767     main_space_backup_->ClearGrowthLimit();
   3768     main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
   3769   }
   3770 }
   3771 
   3772 void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) {
   3773   ScopedObjectAccess soa(self);
   3774   ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
   3775   jvalue args[1];
   3776   args[0].l = arg.get();
   3777   InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
   3778   // Restore object in case it gets moved.
   3779   *object = soa.Decode<mirror::Object>(arg.get());
   3780 }
   3781 
   3782 void Heap::RequestConcurrentGCAndSaveObject(Thread* self,
   3783                                             bool force_full,
   3784                                             ObjPtr<mirror::Object>* obj) {
   3785   StackHandleScope<1> hs(self);
   3786   HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   3787   RequestConcurrentGC(self, kGcCauseBackground, force_full);
   3788 }
   3789 
   3790 class Heap::ConcurrentGCTask : public HeapTask {
   3791  public:
   3792   ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full)
   3793       : HeapTask(target_time), cause_(cause), force_full_(force_full) {}
   3794   void Run(Thread* self) override {
   3795     gc::Heap* heap = Runtime::Current()->GetHeap();
   3796     heap->ConcurrentGC(self, cause_, force_full_);
   3797     heap->ClearConcurrentGCRequest();
   3798   }
   3799 
   3800  private:
   3801   const GcCause cause_;
   3802   const bool force_full_;  // If true, force full (or partial) collection.
   3803 };
   3804 
   3805 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
   3806   Runtime* runtime = Runtime::Current();
   3807   return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
   3808       !self->IsHandlingStackOverflow();
   3809 }
   3810 
   3811 void Heap::ClearConcurrentGCRequest() {
   3812   concurrent_gc_pending_.store(false, std::memory_order_relaxed);
   3813 }
   3814 
   3815 void Heap::RequestConcurrentGC(Thread* self, GcCause cause, bool force_full) {
   3816   if (CanAddHeapTask(self) &&
   3817       concurrent_gc_pending_.CompareAndSetStrongSequentiallyConsistent(false, true)) {
   3818     task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(),  // Start straight away.
   3819                                                         cause,
   3820                                                         force_full));
   3821   }
   3822 }
   3823 
   3824 void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full) {
   3825   if (!Runtime::Current()->IsShuttingDown(self)) {
   3826     // Wait for any GCs currently running to finish.
   3827     if (WaitForGcToComplete(cause, self) == collector::kGcTypeNone) {
   3828       // If we can't run the GC type we wanted to run, find the next appropriate one and try
   3829       // that instead. E.g. can't do partial, so do full instead.
   3830       collector::GcType next_gc_type = next_gc_type_;
   3831       // If forcing full and next gc type is sticky, override with a non-sticky type.
   3832       if (force_full && next_gc_type == collector::kGcTypeSticky) {
   3833         next_gc_type = NonStickyGcType();
   3834       }
   3835       if (CollectGarbageInternal(next_gc_type, cause, false) == collector::kGcTypeNone) {
   3836         for (collector::GcType gc_type : gc_plan_) {
   3837           // Attempt to run the collector, if we succeed, we are done.
   3838           if (gc_type > next_gc_type &&
   3839               CollectGarbageInternal(gc_type, cause, false) != collector::kGcTypeNone) {
   3840             break;
   3841           }
   3842         }
   3843       }
   3844     }
   3845   }
   3846 }
   3847 
   3848 class Heap::CollectorTransitionTask : public HeapTask {
   3849  public:
   3850   explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
   3851 
   3852   void Run(Thread* self) override {
   3853     gc::Heap* heap = Runtime::Current()->GetHeap();
   3854     heap->DoPendingCollectorTransition();
   3855     heap->ClearPendingCollectorTransition(self);
   3856   }
   3857 };
   3858 
   3859 void Heap::ClearPendingCollectorTransition(Thread* self) {
   3860   MutexLock mu(self, *pending_task_lock_);
   3861   pending_collector_transition_ = nullptr;
   3862 }
   3863 
   3864 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
   3865   Thread* self = Thread::Current();
   3866   desired_collector_type_ = desired_collector_type;
   3867   if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
   3868     return;
   3869   }
   3870   if (collector_type_ == kCollectorTypeCC) {
   3871     // For CC, we invoke a full compaction when going to the background, but the collector type
   3872     // doesn't change.
