Home | History | Annotate | Download | only in glsl
      1 /*
      2  * Copyright  2010 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     21  * DEALINGS IN THE SOFTWARE.
     22  */
     23 
     24 /**
     25  * \file linker.cpp
     26  * GLSL linker implementation
     27  *
     28  * Given a set of shaders that are to be linked to generate a final program,
     29  * there are three distinct stages.
     30  *
     31  * In the first stage shaders are partitioned into groups based on the shader
     32  * type.  All shaders of a particular type (e.g., vertex shaders) are linked
     33  * together.
     34  *
     35  *   - Undefined references in each shader are resolve to definitions in
     36  *     another shader.
     37  *   - Types and qualifiers of uniforms, outputs, and global variables defined
     38  *     in multiple shaders with the same name are verified to be the same.
     39  *   - Initializers for uniforms and global variables defined
     40  *     in multiple shaders with the same name are verified to be the same.
     41  *
     42  * The result, in the terminology of the GLSL spec, is a set of shader
     43  * executables for each processing unit.
     44  *
     45  * After the first stage is complete, a series of semantic checks are performed
     46  * on each of the shader executables.
     47  *
     48  *   - Each shader executable must define a \c main function.
     49  *   - Each vertex shader executable must write to \c gl_Position.
     50  *   - Each fragment shader executable must write to either \c gl_FragData or
     51  *     \c gl_FragColor.
     52  *
     53  * In the final stage individual shader executables are linked to create a
     54  * complete exectuable.
     55  *
     56  *   - Types of uniforms defined in multiple shader stages with the same name
     57  *     are verified to be the same.
     58  *   - Initializers for uniforms defined in multiple shader stages with the
     59  *     same name are verified to be the same.
     60  *   - Types and qualifiers of outputs defined in one stage are verified to
     61  *     be the same as the types and qualifiers of inputs defined with the same
     62  *     name in a later stage.
     63  *
     64  * \author Ian Romanick <ian.d.romanick (at) intel.com>
     65  */
     66 
     67 #include <ctype.h>
     68 #include "util/strndup.h"
     69 #include "main/core.h"
     70 #include "glsl_symbol_table.h"
     71 #include "glsl_parser_extras.h"
     72 #include "ir.h"
     73 #include "program.h"
     74 #include "program/prog_instruction.h"
     75 #include "program/program.h"
     76 #include "util/mesa-sha1.h"
     77 #include "util/set.h"
     78 #include "string_to_uint_map.h"
     79 #include "linker.h"
     80 #include "link_varyings.h"
     81 #include "ir_optimization.h"
     82 #include "ir_rvalue_visitor.h"
     83 #include "ir_uniform.h"
     84 #include "builtin_functions.h"
     85 #include "shader_cache.h"
     86 
     87 #include "main/shaderobj.h"
     88 #include "main/enums.h"
     89 
     90 
     91 namespace {
     92 
     93 struct find_variable {
     94    const char *name;
     95    bool found;
     96 
     97    find_variable(const char *name) : name(name), found(false) {}
     98 };
     99 
    100 /**
    101  * Visitor that determines whether or not a variable is ever written.
    102  *
    103  * Use \ref find_assignments for convenience.
    104  */
    105 class find_assignment_visitor : public ir_hierarchical_visitor {
    106 public:
    107    find_assignment_visitor(unsigned num_vars,
    108                            find_variable * const *vars)
    109       : num_variables(num_vars), num_found(0), variables(vars)
    110    {
    111    }
    112 
    113    virtual ir_visitor_status visit_enter(ir_assignment *ir)
    114    {
    115       ir_variable *const var = ir->lhs->variable_referenced();
    116 
    117       return check_variable_name(var->name);
    118    }
    119 
    120    virtual ir_visitor_status visit_enter(ir_call *ir)
    121    {
    122       foreach_two_lists(formal_node, &ir->callee->parameters,
    123                         actual_node, &ir->actual_parameters) {
    124          ir_rvalue *param_rval = (ir_rvalue *) actual_node;
    125          ir_variable *sig_param = (ir_variable *) formal_node;
    126 
    127          if (sig_param->data.mode == ir_var_function_out ||
    128              sig_param->data.mode == ir_var_function_inout) {
    129             ir_variable *var = param_rval->variable_referenced();
    130             if (var && check_variable_name(var->name) == visit_stop)
    131                return visit_stop;
    132          }
    133       }
    134 
    135       if (ir->return_deref != NULL) {
    136          ir_variable *const var = ir->return_deref->variable_referenced();
    137 
    138          if (check_variable_name(var->name) == visit_stop)
    139             return visit_stop;
    140       }
    141 
    142       return visit_continue_with_parent;
    143    }
    144 
    145 private:
    146    ir_visitor_status check_variable_name(const char *name)
    147    {
    148       for (unsigned i = 0; i < num_variables; ++i) {
    149          if (strcmp(variables[i]->name, name) == 0) {
    150             if (!variables[i]->found) {
    151                variables[i]->found = true;
    152 
    153                assert(num_found < num_variables);
    154                if (++num_found == num_variables)
    155                   return visit_stop;
    156             }
    157             break;
    158          }
    159       }
    160 
    161       return visit_continue_with_parent;
    162    }
    163 
    164 private:
    165    unsigned num_variables;           /**< Number of variables to find */
    166    unsigned num_found;               /**< Number of variables already found */
    167    find_variable * const *variables; /**< Variables to find */
    168 };
    169 
    170 /**
    171  * Determine whether or not any of NULL-terminated list of variables is ever
    172  * written to.
    173  */
    174 static void
    175 find_assignments(exec_list *ir, find_variable * const *vars)
    176 {
    177    unsigned num_variables = 0;
    178 
    179    for (find_variable * const *v = vars; *v; ++v)
    180       num_variables++;
    181 
    182    find_assignment_visitor visitor(num_variables, vars);
    183    visitor.run(ir);
    184 }
    185 
    186 /**
    187  * Determine whether or not the given variable is ever written to.
    188  */
    189 static void
    190 find_assignments(exec_list *ir, find_variable *var)
    191 {
    192    find_assignment_visitor visitor(1, &var);
    193    visitor.run(ir);
    194 }
    195 
    196 /**
    197  * Visitor that determines whether or not a variable is ever read.
    198  */
    199 class find_deref_visitor : public ir_hierarchical_visitor {
    200 public:
    201    find_deref_visitor(const char *name)
    202       : name(name), found(false)
    203    {
    204       /* empty */
    205    }
    206 
    207    virtual ir_visitor_status visit(ir_dereference_variable *ir)
    208    {
    209       if (strcmp(this->name, ir->var->name) == 0) {
    210          this->found = true;
    211          return visit_stop;
    212       }
    213 
    214       return visit_continue;
    215    }
    216 
    217    bool variable_found() const
    218    {
    219       return this->found;
    220    }
    221 
    222 private:
    223    const char *name;       /**< Find writes to a variable with this name. */
    224    bool found;             /**< Was a write to the variable found? */
    225 };
    226 
    227 
    228 /**
    229  * A visitor helper that provides methods for updating the types of
    230  * ir_dereferences.  Classes that update variable types (say, updating
    231  * array sizes) will want to use this so that dereference types stay in sync.
    232  */
    233 class deref_type_updater : public ir_hierarchical_visitor {
    234 public:
    235    virtual ir_visitor_status visit(ir_dereference_variable *ir)
    236    {
    237       ir->type = ir->var->type;
    238       return visit_continue;
    239    }
    240 
    241    virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
    242    {
    243       const glsl_type *const vt = ir->array->type;
    244       if (vt->is_array())
    245          ir->type = vt->fields.array;
    246       return visit_continue;
    247    }
    248 
    249    virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
    250    {
    251       ir->type = ir->record->type->fields.structure[ir->field_idx].type;
    252       return visit_continue;
    253    }
    254 };
    255 
    256 
    257 class array_resize_visitor : public deref_type_updater {
    258 public:
    259    unsigned num_vertices;
    260    gl_shader_program *prog;
    261    gl_shader_stage stage;
    262 
    263    array_resize_visitor(unsigned num_vertices,
    264                         gl_shader_program *prog,
    265                         gl_shader_stage stage)
    266    {
    267       this->num_vertices = num_vertices;
    268       this->prog = prog;
    269       this->stage = stage;
    270    }
    271 
    272    virtual ~array_resize_visitor()
    273    {
    274       /* empty */
    275    }
    276 
    277    virtual ir_visitor_status visit(ir_variable *var)
    278    {
    279       if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
    280           var->data.patch)
    281          return visit_continue;
    282 
    283       unsigned size = var->type->length;
    284 
    285       if (stage == MESA_SHADER_GEOMETRY) {
    286          /* Generate a link error if the shader has declared this array with
    287           * an incorrect size.
    288           */
    289          if (!var->data.implicit_sized_array &&
    290              size && size != this->num_vertices) {
    291             linker_error(this->prog, "size of array %s declared as %u, "
    292                          "but number of input vertices is %u\n",
    293                          var->name, size, this->num_vertices);
    294             return visit_continue;
    295          }
    296 
    297          /* Generate a link error if the shader attempts to access an input
    298           * array using an index too large for its actual size assigned at
    299           * link time.
    300           */
    301          if (var->data.max_array_access >= (int)this->num_vertices) {
    302             linker_error(this->prog, "%s shader accesses element %i of "
    303                          "%s, but only %i input vertices\n",
    304                          _mesa_shader_stage_to_string(this->stage),
    305                          var->data.max_array_access, var->name, this->num_vertices);
    306             return visit_continue;
    307          }
    308       }
    309 
    310       var->type = glsl_type::get_array_instance(var->type->fields.array,
    311                                                 this->num_vertices);
    312       var->data.max_array_access = this->num_vertices - 1;
    313 
    314       return visit_continue;
    315    }
    316 };
    317 
    318 /**
    319  * Visitor that determines the highest stream id to which a (geometry) shader
    320  * emits vertices. It also checks whether End{Stream}Primitive is ever called.