   3873     DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground);
   3874   }
   3875   DCHECK_NE(collector_type_, kCollectorTypeCCBackground);
   3876   CollectorTransitionTask* added_task = nullptr;
   3877   const uint64_t target_time = NanoTime() + delta_time;
   3878   {
   3879     MutexLock mu(self, *pending_task_lock_);
   3880     // If we have an existing collector transition, update the targe time to be the new target.
   3881     if (pending_collector_transition_ != nullptr) {
   3882       task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
   3883       return;
   3884     }
   3885     added_task = new CollectorTransitionTask(target_time);
   3886     pending_collector_transition_ = added_task;
   3887   }
   3888   task_processor_->AddTask(self, added_task);
   3889 }
   3890 
   3891 class Heap::HeapTrimTask : public HeapTask {
   3892  public:
   3893   explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
   3894   void Run(Thread* self) override {
   3895     gc::Heap* heap = Runtime::Current()->GetHeap();
   3896     heap->Trim(self);
   3897     heap->ClearPendingTrim(self);
   3898   }
   3899 };
   3900 
   3901 void Heap::ClearPendingTrim(Thread* self) {
   3902   MutexLock mu(self, *pending_task_lock_);
   3903   pending_heap_trim_ = nullptr;
   3904 }
   3905 
   3906 void Heap::RequestTrim(Thread* self) {
   3907   if (!CanAddHeapTask(self)) {
   3908     return;
   3909   }
   3910   // GC completed and now we must decide whether to request a heap trim (advising pages back to the
   3911   // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
   3912   // a space it will hold its lock and can become a cause of jank.
   3913   // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
   3914   // forking.
   3915 
   3916   // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
   3917   // because that only marks object heads, so a large array looks like lots of empty space. We
   3918   // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
   3919   // to utilization (which is probably inversely proportional to how much benefit we can expect).
   3920   // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
   3921   // not how much use we're making of those pages.
   3922   HeapTrimTask* added_task = nullptr;
   3923   {
   3924     MutexLock mu(self, *pending_task_lock_);
   3925     if (pending_heap_trim_ != nullptr) {
   3926       // Already have a heap trim request in task processor, ignore this request.
   3927       return;
   3928     }
   3929     added_task = new HeapTrimTask(kHeapTrimWait);
   3930     pending_heap_trim_ = added_task;
   3931   }
   3932   task_processor_->AddTask(self, added_task);
   3933 }
   3934 
   3935 void Heap::IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke) {
   3936   size_t previous_num_bytes_freed_revoke =
   3937       num_bytes_freed_revoke_.fetch_add(freed_bytes_revoke, std::memory_order_relaxed);
   3938   // Check the updated value is less than the number of bytes allocated. There is a risk of
   3939   // execution being suspended between the increment above and the CHECK below, leading to
   3940   // the use of previous_num_bytes_freed_revoke in the comparison.
   3941   CHECK_GE(num_bytes_allocated_.load(std::memory_order_relaxed),
   3942            previous_num_bytes_freed_revoke + freed_bytes_revoke);
   3943 }
   3944 
   3945 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
   3946   if (rosalloc_space_ != nullptr) {
   3947     size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
   3948     if (freed_bytes_revoke > 0U) {
   3949       IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
   3950     }
   3951   }
   3952   if (bump_pointer_space_ != nullptr) {
   3953     CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
   3954   }
   3955   if (region_space_ != nullptr) {
   3956     CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
   3957   }
   3958 }
   3959 
   3960 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
   3961   if (rosalloc_space_ != nullptr) {
   3962     size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
   3963     if (freed_bytes_revoke > 0U) {
   3964       IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
   3965     }
   3966   }
   3967 }
   3968 
   3969 void Heap::RevokeAllThreadLocalBuffers() {
   3970   if (rosalloc_space_ != nullptr) {
   3971     size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
   3972     if (freed_bytes_revoke > 0U) {
   3973       IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
   3974     }
   3975   }
   3976   if (bump_pointer_space_ != nullptr) {
   3977     CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
   3978   }
   3979   if (region_space_ != nullptr) {
   3980     CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
   3981   }
   3982 }
   3983 
   3984 bool Heap::IsGCRequestPending() const {
   3985   return concurrent_gc_pending_.load(std::memory_order_relaxed);
   3986 }
   3987 
   3988 void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
   3989   env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
   3990                             WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
   3991                             static_cast<jlong>(timeout));
   3992 }
   3993 
   3994 // For GC triggering purposes, we count old (pre-last-GC) and new native allocations as
   3995 // different fractions of Java allocations.
   3996 // For now, we essentially do not count old native allocations at all, so that we can preserve the
   3997 // existing behavior of not limiting native heap size. If we seriously considered it, we would
   3998 // have to adjust collection thresholds when we encounter large amounts of old native memory,
   3999 // and handle native out-of-memory situations.
   4000 
   4001 static constexpr size_t kOldNativeDiscountFactor = 65536;  // Approximately infinite for now.
   4002 static constexpr size_t kNewNativeDiscountFactor = 2;
   4003 
   4004 // If weighted java + native memory use exceeds our target by kStopForNativeFactor, and
   4005 // newly allocated memory exceeds kHugeNativeAlloc, we wait for GC to complete to avoid
   4006 // running out of memory.
   4007 static constexpr float kStopForNativeFactor = 4.0;
   4008 // TODO: Allow this to be tuned. We want this much smaller for some apps, like Calculator.
   4009 // But making it too small can cause jank in apps like launcher that intentionally allocate
   4010 // large amounts of memory in rapid succession. (b/122099093)
   4011 // For now, we punt, and use a value that should be easily large enough to disable this in all
   4012 // questionable setting, but that is clearly too large to be effective for small memory devices.
   4013 static constexpr size_t kHugeNativeAllocs = 1 * GB;
   4014 
   4015 // Return the ratio of the weighted native + java allocated bytes to its target value.
   4016 // A return value > 1.0 means we should collect. Significantly larger values mean we're falling
   4017 // behind.
   4018 inline float Heap::NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent) {
   4019   // Collection check for native allocation. Does not enforce Java heap bounds.
   4020   // With adj_start_bytes defined below, effectively checks
   4021   // <java bytes allocd> + c1*<old native allocd> + c2*<new native allocd) >= adj_start_bytes,
   4022   // where c3 > 1, and currently c1 and c2 are 1 divided by the values defined above.
   4023   size_t old_native_bytes = old_native_bytes_allocated_.load(std::memory_order_relaxed);
   4024   if (old_native_bytes > current_native_bytes) {
   4025     // Net decrease; skip the check, but update old value.
   4026     // It's OK to lose an update if two stores race.
   4027     old_native_bytes_allocated_.store(current_native_bytes, std::memory_order_relaxed);
   4028     return 0.0;
   4029   } else {
   4030     size_t new_native_bytes = UnsignedDifference(current_native_bytes, old_native_bytes);
   4031     size_t weighted_native_bytes = new_native_bytes / kNewNativeDiscountFactor
   4032         + old_native_bytes / kOldNativeDiscountFactor;
   4033     size_t add_bytes_allowed = static_cast<size_t>(
   4034         NativeAllocationGcWatermark() * HeapGrowthMultiplier());
   4035     size_t java_gc_start_bytes = is_gc_concurrent
   4036         ? concurrent_start_bytes_
   4037         : target_footprint_.load(std::memory_order_relaxed);
   4038     size_t adj_start_bytes = UnsignedSum(java_gc_start_bytes,
   4039                                          add_bytes_allowed / kNewNativeDiscountFactor);
   4040     return static_cast<float>(GetBytesAllocated() + weighted_native_bytes)
   4041          / static_cast<float>(adj_start_bytes);
   4042   }
   4043 }
   4044 
   4045 inline void Heap::CheckGCForNative(Thread* self) {
   4046   bool is_gc_concurrent = IsGcConcurrent();
   4047   size_t current_native_bytes = GetNativeBytes();
   4048   float gc_urgency = NativeMemoryOverTarget(current_native_bytes, is_gc_concurrent);
   4049   if (UNLIKELY(gc_urgency >= 1.0)) {
   4050     if (is_gc_concurrent) {
   4051       RequestConcurrentGC(self, kGcCauseForNativeAlloc, /*force_full=*/true);
   4052       if (gc_urgency > kStopForNativeFactor
   4053           && current_native_bytes > kHugeNativeAllocs) {
   4054         // We're in danger of running out of memory due to rampant native allocation.