    321  */
    322 class find_emit_vertex_visitor : public ir_hierarchical_visitor {
    323 public:
    324    find_emit_vertex_visitor(int max_allowed)
    325       : max_stream_allowed(max_allowed),
    326         invalid_stream_id(0),
    327         invalid_stream_id_from_emit_vertex(false),
    328         end_primitive_found(false),
    329         uses_non_zero_stream(false)
    330    {
    331       /* empty */
    332    }
    333 
    334    virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
    335    {
    336       int stream_id = ir->stream_id();
    337 
    338       if (stream_id < 0) {
    339          invalid_stream_id = stream_id;
    340          invalid_stream_id_from_emit_vertex = true;
    341          return visit_stop;
    342       }
    343 
    344       if (stream_id > max_stream_allowed) {
    345          invalid_stream_id = stream_id;
    346          invalid_stream_id_from_emit_vertex = true;
    347          return visit_stop;
    348       }
    349 
    350       if (stream_id != 0)
    351          uses_non_zero_stream = true;
    352 
    353       return visit_continue;
    354    }
    355 
    356    virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
    357    {
    358       end_primitive_found = true;
    359 
    360       int stream_id = ir->stream_id();
    361 
    362       if (stream_id < 0) {
    363          invalid_stream_id = stream_id;
    364          invalid_stream_id_from_emit_vertex = false;
    365          return visit_stop;
    366       }
    367 
    368       if (stream_id > max_stream_allowed) {
    369          invalid_stream_id = stream_id;
    370          invalid_stream_id_from_emit_vertex = false;
    371          return visit_stop;
    372       }
    373 
    374       if (stream_id != 0)
    375          uses_non_zero_stream = true;
    376 
    377       return visit_continue;
    378    }
    379 
    380    bool error()
    381    {
    382       return invalid_stream_id != 0;
    383    }
    384 
    385    const char *error_func()
    386    {
    387       return invalid_stream_id_from_emit_vertex ?
    388          "EmitStreamVertex" : "EndStreamPrimitive";
    389    }
    390 
    391    int error_stream()
    392    {
    393       return invalid_stream_id;
    394    }
    395 
    396    bool uses_streams()
    397    {
    398       return uses_non_zero_stream;
    399    }
    400 
    401    bool uses_end_primitive()
    402    {
    403       return end_primitive_found;
    404    }
    405 
    406 private:
    407    int max_stream_allowed;
    408    int invalid_stream_id;
    409    bool invalid_stream_id_from_emit_vertex;
    410    bool end_primitive_found;
    411    bool uses_non_zero_stream;
    412 };
    413 
    414 /* Class that finds array derefs and check if indexes are dynamic. */
    415 class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
    416 {
    417 public:
    418    dynamic_sampler_array_indexing_visitor() :
    419       dynamic_sampler_array_indexing(false)
    420    {
    421    }
    422 
    423    ir_visitor_status visit_enter(ir_dereference_array *ir)
    424    {
    425       if (!ir->variable_referenced())
    426          return visit_continue;
    427 
    428       if (!ir->variable_referenced()->type->contains_sampler())
    429          return visit_continue;
    430 
    431       if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
    432          dynamic_sampler_array_indexing = true;
    433          return visit_stop;
    434       }
    435       return visit_continue;
    436    }
    437 
    438    bool uses_dynamic_sampler_array_indexing()
    439    {
    440       return dynamic_sampler_array_indexing;
    441    }
    442 
    443 private:
    444    bool dynamic_sampler_array_indexing;
    445 };
    446 
    447 } /* anonymous namespace */
    448 
    449 void
    450 linker_error(gl_shader_program *prog, const char *fmt, ...)
    451 {
    452    va_list ap;
    453 
    454    ralloc_strcat(&prog->data->InfoLog, "error: ");
    455    va_start(ap, fmt);
    456    ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
    457    va_end(ap);
    458 
    459    prog->data->LinkStatus = linking_failure;
    460 }
    461 
    462 
    463 void
    464 linker_warning(gl_shader_program *prog, const char *fmt, ...)
    465 {
    466    va_list ap;
    467 
    468    ralloc_strcat(&prog->data->InfoLog, "warning: ");
    469    va_start(ap, fmt);
    470    ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
    471    va_end(ap);
    472 
    473 }
    474 
    475 
    476 /**
    477  * Given a string identifying a program resource, break it into a base name
    478  * and an optional array index in square brackets.
    479  *
    480  * If an array index is present, \c out_base_name_end is set to point to the
    481  * "[" that precedes the array index, and the array index itself is returned
    482  * as a long.
    483  *
    484  * If no array index is present (or if the array index is negative or
    485  * mal-formed), \c out_base_name_end, is set to point to the null terminator
    486  * at the end of the input string, and -1 is returned.
    487  *
    488  * Only the final array index is parsed; if the string contains other array
    489  * indices (or structure field accesses), they are left in the base name.
    490  *
    491  * No attempt is made to check that the base name is properly formed;
    492  * typically the caller will look up the base name in a hash table, so
    493  * ill-formed base names simply turn into hash table lookup failures.
    494  */
    495 long
    496 parse_program_resource_name(const GLchar *name,
    497                             const GLchar **out_base_name_end)
    498 {
    499    /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
    500     *
    501     *     "When an integer array element or block instance number is part of
    502     *     the name string, it will be specified in decimal form without a "+"
    503     *     or "-" sign or any extra leading zeroes. Additionally, the name
    504     *     string will not include white space anywhere in the string."
    505     */
    506 
    507    const size_t len = strlen(name);
    508    *out_base_name_end = name + len;
    509 
    510    if (len == 0 || name[len-1] != ']')
    511       return -1;
    512 
    513    /* Walk backwards over the string looking for a non-digit character.  This
    514     * had better be the opening bracket for an array index.
    515     *
    516     * Initially, i specifies the location of the ']'.  Since the string may
    517     * contain only the ']' charcater, walk backwards very carefully.
    518     */
    519    unsigned i;
    520    for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
    521       /* empty */ ;
    522 
    523    if ((i == 0) || name[i-1] != '[')
    524       return -1;
    525 
    526    long array_index = strtol(&name[i], NULL, 10);
    527    if (array_index < 0)
    528       return -1;
    529 
    530    /* Check for leading zero */
    531    if (name[i] == '0' && name[i+1] != ']')
    532       return -1;
    533 
    534    *out_base_name_end = name + (i - 1);
    535    return array_index;
    536 }
    537 
    538 
    539 void
    540 link_invalidate_variable_locations(exec_list *ir)
    541 {
    542    foreach_in_list(ir_instruction, node, ir) {
    543       ir_variable *const var = node->as_variable();
    544 
    545       if (var == NULL)
    546          continue;
    547 
    548       /* Only assign locations for variables that lack an explicit location.
    549        * Explicit locations are set for all built-in variables, generic vertex
    550        * shader inputs (via layout(location=...)), and generic fragment shader
    551        * outputs (also via layout(location=...)).
    552        */
    553       if (!var->data.explicit_location) {
    554          var->data.location = -1;
    555          var->data.location_frac = 0;
    556       }
    557 
    558       /* ir_variable::is_unmatched_generic_inout is used by the linker while
    559        * connecting outputs from one stage to inputs of the next stage.
    560        */
    561       if (var->data.explicit_location &&
    562           var->data.location < VARYING_SLOT_VAR0) {
    563          var->data.is_unmatched_generic_inout = 0;
    564       } else {
    565          var->data.is_unmatched_generic_inout = 1;
    566       }
    567    }
    568 }
    569 
    570 
    571 /**
    572  * Set clip_distance_array_size based and cull_distance_array_size on the given
    573  * shader.
    574  *
    575  * Also check for errors based on incorrect usage of gl_ClipVertex and
    576  * gl_ClipDistance and gl_CullDistance.
    577  * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
    578  * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
    579  *
    580  * Return false if an error was reported.
    581  */
    582 static void
    583 analyze_clip_cull_usage(struct gl_shader_program *prog,
    584                         struct gl_linked_shader *shader,
    585                         struct gl_context *ctx,
    586                         GLuint *clip_distance_array_size,
    587                         GLuint *cull_distance_array_size)
    588 {
    589    *clip_distance_array_size = 0;
    590    *cull_distance_array_size = 0;
    591 
    592    if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
    593       /* From section 7.1 (Vertex Shader Special Variables) of the
    594        * GLSL 1.30 spec:
    595        *
    596        *   "It is an error for a shader to statically write both
    597        *   gl_ClipVertex and gl_ClipDistance."
    598        *
    599        * This does not apply to GLSL ES shaders, since GLSL ES defines neither
    600        * gl_ClipVertex nor gl_ClipDistance. However with
    601        * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
    602        */
    603       find_variable gl_ClipDistance("gl_ClipDistance");
    604       find_variable gl_CullDistance("gl_CullDistance");
    605       find_variable gl_ClipVertex("gl_ClipVertex");
    606       find_variable * const variables[] = {
    607          &gl_ClipDistance,
    608          &gl_CullDistance,
    609          !prog->IsES ? &gl_ClipVertex : NULL,
    610          NULL
    611       };
    612       find_assignments(shader->ir, variables);
    613 
    614       /* From the ARB_cull_distance spec:
    615        *
    616        * It is a compile-time or link-time error for the set of shaders forming
    617        * a program to statically read or write both gl_ClipVertex and either
    618        * gl_ClipDistance or gl_CullDistance.