   4055         if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
   4056           LOG(INFO) << "Stopping for native allocation, urgency: " << gc_urgency;
   4057         }
   4058         WaitForGcToComplete(kGcCauseForNativeAlloc, self);
   4059       }
   4060     } else {
   4061       CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false);
   4062     }
   4063   }
   4064 }
   4065 
   4066 // About kNotifyNativeInterval allocations have occurred. Check whether we should garbage collect.
   4067 void Heap::NotifyNativeAllocations(JNIEnv* env) {
   4068   native_objects_notified_.fetch_add(kNotifyNativeInterval, std::memory_order_relaxed);
   4069   CheckGCForNative(ThreadForEnv(env));
   4070 }
   4071 
   4072 // Register a native allocation with an explicit size.
   4073 // This should only be done for large allocations of non-malloc memory, which we wouldn't
   4074 // otherwise see.
   4075 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
   4076   native_bytes_registered_.fetch_add(bytes, std::memory_order_relaxed);
   4077   uint32_t objects_notified =
   4078       native_objects_notified_.fetch_add(1, std::memory_order_relaxed);
   4079   if (objects_notified % kNotifyNativeInterval == kNotifyNativeInterval - 1
   4080       || bytes > kCheckImmediatelyThreshold) {
   4081     CheckGCForNative(ThreadForEnv(env));
   4082   }
   4083 }
   4084 
   4085 void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) {
   4086   size_t allocated;
   4087   size_t new_freed_bytes;
   4088   do {
   4089     allocated = native_bytes_registered_.load(std::memory_order_relaxed);
   4090     new_freed_bytes = std::min(allocated, bytes);
   4091     // We should not be registering more free than allocated bytes.
   4092     // But correctly keep going in non-debug builds.
   4093     DCHECK_EQ(new_freed_bytes, bytes);
   4094   } while (!native_bytes_registered_.CompareAndSetWeakRelaxed(allocated,
   4095                                                               allocated - new_freed_bytes));
   4096 }
   4097 
   4098 size_t Heap::GetTotalMemory() const {
   4099   return std::max(target_footprint_.load(std::memory_order_relaxed), GetBytesAllocated());
   4100 }
   4101 
   4102 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
   4103   DCHECK(mod_union_table != nullptr);
   4104   mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
   4105 }
   4106 
   4107 void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) {
   4108   // Compare rounded sizes since the allocation may have been retried after rounding the size.
   4109   // See b/37885600
   4110   CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
   4111         (c->IsVariableSize() ||
   4112             RoundUp(c->GetObjectSize(), kObjectAlignment) ==
   4113                 RoundUp(byte_count, kObjectAlignment)))
   4114       << "ClassFlags=" << c->GetClassFlags()
   4115       << " IsClassClass=" << c->IsClassClass()
   4116       << " byte_count=" << byte_count
   4117       << " IsVariableSize=" << c->IsVariableSize()
   4118       << " ObjectSize=" << c->GetObjectSize()
   4119       << " sizeof(Class)=" << sizeof(mirror::Class)
   4120       << " " << verification_->DumpObjectInfo(c.Ptr(), /*tag=*/ "klass");
   4121   CHECK_GE(byte_count, sizeof(mirror::Object));
   4122 }
   4123 
   4124 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
   4125   CHECK(remembered_set != nullptr);
   4126   space::Space* space = remembered_set->GetSpace();
   4127   CHECK(space != nullptr);
   4128   CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
   4129   remembered_sets_.Put(space, remembered_set);
   4130   CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
   4131 }
   4132 
   4133 void Heap::RemoveRememberedSet(space::Space* space) {
   4134   CHECK(space != nullptr);
   4135   auto it = remembered_sets_.find(space);
   4136   CHECK(it != remembered_sets_.end());
   4137   delete it->second;
   4138   remembered_sets_.erase(it);
   4139   CHECK(remembered_sets_.find(space) == remembered_sets_.end());
   4140 }
   4141 
   4142 void Heap::ClearMarkedObjects() {
   4143   // Clear all of the spaces' mark bitmaps.
   4144   for (const auto& space : GetContinuousSpaces()) {
   4145     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   4146     if (space->GetLiveBitmap() != mark_bitmap) {
   4147       mark_bitmap->Clear();
   4148     }
   4149   }
   4150   // Clear the marked objects in the discontinous space object sets.
   4151   for (const auto& space : GetDiscontinuousSpaces()) {
   4152     space->GetMarkBitmap()->Clear();
   4153   }
   4154 }
   4155 
   4156 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
   4157   allocation_records_.reset(records);
   4158 }
   4159 
   4160 void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
   4161   if (IsAllocTrackingEnabled()) {
   4162     MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4163     if (IsAllocTrackingEnabled()) {
   4164       GetAllocationRecords()->VisitRoots(visitor);
   4165     }
   4166   }
   4167 }
   4168 
   4169 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
   4170   if (IsAllocTrackingEnabled()) {
   4171     MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4172     if (IsAllocTrackingEnabled()) {
   4173       GetAllocationRecords()->SweepAllocationRecords(visitor);
   4174     }
   4175   }
   4176 }
   4177 
   4178 void Heap::AllowNewAllocationRecords() const {
   4179   CHECK(!kUseReadBarrier);
   4180   MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4181   AllocRecordObjectMap* allocation_records = GetAllocationRecords();
   4182   if (allocation_records != nullptr) {
   4183     allocation_records->AllowNewAllocationRecords();
   4184   }
   4185 }
   4186 
   4187 void Heap::DisallowNewAllocationRecords() const {
   4188   CHECK(!kUseReadBarrier);
   4189   MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4190   AllocRecordObjectMap* allocation_records = GetAllocationRecords();
   4191   if (allocation_records != nullptr) {
   4192     allocation_records->DisallowNewAllocationRecords();
   4193   }
   4194 }
   4195 
   4196 void Heap::BroadcastForNewAllocationRecords() const {
   4197   // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
   4198   // be set to false while some threads are waiting for system weak access in
   4199   // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
   4200   MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
   4201   AllocRecordObjectMap* allocation_records = GetAllocationRecords();
   4202   if (allocation_records != nullptr) {
   4203     allocation_records->BroadcastForNewAllocationRecords();
   4204   }
   4205 }
   4206 
   4207 void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) {
   4208   DCHECK(gc_stress_mode_);
   4209   auto* const runtime = Runtime::Current();
   4210   if (runtime->GetClassLinker()->IsInitialized() && !runtime->IsActiveTransaction()) {
   4211     // Check if we should GC.
   4212     bool new_backtrace = false;
   4213     {
   4214       static constexpr size_t kMaxFrames = 16u;
   4215       FixedSizeBacktrace<kMaxFrames> backtrace;
   4216       backtrace.Collect(/* skip_count= */ 2);
   4217       uint64_t hash = backtrace.Hash();
   4218       MutexLock mu(self, *backtrace_lock_);
   4219       new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
   4220       if (new_backtrace) {
   4221         seen_backtraces_.insert(hash);
   4222       }
   4223     }
   4224     if (new_backtrace) {
   4225       StackHandleScope<1> hs(self);
   4226       auto h = hs.NewHandleWrapper(obj);
   4227       CollectGarbage(/* clear_soft_references= */ false);
   4228       unique_backtrace_count_.fetch_add(1);
   4229     } else {
   4230       seen_backtrace_count_.fetch_add(1);
   4231     }
   4232   }
   4233 }
   4234 
   4235 void Heap::DisableGCForShutdown() {
   4236   Thread* const self = Thread::Current();
   4237   CHECK(Runtime::Current()->IsShuttingDown(self));
   4238   MutexLock mu(self, *gc_complete_lock_);
   4239   gc_disabled_for_shutdown_ = true;
   4240 }
   4241 
   4242 bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const {
   4243   for (gc::space::ImageSpace* space : boot_image_spaces_) {
   4244     if (space->HasAddress(obj.Ptr())) {
   4245       return true;
   4246     }
   4247   }
   4248   return false;
   4249 }