    619        *
    620        * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
    621        * gl_ClipVertex.
    622        */
    623       if (!prog->IsES) {
    624          if (gl_ClipVertex.found && gl_ClipDistance.found) {
    625             linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
    626                          "and `gl_ClipDistance'\n",
    627                          _mesa_shader_stage_to_string(shader->Stage));
    628             return;
    629          }
    630          if (gl_ClipVertex.found && gl_CullDistance.found) {
    631             linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
    632                          "and `gl_CullDistance'\n",
    633                          _mesa_shader_stage_to_string(shader->Stage));
    634             return;
    635          }
    636       }
    637 
    638       if (gl_ClipDistance.found) {
    639          ir_variable *clip_distance_var =
    640                 shader->symbols->get_variable("gl_ClipDistance");
    641          assert(clip_distance_var);
    642          *clip_distance_array_size = clip_distance_var->type->length;
    643       }
    644       if (gl_CullDistance.found) {
    645          ir_variable *cull_distance_var =
    646                 shader->symbols->get_variable("gl_CullDistance");
    647          assert(cull_distance_var);
    648          *cull_distance_array_size = cull_distance_var->type->length;
    649       }
    650       /* From the ARB_cull_distance spec:
    651        *
    652        * It is a compile-time or link-time error for the set of shaders forming
    653        * a program to have the sum of the sizes of the gl_ClipDistance and
    654        * gl_CullDistance arrays to be larger than
    655        * gl_MaxCombinedClipAndCullDistances.
    656        */
    657       if ((*clip_distance_array_size + *cull_distance_array_size) >
    658           ctx->Const.MaxClipPlanes) {
    659           linker_error(prog, "%s shader: the combined size of "
    660                        "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
    661                        "be larger than "
    662                        "gl_MaxCombinedClipAndCullDistances (%u)",
    663                        _mesa_shader_stage_to_string(shader->Stage),
    664                        ctx->Const.MaxClipPlanes);
    665       }
    666    }
    667 }
    668 
    669 
    670 /**
    671  * Verify that a vertex shader executable meets all semantic requirements.
    672  *
    673  * Also sets info.clip_distance_array_size and
    674  * info.cull_distance_array_size as a side effect.
    675  *
    676  * \param shader  Vertex shader executable to be verified
    677  */
    678 static void
    679 validate_vertex_shader_executable(struct gl_shader_program *prog,
    680                                   struct gl_linked_shader *shader,
    681                                   struct gl_context *ctx)
    682 {
    683    if (shader == NULL)
    684       return;
    685 
    686    /* From the GLSL 1.10 spec, page 48:
    687     *
    688     *     "The variable gl_Position is available only in the vertex
    689     *      language and is intended for writing the homogeneous vertex
    690     *      position. All executions of a well-formed vertex shader
    691     *      executable must write a value into this variable. [...] The
    692     *      variable gl_Position is available only in the vertex
    693     *      language and is intended for writing the homogeneous vertex
    694     *      position. All executions of a well-formed vertex shader
    695     *      executable must write a value into this variable."
    696     *
    697     * while in GLSL 1.40 this text is changed to:
    698     *
    699     *     "The variable gl_Position is available only in the vertex
    700     *      language and is intended for writing the homogeneous vertex
    701     *      position. It can be written at any time during shader
    702     *      execution. It may also be read back by a vertex shader
    703     *      after being written. This value will be used by primitive
    704     *      assembly, clipping, culling, and other fixed functionality
    705     *      operations, if present, that operate on primitives after
    706     *      vertex processing has occurred. Its value is undefined if
    707     *      the vertex shader executable does not write gl_Position."
    708     *
    709     * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
    710     * gl_Position is not an error.
    711     */
    712    if (prog->data->Version < (prog->IsES ? 300 : 140)) {
    713       find_variable gl_Position("gl_Position");
    714       find_assignments(shader->ir, &gl_Position);
    715       if (!gl_Position.found) {
    716         if (prog->IsES) {
    717           linker_warning(prog,
    718                          "vertex shader does not write to `gl_Position'. "
    719                          "Its value is undefined. \n");
    720         } else {
    721           linker_error(prog,
    722                        "vertex shader does not write to `gl_Position'. \n");
    723         }
    724          return;
    725       }
    726    }
    727 
    728    analyze_clip_cull_usage(prog, shader, ctx,
    729                            &shader->Program->info.clip_distance_array_size,
    730                            &shader->Program->info.cull_distance_array_size);
    731 }
    732 
    733 static void
    734 validate_tess_eval_shader_executable(struct gl_shader_program *prog,
    735                                      struct gl_linked_shader *shader,
    736                                      struct gl_context *ctx)
    737 {
    738    if (shader == NULL)
    739       return;
    740 
    741    analyze_clip_cull_usage(prog, shader, ctx,
    742                            &shader->Program->info.clip_distance_array_size,
    743                            &shader->Program->info.cull_distance_array_size);
    744 }
    745 
    746 
    747 /**
    748  * Verify that a fragment shader executable meets all semantic requirements
    749  *
    750  * \param shader  Fragment shader executable to be verified
    751  */
    752 static void
    753 validate_fragment_shader_executable(struct gl_shader_program *prog,
    754                                     struct gl_linked_shader *shader)
    755 {
    756    if (shader == NULL)
    757       return;
    758 
    759    find_variable gl_FragColor("gl_FragColor");
    760    find_variable gl_FragData("gl_FragData");
    761    find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
    762    find_assignments(shader->ir, variables);
    763 
    764    if (gl_FragColor.found && gl_FragData.found) {
    765       linker_error(prog,  "fragment shader writes to both "
    766                    "`gl_FragColor' and `gl_FragData'\n");
    767    }
    768 }
    769 
    770 /**
    771  * Verify that a geometry shader executable meets all semantic requirements
    772  *
    773  * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
    774  * info.cull_distance_array_size as a side effect.
    775  *
    776  * \param shader Geometry shader executable to be verified
    777  */
    778 static void
    779 validate_geometry_shader_executable(struct gl_shader_program *prog,
    780                                     struct gl_linked_shader *shader,
    781                                     struct gl_context *ctx)
    782 {
    783    if (shader == NULL)
    784       return;
    785 
    786    unsigned num_vertices =
    787       vertices_per_prim(shader->Program->info.gs.input_primitive);
    788    prog->Geom.VerticesIn = num_vertices;
    789 
    790    analyze_clip_cull_usage(prog, shader, ctx,
    791                            &shader->Program->info.clip_distance_array_size,
    792                            &shader->Program->info.cull_distance_array_size);
    793 }
    794 
    795 /**
    796  * Check if geometry shaders emit to non-zero streams and do corresponding
    797  * validations.
    798  */
    799 static void
    800 validate_geometry_shader_emissions(struct gl_context *ctx,
    801                                    struct gl_shader_program *prog)
    802 {
    803    struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
    804 
    805    if (sh != NULL) {
    806       find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
    807       emit_vertex.run(sh->ir);
    808       if (emit_vertex.error()) {
    809          linker_error(prog, "Invalid call %s(%d). Accepted values for the "
    810                       "stream parameter are in the range [0, %d].\n",
    811                       emit_vertex.error_func(),
    812                       emit_vertex.error_stream(),
    813                       ctx->Const.MaxVertexStreams - 1);
    814       }
    815       prog->Geom.UsesStreams = emit_vertex.uses_streams();
    816       prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
    817 
    818       /* From the ARB_gpu_shader5 spec:
    819        *
    820        *   "Multiple vertex streams are supported only if the output primitive
    821        *    type is declared to be "points".  A program will fail to link if it
    822        *    contains a geometry shader calling EmitStreamVertex() or
    823        *    EndStreamPrimitive() if its output primitive type is not "points".
    824        *
    825        * However, in the same spec:
    826        *
    827        *   "The function EmitVertex() is equivalent to calling EmitStreamVertex()
    828        *    with <stream> set to zero."
    829        *
    830        * And:
    831        *
    832        *   "The function EndPrimitive() is equivalent to calling
    833        *    EndStreamPrimitive() with <stream> set to zero."
    834        *
    835        * Since we can call EmitVertex() and EndPrimitive() when we output
    836        * primitives other than points, calling EmitStreamVertex(0) or
    837        * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
    838        * does. Currently we only set prog->Geom.UsesStreams to TRUE when
    839        * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
    840        * stream.
    841        */
    842       if (prog->Geom.UsesStreams &&
    843           sh->Program->info.gs.output_primitive != GL_POINTS) {
    844          linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
    845                       "with n>0 requires point output\n");
    846       }
    847    }
    848 }
    849 
    850 bool
    851 validate_intrastage_arrays(struct gl_shader_program *prog,
    852                            ir_variable *const var,
    853                            ir_variable *const existing)
    854 {
    855    /* Consider the types to be "the same" if both types are arrays
    856     * of the same type and one of the arrays is implicitly sized.
    857     * In addition, set the type of the linked variable to the
    858     * explicitly sized array.