   4250 
   4251 bool Heap::IsInBootImageOatFile(const void* p) const {
   4252   for (gc::space::ImageSpace* space : boot_image_spaces_) {
   4253     if (space->GetOatFile()->Contains(p)) {
   4254       return true;
   4255     }
   4256   }
   4257   return false;
   4258 }
   4259 
   4260 void Heap::GetBootImagesSize(uint32_t* boot_image_begin,
   4261                              uint32_t* boot_image_end,
   4262                              uint32_t* boot_oat_begin,
   4263                              uint32_t* boot_oat_end) {
   4264   DCHECK(boot_image_begin != nullptr);
   4265   DCHECK(boot_image_end != nullptr);
   4266   DCHECK(boot_oat_begin != nullptr);
   4267   DCHECK(boot_oat_end != nullptr);
   4268   *boot_image_begin = 0u;
   4269   *boot_image_end = 0u;
   4270   *boot_oat_begin = 0u;
   4271   *boot_oat_end = 0u;
   4272   for (gc::space::ImageSpace* space_ : GetBootImageSpaces()) {
   4273     const uint32_t image_begin = PointerToLowMemUInt32(space_->Begin());
   4274     const uint32_t image_size = space_->GetImageHeader().GetImageSize();
   4275     if (*boot_image_begin == 0 || image_begin < *boot_image_begin) {
   4276       *boot_image_begin = image_begin;
   4277     }
   4278     *boot_image_end = std::max(*boot_image_end, image_begin + image_size);
   4279     const OatFile* boot_oat_file = space_->GetOatFile();
   4280     const uint32_t oat_begin = PointerToLowMemUInt32(boot_oat_file->Begin());
   4281     const uint32_t oat_size = boot_oat_file->Size();
   4282     if (*boot_oat_begin == 0 || oat_begin < *boot_oat_begin) {
   4283       *boot_oat_begin = oat_begin;
   4284     }
   4285     *boot_oat_end = std::max(*boot_oat_end, oat_begin + oat_size);
   4286   }
   4287 }
   4288 
   4289 void Heap::SetAllocationListener(AllocationListener* l) {
   4290   AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l);
   4291 
   4292   if (old == nullptr) {
   4293     Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
   4294   }
   4295 }
   4296 
   4297 void Heap::RemoveAllocationListener() {
   4298   AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr);
   4299 
   4300   if (old != nullptr) {
   4301     Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
   4302   }
   4303 }
   4304 
   4305 void Heap::SetGcPauseListener(GcPauseListener* l) {
   4306   gc_pause_listener_.store(l, std::memory_order_relaxed);
   4307 }
   4308 
   4309 void Heap::RemoveGcPauseListener() {
   4310   gc_pause_listener_.store(nullptr, std::memory_order_relaxed);
   4311 }
   4312 
   4313 mirror::Object* Heap::AllocWithNewTLAB(Thread* self,
   4314                                        size_t alloc_size,
   4315                                        bool grow,
   4316                                        size_t* bytes_allocated,
   4317                                        size_t* usable_size,
   4318                                        size_t* bytes_tl_bulk_allocated) {
   4319   const AllocatorType allocator_type = GetCurrentAllocator();
   4320   if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) {
   4321     DCHECK_GT(alloc_size, self->TlabSize());
   4322     // There is enough space if we grow the TLAB. Lets do that. This increases the
   4323     // TLAB bytes.
   4324     const size_t min_expand_size = alloc_size - self->TlabSize();
   4325     const size_t expand_bytes = std::max(
   4326         min_expand_size,
   4327         std::min(self->TlabRemainingCapacity() - self->TlabSize(), kPartialTlabSize));
   4328     if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) {
   4329       return nullptr;
   4330     }
   4331     *bytes_tl_bulk_allocated = expand_bytes;
   4332     self->ExpandTlab(expand_bytes);
   4333     DCHECK_LE(alloc_size, self->TlabSize());
   4334   } else if (allocator_type == kAllocatorTypeTLAB) {
   4335     DCHECK(bump_pointer_space_ != nullptr);
   4336     const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
   4337     if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) {
   4338       return nullptr;
   4339     }
   4340     // Try allocating a new thread local buffer, if the allocation fails the space must be
   4341     // full so return null.
   4342     if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
   4343       return nullptr;
   4344     }
   4345     *bytes_tl_bulk_allocated = new_tlab_size;
   4346   } else {
   4347     DCHECK(allocator_type == kAllocatorTypeRegionTLAB);
   4348     DCHECK(region_space_ != nullptr);
   4349     if (space::RegionSpace::kRegionSize >= alloc_size) {
   4350       // Non-large. Check OOME for a tlab.
   4351       if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type,
   4352                                             space::RegionSpace::kRegionSize,
   4353                                             grow))) {
   4354         const size_t new_tlab_size = kUsePartialTlabs
   4355             ? std::max(alloc_size, kPartialTlabSize)
   4356             : gc::space::RegionSpace::kRegionSize;
   4357         // Try to allocate a tlab.
   4358         if (!region_space_->AllocNewTlab(self, new_tlab_size)) {
   4359           // Failed to allocate a tlab. Try non-tlab.
   4360           return region_space_->AllocNonvirtual<false>(alloc_size,
   4361                                                        bytes_allocated,
   4362                                                        usable_size,
   4363                                                        bytes_tl_bulk_allocated);
   4364         }
   4365         *bytes_tl_bulk_allocated = new_tlab_size;
   4366         // Fall-through to using the TLAB below.
   4367       } else {
   4368         // Check OOME for a non-tlab allocation.
   4369         if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) {
   4370           return region_space_->AllocNonvirtual<false>(alloc_size,
   4371                                                        bytes_allocated,
   4372                                                        usable_size,
   4373                                                        bytes_tl_bulk_allocated);
   4374         }
   4375         // Neither tlab or non-tlab works. Give up.
   4376         return nullptr;
   4377       }
   4378     } else {
   4379       // Large. Check OOME.
   4380       if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) {
   4381         return region_space_->AllocNonvirtual<false>(alloc_size,
   4382                                                      bytes_allocated,
   4383                                                      usable_size,
   4384                                                      bytes_tl_bulk_allocated);
   4385       }
   4386       return nullptr;
   4387     }
   4388   }
   4389   // Refilled TLAB, return.
   4390   mirror::Object* ret = self->AllocTlab(alloc_size);
   4391   DCHECK(ret != nullptr);
   4392   *bytes_allocated = alloc_size;
   4393   *usable_size = alloc_size;
   4394   return ret;
   4395 }
   4396 
   4397 const Verification* Heap::GetVerification() const {
   4398   return verification_.get();
   4399 }
   4400 
   4401 void Heap::VlogHeapGrowth(size_t old_footprint, size_t new_footprint, size_t alloc_size) {
   4402   VLOG(heap) << "Growing heap from " << PrettySize(old_footprint) << " to "
   4403              << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
   4404 }
   4405 
   4406 class Heap::TriggerPostForkCCGcTask : public HeapTask {
   4407  public:
   4408   explicit TriggerPostForkCCGcTask(uint64_t target_time) : HeapTask(target_time) {}
   4409   void Run(Thread* self) override {
   4410     gc::Heap* heap = Runtime::Current()->GetHeap();
   4411     // Trigger a GC, if not already done. The first GC after fork, whenever it
   4412     // takes place, will adjust the thresholds to normal levels.
   4413     if (heap->target_footprint_.load(std::memory_order_relaxed) == heap->growth_limit_) {
   4414       heap->RequestConcurrentGC(self, kGcCauseBackground, false);
   4415     }
   4416   }
   4417 };
   4418 
   4419 void Heap::PostForkChildAction(Thread* self) {
   4420   // Temporarily increase target_footprint_ and concurrent_start_bytes_ to
   4421   // max values to avoid GC during app launch.
   4422   if (collector_type_ == kCollectorTypeCC && !IsLowMemoryMode()) {
   4423     // Set target_footprint_ to the largest allowed value.
   4424     SetIdealFootprint(growth_limit_);
   4425     // Set concurrent_start_bytes_ to half of the heap size.
   4426     size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
   4427     concurrent_start_bytes_ = std::max(target_footprint / 2, GetBytesAllocated());
   4428 
   4429     GetTaskProcessor()->AddTask(
   4430         self, new TriggerPostForkCCGcTask(NanoTime() + MsToNs(kPostForkMaxHeapDurationMS)));
   4431   }
   4432 }
   4433 
   4434 }  // namespace gc
   4435 }  // namespace art
   4436