    859     */
    860    if (var->type->is_array() && existing->type->is_array()) {
    861       if ((var->type->fields.array == existing->type->fields.array) &&
    862           ((var->type->length == 0)|| (existing->type->length == 0))) {
    863          if (var->type->length != 0) {
    864             if ((int)var->type->length <= existing->data.max_array_access) {
    865                linker_error(prog, "%s `%s' declared as type "
    866                            "`%s' but outermost dimension has an index"
    867                            " of `%i'\n",
    868                            mode_string(var),
    869                            var->name, var->type->name,
    870                            existing->data.max_array_access);
    871             }
    872             existing->type = var->type;
    873             return true;
    874          } else if (existing->type->length != 0) {
    875             if((int)existing->type->length <= var->data.max_array_access &&
    876                !existing->data.from_ssbo_unsized_array) {
    877                linker_error(prog, "%s `%s' declared as type "
    878                            "`%s' but outermost dimension has an index"
    879                            " of `%i'\n",
    880                            mode_string(var),
    881                            var->name, existing->type->name,
    882                            var->data.max_array_access);
    883             }
    884             return true;
    885          }
    886       }
    887    }
    888    return false;
    889 }
    890 
    891 
    892 /**
    893  * Perform validation of global variables used across multiple shaders
    894  */
    895 static void
    896 cross_validate_globals(struct gl_shader_program *prog,
    897                        struct exec_list *ir, glsl_symbol_table *variables,
    898                        bool uniforms_only)
    899 {
    900    foreach_in_list(ir_instruction, node, ir) {
    901       ir_variable *const var = node->as_variable();
    902 
    903       if (var == NULL)
    904          continue;
    905 
    906       if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
    907          continue;
    908 
    909       /* don't cross validate subroutine uniforms */
    910       if (var->type->contains_subroutine())
    911          continue;
    912 
    913       /* Don't cross validate interface instances. These are only relevant
    914        * inside a shader. The cross validation is done at the Interface Block
    915        * name level.
    916        */
    917       if (var->is_interface_instance())
    918          continue;
    919 
    920       /* Don't cross validate temporaries that are at global scope.  These
    921        * will eventually get pulled into the shaders 'main'.
    922        */
    923       if (var->data.mode == ir_var_temporary)
    924          continue;
    925 
    926       /* If a global with this name has already been seen, verify that the
    927        * new instance has the same type.  In addition, if the globals have
    928        * initializers, the values of the initializers must be the same.
    929        */
    930       ir_variable *const existing = variables->get_variable(var->name);
    931       if (existing != NULL) {
    932          /* Check if types match. */
    933          if (var->type != existing->type) {
    934             if (!validate_intrastage_arrays(prog, var, existing)) {
    935                /* If it is an unsized array in a Shader Storage Block,
    936                 * two different shaders can access to different elements.
    937                 * Because of that, they might be converted to different
    938                 * sized arrays, then check that they are compatible but
    939                 * ignore the array size.
    940                 */
    941                if (!(var->data.mode == ir_var_shader_storage &&
    942                      var->data.from_ssbo_unsized_array &&
    943                      existing->data.mode == ir_var_shader_storage &&
    944                      existing->data.from_ssbo_unsized_array &&
    945                      var->type->gl_type == existing->type->gl_type)) {
    946                   linker_error(prog, "%s `%s' declared as type "
    947                                  "`%s' and type `%s'\n",
    948                                  mode_string(var),
    949                                  var->name, var->type->name,
    950                                  existing->type->name);
    951                   return;
    952                }
    953             }
    954          }
    955 
    956          if (var->data.explicit_location) {
    957             if (existing->data.explicit_location
    958                 && (var->data.location != existing->data.location)) {
    959                linker_error(prog, "explicit locations for %s "
    960                             "`%s' have differing values\n",
    961                             mode_string(var), var->name);
    962                return;
    963             }
    964 
    965             if (var->data.location_frac != existing->data.location_frac) {
    966                linker_error(prog, "explicit components for %s `%s' have "
    967                             "differing values\n", mode_string(var), var->name);
    968                return;
    969             }
    970 
    971             existing->data.location = var->data.location;
    972             existing->data.explicit_location = true;
    973          } else {
    974             /* Check if uniform with implicit location was marked explicit
    975              * by earlier shader stage. If so, mark it explicit in this stage
    976              * too to make sure later processing does not treat it as
    977              * implicit one.
    978              */
    979             if (existing->data.explicit_location) {
    980                var->data.location = existing->data.location;
    981                var->data.explicit_location = true;
    982             }
    983          }
    984 
    985          /* From the GLSL 4.20 specification:
    986           * "A link error will result if two compilation units in a program
    987           *  specify different integer-constant bindings for the same
    988           *  opaque-uniform name.  However, it is not an error to specify a
    989           *  binding on some but not all declarations for the same name"
    990           */
    991          if (var->data.explicit_binding) {
    992             if (existing->data.explicit_binding &&
    993                 var->data.binding != existing->data.binding) {
    994                linker_error(prog, "explicit bindings for %s "
    995                             "`%s' have differing values\n",
    996                             mode_string(var), var->name);
    997                return;
    998             }
    999 
   1000             existing->data.binding = var->data.binding;
   1001             existing->data.explicit_binding = true;
   1002          }
   1003 
   1004          if (var->type->contains_atomic() &&
   1005              var->data.offset != existing->data.offset) {
   1006             linker_error(prog, "offset specifications for %s "
   1007                          "`%s' have differing values\n",
   1008                          mode_string(var), var->name);
   1009             return;
   1010          }
   1011 
   1012          /* Validate layout qualifiers for gl_FragDepth.
   1013           *
   1014           * From the AMD/ARB_conservative_depth specs:
   1015           *
   1016           *    "If gl_FragDepth is redeclared in any fragment shader in a
   1017           *    program, it must be redeclared in all fragment shaders in
   1018           *    that program that have static assignments to
   1019           *    gl_FragDepth. All redeclarations of gl_FragDepth in all
   1020           *    fragment shaders in a single program must have the same set
   1021           *    of qualifiers."
   1022           */
   1023          if (strcmp(var->name, "gl_FragDepth") == 0) {
   1024             bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
   1025             bool layout_differs =
   1026                var->data.depth_layout != existing->data.depth_layout;
   1027 
   1028             if (layout_declared && layout_differs) {
   1029                linker_error(prog,
   1030                             "All redeclarations of gl_FragDepth in all "
   1031                             "fragment shaders in a single program must have "
   1032                             "the same set of qualifiers.\n");
   1033             }
   1034 
   1035             if (var->data.used && layout_differs) {
   1036                linker_error(prog,
   1037                             "If gl_FragDepth is redeclared with a layout "
   1038                             "qualifier in any fragment shader, it must be "
   1039                             "redeclared with the same layout qualifier in "
   1040                             "all fragment shaders that have assignments to "
   1041                             "gl_FragDepth\n");
   1042             }
   1043          }
   1044 
   1045          /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
   1046           *
   1047           *     "If a shared global has multiple initializers, the
   1048           *     initializers must all be constant expressions, and they
   1049           *     must all have the same value. Otherwise, a link error will
   1050           *     result. (A shared global having only one initializer does
   1051           *     not require that initializer to be a constant expression.)"
   1052           *
   1053           * Previous to 4.20 the GLSL spec simply said that initializers
   1054           * must have the same value.  In this case of non-constant
   1055           * initializers, this was impossible to determine.  As a result,
   1056           * no vendor actually implemented that behavior.  The 4.20
   1057           * behavior matches the implemented behavior of at least one other
   1058           * vendor, so we'll implement that for all GLSL versions.
   1059           */
   1060          if (var->constant_initializer != NULL) {
   1061             if (existing->constant_initializer != NULL) {
   1062                if (!var->constant_initializer->has_value(existing->constant_initializer)) {
   1063                   linker_error(prog, "initializers for %s "
   1064                                "`%s' have differing values\n",
   1065                                mode_string(var), var->name);
   1066                   return;
   1067                }
   1068             } else {
   1069                /* If the first-seen instance of a particular uniform did
   1070                 * not have an initializer but a later instance does,
   1071                 * replace the former with the later.
   1072                 */
   1073                variables->replace_variable(existing->name, var);
   1074             }
   1075          }
   1076 
   1077          if (var->data.has_initializer) {
   1078             if (existing->data.has_initializer
   1079                 && (var->constant_initializer == NULL
   1080                     || existing->constant_initializer == NULL)) {
   1081                linker_error(prog,
   1082                             "shared global variable `%s' has multiple "
   1083                             "non-constant initializers.\n",
   1084                             var->name);
   1085                return;
   1086             }
   1087          }
   1088 
   1089          if (existing->data.invariant != var->data.invariant) {
   1090             linker_error(prog, "declarations for %s `%s' have "
   1091                          "mismatching invariant qualifiers\n",
   1092                          mode_string(var), var->name);
   1093             return;
   1094          }
   1095          if (existing->data.centroid != var->data.centroid) {
   1096             linker_error(prog, "declarations for %s `%s' have "
   1097                          "mismatching centroid qualifiers\n",
   1098                          mode_string(var), var->name);
   1099             return;
   1100          }
   1101          if (existing->data.sample != var->data.sample) {
   1102             linker_error(prog, "declarations for %s `%s` have "
   1103                          "mismatching sample qualifiers\n",
   1104                          mode_string(var), var->name);
   1105             return;
   1106          }
   1107          if (existing->data.image_format != var->data.image_format) {
   1108             linker_error(prog, "declarations for %s `%s` have "
   1109                          "mismatching image format qualifiers\n",
   1110                          mode_string(var), var->name);
   1111             return;
   1112          }
   1113 
   1114          /* Check the precision qualifier matches for uniform variables on
   1115           * GLSL ES.
   1116           */
   1117          if (prog->IsES && !var->get_interface_type() &&
   1118              existing->data.precision != var->data.precision) {
   1119             if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
   1120                linker_error(prog, "declarations for %s `%s` have "
   1121                             "mismatching precision qualifiers\n",
   1122                             mode_string(var), var->name);
   1123                return;
   1124             } else {
   1125                linker_warning(prog, "declarations for %s `%s` have "
   1126                               "mismatching precision qualifiers\n",
   1127                               mode_string(var), var->name);
   1128             }
   1129          }
   1130 
   1131          /* In OpenGL GLSL 3.20 spec, section 4.3.9:
   1132           *
   1133           *   "It is a link-time error if any particular shader interface
   1134           *    contains:
   1135           *
   1136           *    - two different blocks, each having no instance name, and each
   1137           *      having a member of the same name, or
   1138           *
   1139           *    - a variable outside a block, and a block with no instance name,
   1140           *      where the variable has the same name as a member in the block."
   1141           */
   1142          const glsl_type *var_itype = var->get_interface_type();
   1143          const glsl_type *existing_itype = existing->get_interface_type();
   1144          if (var_itype != existing_itype) {
   1145             if (!var_itype || !existing_itype) {
   1146                linker_error(prog, "declarations for %s `%s` are inside block "
   1147                             "`%s` and outside a block",
   1148                             mode_string(var), var->name,
   1149                             var_itype ? var_itype->name : existing_itype->name);
   1150                return;
   1151             } else if (strcmp(var_itype->name, existing_itype->name) != 0) {
   1152                linker_error(prog, "declarations for %s `%s` are inside blocks "
   1153                             "`%s` and `%s`",
   1154                             mode_string(var), var->name,
   1155                             existing_itype->name,
   1156                             var_itype->name);
   1157                return;
   1158             }
   1159          }
   1160       } else
   1161          variables->add_variable(var);
   1162    }
   1163 }
   1164 
   1165 
   1166 /**
   1167  * Perform validation of uniforms used across multiple shader stages
   1168  */
   1169 static void
   1170 cross_validate_uniforms(struct gl_shader_program *prog)
   1171 {
   1172    glsl_symbol_table variables;
   1173    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   1174       if (prog->_LinkedShaders[i] == NULL)
   1175          continue;
   1176 
   1177       cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables,
   1178                              true);
   1179    }
   1180 }
   1181 
   1182 /**
   1183  * Accumulates the array of buffer blocks and checks that all definitions of
   1184  * blocks agree on their contents.
   1185  */
   1186 static bool
   1187 interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
   1188                                          bool validate_ssbo)
   1189 {
   1190    int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
   1191    struct gl_uniform_block *blks = NULL;
   1192    unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
   1193       &prog->data->NumUniformBlocks;
   1194 
   1195    unsigned max_num_buffer_blocks = 0;
   1196    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   1197       if (prog->_LinkedShaders[i]) {
   1198          if (validate_ssbo) {
   1199             max_num_buffer_blocks +=
   1200                prog->_LinkedShaders[i]->Program->info.num_ssbos;
   1201          } else {
   1202             max_num_buffer_blocks +=
   1203                prog->_LinkedShaders[i]->Program->info.num_ubos;
   1204          }
   1205       }
   1206    }
   1207 
   1208    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   1209       struct gl_linked_shader *sh = prog->_LinkedShaders[i];
   1210 
   1211       InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
   1212       for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
   1213          InterfaceBlockStageIndex[i][j] = -1;
   1214 
   1215       if (sh == NULL)
   1216          continue;
   1217 
   1218       unsigned sh_num_blocks;
   1219       struct gl_uniform_block **sh_blks;
   1220       if (validate_ssbo) {
   1221          sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
   1222          sh_blks = sh->Program->sh.ShaderStorageBlocks;
   1223       } else {
   1224          sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
   1225          sh_blks = sh->Program->sh.UniformBlocks;
   1226       }
   1227 
   1228       for (unsigned int j = 0; j < sh_num_blocks; j++) {
   1229          int index = link_cross_validate_uniform_block(prog->data, &blks,
   1230                                                        num_blks, sh_blks[j]);
   1231 
   1232          if (index == -1) {
   1233             linker_error(prog, "buffer block `%s' has mismatching "
   1234                          "definitions\n", sh_blks[j]->Name);
   1235 
   1236             for (unsigned k = 0; k <= i; k++) {
   1237                delete[] InterfaceBlockStageIndex[k];
   1238             }
   1239 
   1240             /* Reset the block count. This will help avoid various segfaults
   1241              * from api calls that assume the array exists due to the count
   1242              * being non-zero.
   1243              */
   1244             *num_blks = 0;
   1245             return false;
   1246          }
   1247 
   1248          InterfaceBlockStageIndex[i][index] = j;
   1249       }
   1250    }
   1251 
   1252    /* Update per stage block pointers to point to the program list.
   1253     * FIXME: We should be able to free the per stage blocks here.
   1254     */
   1255    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   1256       for (unsigned j = 0; j < *num_blks; j++) {
   1257          int stage_index = InterfaceBlockStageIndex[i][j];
   1258 
   1259          if (stage_index != -1) {
   1260             struct gl_linked_shader *sh = prog->_LinkedShaders[i];
   1261 
   1262             struct gl_uniform_block **sh_blks = validate_ssbo ?
   1263                sh->Program->sh.ShaderStorageBlocks :
   1264                sh->Program->sh.UniformBlocks;
   1265 
   1266             blks[j].stageref |= sh_blks[stage_index]->stageref;
   1267             sh_blks[stage_index] = &blks[j];
   1268          }
   1269       }
   1270    }
   1271 
   1272    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   1273       delete[] InterfaceBlockStageIndex[i];
   1274    }
   1275 
   1276    if (validate_ssbo)
   1277       prog->data->ShaderStorageBlocks = blks;
   1278    else
   1279       prog->data->UniformBlocks = blks;
   1280 
   1281    return true;
   1282 }
   1283 
   1284 
   1285 /**
   1286  * Populates a shaders symbol table with all global declarations
   1287  */
   1288 static void
   1289 populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
   1290 {
   1291    sh->symbols = new(sh) glsl_symbol_table;
   1292 
   1293    _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
   1294 }
   1295 
   1296 
   1297 /**
   1298  * Remap variables referenced in an instruction tree
   1299  *
   1300  * This is used when instruction trees are cloned from one shader and placed in
   1301  * another.  These trees will contain references to \c ir_variable nodes that
   1302  * do not exist in the target shader.  This function finds these \c ir_variable
   1303  * references and replaces the references with matching variables in the target
   1304  * shader.
   1305  *
   1306  * If there is no matching variable in the target shader, a clone of the
   1307  * \c ir_variable is made and added to the target shader.  The new variable is
   1308  * added to \b both the instruction stream and the symbol table.
   1309  *
   1310  * \param inst         IR tree that is to be processed.
   1311  * \param symbols      Symbol table containing global scope symbols in the
   1312  *                     linked shader.
   1313  * \param instructions Instruction stream where new variable declarations
   1314  *                     should be added.
   1315  */
   1316 static void
   1317 remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
   1318                 hash_table *temps)
   1319 {
   1320    class remap_visitor : public ir_hierarchical_visitor {
   1321    public:
   1322          remap_visitor(struct gl_linked_shader *target, hash_table *temps)
   1323       {
   1324          this->target = target;
   1325          this->symbols = target->symbols;
   1326          this->instructions = target->ir;
   1327          this->temps = temps;
   1328       }
   1329 
   1330       virtual ir_visitor_status visit(ir_dereference_variable *ir)
   1331       {
   1332          if (ir->var->data.mode == ir_var_temporary) {
   1333             hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
   1334             ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
   1335 
   1336             assert(var != NULL);
   1337             ir->var = var;
   1338             return visit_continue;
   1339          }
   1340 
   1341          ir_variable *const existing =
   1342             this->symbols->get_variable(ir->var->name);
   1343          if (existing != NULL)
   1344             ir->var = existing;
   1345          else {
   1346             ir_variable *copy = ir->var->clone(this->target, NULL);
   1347 
   1348             this->symbols->add_variable(copy);
   1349             this->instructions->push_head(copy);
   1350             ir->var = copy;
   1351          }
   1352 
   1353          return visit_continue;
   1354       }
   1355 
   1356    private:
   1357       struct gl_linked_shader *target;
   1358       glsl_symbol_table *symbols;
   1359       exec_list *instructions;
   1360       hash_table *temps;
   1361    };
   1362 
   1363    remap_visitor v(target, temps);
   1364 
   1365    inst->accept(&v);
   1366 }
   1367 
   1368 
   1369 /**
   1370  * Move non-declarations from one instruction stream to another
   1371  *
   1372  * The intended usage pattern of this function is to pass the pointer to the
   1373  * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
   1374  * pointer) for \c last and \c false for \c make_copies on the first
   1375  * call.  Successive calls pass the return value of the previous call for
   1376  * \c last and \c true for \c make_copies.
   1377  *
   1378  * \param instructions Source instruction stream
   1379  * \param last         Instruction after which new instructions should be
   1380  *                     inserted in the target instruction stream
   1381  * \param make_copies  Flag selecting whether instructions in \c instructions
   1382  *                     should be copied (via \c ir_instruction::clone) into the
   1383  *                     target list or moved.
   1384  *
   1385  * \return
   1386  * The new "last" instruction in the target instruction stream.  This pointer
   1387  * is suitable for use as the \c last parameter of a later call to this
   1388  * function.
   1389  */
   1390 static exec_node *
   1391 move_non_declarations(exec_list *instructions, exec_node *last,
   1392                       bool make_copies, gl_linked_shader *target)
   1393 {
   1394    hash_table *temps = NULL;
   1395 
   1396    if (make_copies)
   1397       temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
   1398                                       _mesa_key_pointer_equal);
   1399 
   1400    foreach_in_list_safe(ir_instruction, inst, instructions) {
   1401       if (inst->as_function())
   1402          continue;
   1403 
   1404       ir_variable *var = inst->as_variable();
   1405       if ((var != NULL) && (var->data.mode != ir_var_temporary))
   1406          continue;
   1407 
   1408       assert(inst->as_assignment()
   1409              || inst->as_call()
   1410              || inst->as_if() /* for initializers with the ?: operator */
   1411              || ((var != NULL) && (var->data.mode == ir_var_temporary)));
   1412 
   1413       if (make_copies) {
   1414          inst = inst->clone(target, NULL);
   1415 
   1416          if (var != NULL)
   1417             _mesa_hash_table_insert(temps, var, inst);
   1418          else
   1419             remap_variables(inst, target, temps);
   1420       } else {
   1421          inst->remove();
   1422       }
   1423 
   1424       last->insert_after(inst);
   1425       last = inst;
   1426    }
   1427 
   1428    if (make_copies)
   1429       _mesa_hash_table_destroy(temps, NULL);
   1430 
   1431    return last;
   1432 }
   1433 
   1434 
   1435 /**
   1436  * This class is only used in link_intrastage_shaders() below but declaring
   1437  * it inside that function leads to compiler warnings with some versions of
   1438  * gcc.
   1439  */
   1440 class array_sizing_visitor : public deref_type_updater {
   1441 public:
   1442    array_sizing_visitor()
   1443       : mem_ctx(ralloc_context(NULL)),
   1444         unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
   1445                                                    _mesa_key_pointer_equal))
   1446    {
   1447    }
   1448 
   1449    ~array_sizing_visitor()
   1450    {
   1451       _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
   1452       ralloc_free(this->mem_ctx);
   1453    }
   1454 
   1455    virtual ir_visitor_status visit(ir_variable *var)
   1456    {
   1457       const glsl_type *type_without_array;
   1458       bool implicit_sized_array = var->data.implicit_sized_array;
   1459       fixup_type(&var->type, var->data.max_array_access,
   1460                  var->data.from_ssbo_unsized_array,
   1461                  &implicit_sized_array);
   1462       var->data.implicit_sized_array = implicit_sized_array;
   1463       type_without_array = var->type->without_array();
   1464       if (var->type->is_interface()) {
   1465          if (interface_contains_unsized_arrays(var->type)) {
   1466             const glsl_type *new_type =
   1467                resize_interface_members(var->type,
   1468                                         var->get_max_ifc_array_access(),
   1469                                         var->is_in_shader_storage_block());
   1470             var->type = new_type;
   1471             var->change_interface_type(new_type);
   1472          }
   1473       } else if (type_without_array->is_interface()) {
   1474          if (interface_contains_unsized_arrays(type_without_array)) {
   1475             const glsl_type *new_type =
   1476                resize_interface_members(type_without_array,
   1477                                         var->get_max_ifc_array_access(),
   1478                                         var->is_in_shader_storage_block());
   1479             var->change_interface_type(new_type);
   1480             var->type = update_interface_members_array(var->type, new_type);
   1481          }
   1482       } else if (const glsl_type *ifc_type = var->get_interface_type()) {
   1483          /* Store a pointer to the variable in the unnamed_interfaces
   1484           * hashtable.
   1485           */
   1486          hash_entry *entry =
   1487                _mesa_hash_table_search(this->unnamed_interfaces,
   1488                                        ifc_type);
   1489 
   1490          ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
   1491 
   1492          if (interface_vars == NULL) {
   1493             interface_vars = rzalloc_array(mem_ctx, ir_variable *,
   1494                                            ifc_type->length);
   1495             _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
   1496                                     interface_vars);
   1497          }
   1498          unsigned index = ifc_type->field_index(var->name);
   1499          assert(index < ifc_type->length);
   1500          assert(interface_vars[index] == NULL);
   1501          interface_vars[index] = var;
   1502       }
   1503       return visit_continue;
   1504    }
   1505 
   1506    /**
   1507     * For each unnamed interface block that was discovered while running the
   1508     * visitor, adjust the interface type to reflect the newly assigned array
   1509     * sizes, and fix up the ir_variable nodes to point to the new interface
   1510     * type.
   1511     */
   1512    void fixup_unnamed_interface_types()
   1513    {
   1514       hash_table_call_foreach(this->unnamed_interfaces,
   1515                               fixup_unnamed_interface_type, NULL);
   1516    }
   1517 
   1518 private:
   1519    /**
   1520     * If the type pointed to by \c type represents an unsized array, replace
   1521     * it with a sized array whose size is determined by max_array_access.
   1522     */
   1523    static void fixup_type(const glsl_type **type, unsigned max_array_access,
   1524                           bool from_ssbo_unsized_array, bool *implicit_sized)
   1525    {
   1526       if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
   1527          *type = glsl_type::get_array_instance((*type)->fields.array,
   1528                                                max_array_access + 1);
   1529          *implicit_sized = true;
   1530          assert(*type != NULL);
   1531       }
   1532    }
   1533 
   1534    static const glsl_type *
   1535    update_interface_members_array(const glsl_type *type,
   1536                                   const glsl_type *new_interface_type)
   1537    {
   1538       const glsl_type *element_type = type->fields.array;
   1539       if (element_type->is_array()) {
   1540          const glsl_type *new_array_type =
   1541             update_interface_members_array(element_type, new_interface_type);
   1542          return glsl_type::get_array_instance(new_array_type, type->length);
   1543       } else {
   1544          return glsl_type::get_array_instance(new_interface_type,
   1545                                               type->length);
   1546       }
   1547    }
   1548 
   1549    /**
   1550     * Determine whether the given interface type contains unsized arrays (if
   1551     * it doesn't, array_sizing_visitor doesn't need to process it).
   1552     */
   1553    static bool interface_contains_unsized_arrays(const glsl_type *type)
   1554    {
   1555       for (unsigned i = 0; i < type->length; i++) {
   1556          const glsl_type *elem_type = type->fields.structure[i].type;
   1557          if (elem_type->is_unsized_array())
   1558             return true;
   1559       }
   1560       return false;
   1561    }
   1562 
   1563    /**
   1564     * Create a new interface type based on the given type, with unsized arrays
   1565     * replaced by sized arrays whose size is determined by
   1566     * max_ifc_array_access.
   1567     */
   1568    static const glsl_type *
   1569    resize_interface_members(const glsl_type *type,
   1570                             const int *max_ifc_array_access,
   1571                             bool is_ssbo)
   1572    {
   1573       unsigned num_fields = type->length;
   1574       glsl_struct_field *fields = new glsl_struct_field[num_fields];
   1575       memcpy(fields, type->fields.structure,
   1576              num_fields * sizeof(*fields));
   1577       for (unsigned i = 0; i < num_fields; i++) {
   1578          bool implicit_sized_array = fields[i].implicit_sized_array;
   1579          /* If SSBO last member is unsized array, we don't replace it by a sized
   1580           * array.
   1581           */
   1582          if (is_ssbo && i == (num_fields - 1))
   1583             fixup_type(&fields[i].type, max_ifc_array_access[i],
   1584                        true, &implicit_sized_array);
   1585          else
   1586             fixup_type(&fields[i].type, max_ifc_array_access[i],
   1587                        false, &implicit_sized_array);
   1588          fields[i].implicit_sized_array = implicit_sized_array;
   1589       }
   1590       glsl_interface_packing packing =
   1591          (glsl_interface_packing) type->interface_packing;
   1592       bool row_major = (bool) type->interface_row_major;
   1593       const glsl_type *new_ifc_type =
   1594          glsl_type::get_interface_instance(fields, num_fields,
   1595                                            packing, row_major, type->name);
   1596       delete [] fields;
   1597       return new_ifc_type;
   1598    }
   1599 
   1600    static void fixup_unnamed_interface_type(const void *key, void *data,
   1601                                             void *)
   1602    {
   1603       const glsl_type *ifc_type = (const glsl_type *) key;
   1604       ir_variable **interface_vars = (ir_variable **) data;
   1605       unsigned num_fields = ifc_type->length;
   1606       glsl_struct_field *fields = new glsl_struct_field[num_fields];
   1607       memcpy(fields, ifc_type->fields.structure,
   1608              num_fields * sizeof(*fields));
   1609       bool interface_type_changed = false;
   1610       for (unsigned i = 0; i < num_fields; i++) {
   1611          if (interface_vars[i] != NULL &&
   1612              fields[i].type != interface_vars[i]->type) {
   1613             fields[i].type = interface_vars[i]->type;
   1614             interface_type_changed = true;
   1615          }
   1616       }
   1617       if (!interface_type_changed) {
   1618          delete [] fields;
   1619          return;
   1620       }
   1621       glsl_interface_packing packing =
   1622          (glsl_interface_packing) ifc_type->interface_packing;
   1623       bool row_major = (bool) ifc_type->interface_row_major;
   1624       const glsl_type *new_ifc_type =
   1625          glsl_type::get_interface_instance(fields, num_fields, packing,
   1626                                            row_major, ifc_type->name);
   1627       delete [] fields;
   1628       for (unsigned i = 0; i < num_fields; i++) {
   1629          if (interface_vars[i] != NULL)
   1630             interface_vars[i]->change_interface_type(new_ifc_type);
   1631       }
   1632    }
   1633 
   1634    /**
   1635     * Memory context used to allocate the data in \c unnamed_interfaces.
   1636     */
   1637    void *mem_ctx;
   1638 
   1639    /**
   1640     * Hash table from const glsl_type * to an array of ir_variable *'s
   1641     * pointing to the ir_variables constituting each unnamed interface block.
   1642     */
   1643    hash_table *unnamed_interfaces;
   1644 };
   1645 
   1646 static bool
   1647 validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
   1648                            struct gl_shader_program *prog)
   1649 {
   1650    /* We will validate doubles at a later stage */
   1651    if (prog->TransformFeedback.BufferStride[idx] % 4) {
   1652       linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
   1653                    "multiple of 4 or if its applied to a type that is "
   1654                    "or contains a double a multiple of 8.",
   1655                    prog->TransformFeedback.BufferStride[idx]);
   1656       return false;
   1657    }
   1658 
   1659    if (prog->TransformFeedback.BufferStride[idx] / 4 >
   1660        ctx->Const.MaxTransformFeedbackInterleavedComponents) {
   1661       linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
   1662                    "limit has been exceeded.");
   1663       return false;
   1664    }
   1665 
   1666    return true;
   1667 }
   1668 
   1669 /**
   1670  * Check for conflicting xfb_stride default qualifiers and store buffer stride
   1671  * for later use.
   1672  */
   1673 static void
   1674 link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
   1675                                   struct gl_shader_program *prog,
   1676                                   struct gl_shader **shader_list,
   1677                                   unsigned num_shaders)
   1678 {
   1679    for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
   1680       prog->TransformFeedback.BufferStride[i] = 0;
   1681    }
   1682 
   1683    for (unsigned i = 0; i < num_shaders; i++) {
   1684       struct gl_shader *shader = shader_list[i];
   1685 
   1686       for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
   1687          if (shader->TransformFeedbackBufferStride[j]) {
   1688             if (prog->TransformFeedback.BufferStride[j] == 0) {
   1689                prog->TransformFeedback.BufferStride[j] =
   1690                   shader->TransformFeedbackBufferStride[j];
   1691                if (!validate_xfb_buffer_stride(ctx, j, prog))
   1692                   return;
   1693             } else if (prog->TransformFeedback.BufferStride[j] !=
   1694                        shader->TransformFeedbackBufferStride[j]){
   1695                linker_error(prog,
   1696                             "intrastage shaders defined with conflicting "
   1697                             "xfb_stride for buffer %d (%d and %d)\n", j,
   1698                             prog->TransformFeedback.BufferStride[j],
   1699                             shader->TransformFeedbackBufferStride[j]);
   1700                return;
   1701             }
   1702          }
   1703       }
   1704    }
   1705 }
   1706 
   1707 /**
   1708  * Check for conflicting bindless/bound sampler/image layout qualifiers at
   1709  * global scope.
   1710  */
   1711 static void
   1712 link_bindless_layout_qualifiers(struct gl_shader_program *prog,
   1713                                 struct gl_shader **shader_list,
   1714                                 unsigned num_shaders)
   1715 {
   1716    bool bindless_sampler, bindless_image;
   1717    bool bound_sampler, bound_image;
   1718 
   1719    bindless_sampler = bindless_image = false;
   1720    bound_sampler = bound_image = false;
   1721 
   1722    for (unsigned i = 0; i < num_shaders; i++) {
   1723       struct gl_shader *shader = shader_list[i];
   1724 
   1725       if (shader->bindless_sampler)
   1726          bindless_sampler = true;
   1727       if (shader->bindless_image)
   1728          bindless_image = true;
   1729       if (shader->bound_sampler)
   1730          bound_sampler = true;
   1731       if (shader->bound_image)
   1732          bound_image = true;
   1733 
   1734       if ((bindless_sampler && bound_sampler) ||
   1735           (bindless_image && bound_image)) {
   1736          /* From section 4.4.6 of the ARB_bindless_texture spec:
   1737           *
   1738           *     "If both bindless_sampler and bound_sampler, or bindless_image
   1739           *      and bound_image, are declared at global scope in any
   1740           *      compilation unit, a link- time error will be generated."
   1741           */
   1742          linker_error(prog, "both bindless_sampler and bound_sampler, or "
   1743                       "bindless_image and bound_image, can't be declared at "
   1744                       "global scope");
   1745       }
   1746    }
   1747 }
   1748 
   1749 /**
   1750  * Performs the cross-validation of tessellation control shader vertices and
   1751  * layout qualifiers for the attached tessellation control shaders,
   1752  * and propagates them to the linked TCS and linked shader program.
   1753  */
   1754 static void
   1755 link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
   1756                                struct gl_program *gl_prog,
   1757                                struct gl_shader **shader_list,
   1758                                unsigned num_shaders)
   1759 {
   1760    if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
   1761       return;
   1762 
   1763    gl_prog->info.tess.tcs_vertices_out = 0;
   1764 
   1765    /* From the GLSL 4.0 spec (chapter 4.3.8.2):
   1766     *
   1767     *     "All tessellation control shader layout declarations in a program
   1768     *      must specify the same output patch vertex count.  There must be at
   1769     *      least one layout qualifier specifying an output patch vertex count
   1770     *      in any program containing tessellation control shaders; however,
   1771     *      such a declaration is not required in all tessellation control
   1772     *      shaders."
   1773     */
   1774 
   1775    for (unsigned i = 0; i < num_shaders; i++) {
   1776       struct gl_shader *shader = shader_list[i];
   1777 
   1778       if (shader->info.TessCtrl.VerticesOut != 0) {
   1779          if (gl_prog->info.tess.tcs_vertices_out != 0 &&
   1780              gl_prog->info.tess.tcs_vertices_out !=
   1781              (unsigned) shader->info.TessCtrl.VerticesOut) {
   1782             linker_error(prog, "tessellation control shader defined with "
   1783                          "conflicting output vertex count (%d and %d)\n",
   1784                          gl_prog->info.tess.tcs_vertices_out,
   1785                          shader->info.TessCtrl.VerticesOut);
   1786             return;
   1787          }
   1788          gl_prog->info.tess.tcs_vertices_out =
   1789             shader->info.TessCtrl.VerticesOut;
   1790       }
   1791    }
   1792 
   1793    /* Just do the intrastage -> interstage propagation right now,
   1794     * since we already know we're in the right type of shader program
   1795     * for doing it.
   1796     */
   1797    if (gl_prog->info.tess.tcs_vertices_out == 0) {
   1798       linker_error(prog, "tessellation control shader didn't declare "
   1799                    "vertices out layout qualifier\n");
   1800       return;
   1801    }
   1802 }
   1803 
   1804 
   1805 /**
   1806  * Performs the cross-validation of tessellation evaluation shader
   1807  * primitive type, vertex spacing, ordering and point_mode layout qualifiers
   1808  * for the attached tessellation evaluation shaders, and propagates them
   1809  * to the linked TES and linked shader program.
   1810  */
   1811 static void
   1812 link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
   1813                               struct gl_program *gl_prog,
   1814                               struct gl_shader **shader_list,
   1815                               unsigned num_shaders)
   1816 {
   1817    if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
   1818       return;
   1819 
   1820    int point_mode = -1;
   1821    unsigned vertex_order = 0;
   1822 
   1823    gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
   1824    gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
   1825 
   1826    /* From the GLSL 4.0 spec (chapter 4.3.8.1):
   1827     *
   1828     *     "At least one tessellation evaluation shader (compilation unit) in
   1829     *      a program must declare a primitive mode in its input layout.
   1830     *      Declaration vertex spacing, ordering, and point mode identifiers is
   1831     *      optional.  It is not required that all tessellation evaluation
   1832     *      shaders in a program declare a primitive mode.  If spacing or
   1833     *      vertex ordering declarations are omitted, the tessellation
   1834     *      primitive generator will use equal spacing or counter-clockwise
   1835     *      vertex ordering, respectively.  If a point mode declaration is
   1836     *      omitted, the tessellation primitive generator will produce lines or
   1837     *      triangles according to the primitive mode."
   1838     */
   1839 
   1840    for (unsigned i = 0; i < num_shaders; i++) {
   1841       struct gl_shader *shader = shader_list[i];
   1842 
   1843       if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
   1844          if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
   1845              gl_prog->info.tess.primitive_mode !=
   1846              shader->info.TessEval.PrimitiveMode) {
   1847             linker_error(prog, "tessellation evaluation shader defined with "
   1848                          "conflicting input primitive modes.\n");
   1849             return;
   1850          }
   1851          gl_prog->info.tess.primitive_mode =
   1852             shader->info.TessEval.PrimitiveMode;
   1853       }
   1854 
   1855       if (shader->info.TessEval.Spacing != 0) {
   1856          if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
   1857              shader->info.TessEval.Spacing) {
   1858             linker_error(prog, "tessellation evaluation shader defined with "
   1859                          "conflicting vertex spacing.\n");
   1860             return;
   1861          }
   1862          gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
   1863       }
   1864 
   1865       if (shader->info.TessEval.VertexOrder != 0) {
   1866          if (vertex_order != 0 &&
   1867              vertex_order != shader->info.TessEval.VertexOrder) {
   1868             linker_error(prog, "tessellation evaluation shader defined with "
   1869                          "conflicting ordering.\n");
   1870             return;
   1871          }
   1872          vertex_order = shader->info.TessEval.VertexOrder;
   1873       }
   1874 
   1875       if (shader->info.TessEval.PointMode != -1) {
   1876          if (point_mode != -1 &&
   1877              point_mode != shader->info.TessEval.PointMode) {
   1878             linker_error(prog, "tessellation evaluation shader defined with "
   1879                          "conflicting point modes.\n");
   1880             return;
   1881          }
   1882          point_mode = shader->info.TessEval.PointMode;
   1883       }
   1884 
   1885    }
   1886 
   1887    /* Just do the intrastage -> interstage propagation right now,
   1888     * since we already know we're in the right type of shader program
   1889     * for doing it.
   1890     */
   1891    if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
   1892       linker_error(prog,
   1893                    "tessellation evaluation shader didn't declare input "
   1894                    "primitive modes.\n");
   1895       return;
   1896    }
   1897 
   1898    if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
   1899       gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
   1900 
   1901    if (vertex_order == 0 || vertex_order == GL_CCW)
   1902       gl_prog->info.tess.ccw = true;
   1903    else
   1904       gl_prog->info.tess.ccw = false;
   1905 
   1906 
   1907    if (point_mode == -1 || point_mode == GL_FALSE)
   1908       gl_prog->info.tess.point_mode = false;
   1909    else
   1910       gl_prog->info.tess.point_mode = true;
   1911 }
   1912 
   1913 
   1914 /**
   1915  * Performs the cross-validation of layout qualifiers specified in
   1916  * redeclaration of gl_FragCoord for the attached fragment shaders,
   1917  * and propagates them to the linked FS and linked shader program.
   1918  */
   1919 static void
   1920 link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
   1921                                 struct gl_linked_shader *linked_shader,
   1922                                 struct gl_shader **shader_list,
   1923                                 unsigned num_shaders)
   1924 {
   1925    bool redeclares_gl_fragcoord = false;
   1926    bool uses_gl_fragcoord = false;
   1927    bool origin_upper_left = false;
   1928    bool pixel_center_integer = false;
   1929 
   1930    if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
   1931        (prog->data->Version < 150 &&
   1932         !prog->ARB_fragment_coord_conventions_enable))
   1933       return;
   1934 
   1935    for (unsigned i = 0; i < num_shaders; i++) {
   1936       struct gl_shader *shader = shader_list[i];
   1937       /* From the GLSL 1.50 spec, page 39:
   1938        *
   1939        *   "If gl_FragCoord is redeclared in any fragment shader in a program,
   1940        *    it must be redeclared in all the fragment shaders in that program
   1941        *    that have a static use gl_FragCoord."
   1942        */
   1943       if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
   1944            shader->uses_gl_fragcoord)
   1945           || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
   1946               uses_gl_fragcoord)) {
   1947              linker_error(prog, "fragment shader defined with conflicting "
   1948                          "layout qualifiers for gl_FragCoord\n");
   1949       }
   1950 
   1951       /* From the GLSL 1.50 spec, page 39:
   1952        *
   1953        *   "All redeclarations of gl_FragCoord in all fragment shaders in a
   1954        *    single program must have the same set of qualifiers."
   1955        */
   1956       if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
   1957           (shader->origin_upper_left != origin_upper_left ||
   1958            shader->pixel_center_integer != pixel_center_integer)) {
   1959          linker_error(prog, "fragment shader defined with conflicting "
   1960                       "layout qualifiers for gl_FragCoord\n");
   1961       }
   1962 
   1963       /* Update the linked shader state.  Note that uses_gl_fragcoord should
   1964        * accumulate the results.  The other values should replace.  If there
   1965        * are multiple redeclarations, all the fields except uses_gl_fragcoord
   1966        * are already known to be the same.
   1967        */
   1968       if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
   1969          redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
   1970          uses_gl_fragcoord |= shader->uses_gl_fragcoord;
   1971          origin_upper_left = shader->origin_upper_left;
   1972          pixel_center_integer = shader->pixel_center_integer;
   1973       }
   1974 
   1975       linked_shader->Program->info.fs.early_fragment_tests |=
   1976          shader->EarlyFragmentTests || shader->PostDepthCoverage;
   1977       linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
   1978       linked_shader->Program->info.fs.post_depth_coverage |=
   1979          shader->PostDepthCoverage;
   1980 
   1981       linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
   1982    }
   1983 }
   1984 
   1985 /**
   1986  * Performs the cross-validation of geometry shader max_vertices and
   1987  * primitive type layout qualifiers for the attached geometry shaders,
   1988  * and propagates them to the linked GS and linked shader program.
   1989  */
   1990 static void
   1991 link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
   1992                                 struct gl_program *gl_prog,
   1993                                 struct gl_shader **shader_list,
   1994                                 unsigned num_shaders)
   1995 {
   1996    /* No in/out qualifiers defined for anything but GLSL 1.50+
   1997     * geometry shaders so far.
   1998     */
   1999    if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
   2000        prog->data->Version < 150)
   2001       return;
   2002 
   2003    int vertices_out = -1;
   2004 
   2005    gl_prog->info.gs.invocations = 0;
   2006    gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
   2007    gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
   2008 
   2009    /* From the GLSL 1.50 spec, page 46:
   2010     *
   2011     *     "All geometry shader output layout declarations in a program
   2012     *      must declare the same layout and same value for
   2013     *      max_vertices. There must be at least one geometry output
   2014     *      layout declaration somewhere in a program, but not all
   2015     *      geometry shaders (compilation units) are required to
   2016     *      declare it."
   2017     */
   2018 
   2019    for (unsigned i = 0; i < num_shaders; i++) {
   2020       struct gl_shader *shader = shader_list[i];
   2021 
   2022       if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
   2023          if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
   2024              gl_prog->info.gs.input_primitive !=
   2025              shader->info.Geom.InputType) {
   2026             linker_error(prog, "geometry shader defined with conflicting "
   2027                          "input types\n");
   2028             return;
   2029          }
   2030          gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
   2031       }
   2032 
   2033       if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
   2034          if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
   2035              gl_prog->info.gs.output_primitive !=
   2036              shader->info.Geom.OutputType) {
   2037             linker_error(prog, "geometry shader defined with conflicting "
   2038                          "output types\n");
   2039             return;
   2040          }
   2041          gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
   2042       }
   2043 
   2044       if (shader->info.Geom.VerticesOut != -1) {
   2045          if (vertices_out != -1 &&
   2046              vertices_out != shader->info.Geom.VerticesOut) {
   2047             linker_error(prog, "geometry shader defined with conflicting "
   2048                          "output vertex count (%d and %d)\n",
   2049                          vertices_out, shader->info.Geom.VerticesOut);
   2050             return;
   2051          }
   2052          vertices_out = shader->info.Geom.VerticesOut;
   2053       }
   2054 
   2055       if (shader->info.Geom.Invocations != 0) {
   2056          if (gl_prog->info.gs.invocations != 0 &&
   2057              gl_prog->info.gs.invocations !=
   2058              (unsigned) shader->info.Geom.Invocations) {
   2059             linker_error(prog, "geometry shader defined with conflicting "
   2060                          "invocation count (%d and %d)\n",
   2061                          gl_prog->info.gs.invocations,
   2062                          shader->info.Geom.Invocations);
   2063             return;
   2064          }
   2065          gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
   2066       }
   2067    }
   2068 
   2069    /* Just do the intrastage -> interstage propagation right now,
   2070     * since we already know we're in the right type of shader program
   2071     * for doing it.
   2072     */
   2073    if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
   2074       linker_error(prog,
   2075                    "geometry shader didn't declare primitive input type\n");
   2076       return;
   2077    }
   2078 
   2079    if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
   2080       linker_error(prog,
   2081                    "geometry shader didn't declare primitive output type\n");
   2082       return;
   2083    }
   2084 
   2085    if (vertices_out == -1) {
   2086       linker_error(prog,
   2087                    "geometry shader didn't declare max_vertices\n");
   2088       return;
   2089    } else {
   2090       gl_prog->info.gs.vertices_out = vertices_out;
   2091    }
   2092 
   2093    if (gl_prog->info.gs.invocations == 0)
   2094       gl_prog->info.gs.invocations = 1;
   2095 }
   2096 
   2097 
   2098 /**
   2099  * Perform cross-validation of compute shader local_size_{x,y,z} layout
   2100  * qualifiers for the attached compute shaders, and propagate them to the
   2101  * linked CS and linked shader program.
   2102  */
   2103 static void
   2104 link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
   2105                                 struct gl_program *gl_prog,
   2106                                 struct gl_shader **shader_list,
   2107                                 unsigned num_shaders)
   2108 {
   2109    /* This function is called for all shader stages, but it only has an effect
   2110     * for compute shaders.
   2111     */
   2112    if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
   2113       return;
   2114 
   2115    for (int i = 0; i < 3; i++)
   2116       gl_prog->info.cs.local_size[i] = 0;
   2117 
   2118    gl_prog->info.cs.local_size_variable = false;
   2119 
   2120    /* From the ARB_compute_shader spec, in the section describing local size
   2121     * declarations:
   2122     *
   2123     *     If multiple compute shaders attached to a single program object
   2124     *     declare local work-group size, the declarations must be identical;
   2125     *     otherwise a link-time error results. Furthermore, if a program
   2126     *     object contains any compute shaders, at least one must contain an
   2127     *     input layout qualifier specifying the local work sizes of the
   2128     *     program, or a link-time error will occur.
   2129     */
   2130    for (unsigned sh = 0; sh < num_shaders; sh++) {
   2131       struct gl_shader *shader = shader_list[sh];
   2132 
   2133       if (shader->info.Comp.LocalSize[0] != 0) {
   2134          if (gl_prog->info.cs.local_size[0] != 0) {
   2135             for (int i = 0; i < 3; i++) {
   2136                if (gl_prog->info.cs.local_size[i] !=
   2137                    shader->info.Comp.LocalSize[i]) {
   2138                   linker_error(prog, "compute shader defined with conflicting "
   2139                                "local sizes\n");
   2140                   return;
   2141                }
   2142             }
   2143          }
   2144          for (int i = 0; i < 3; i++) {
   2145             gl_prog->info.cs.local_size[i] =
   2146                shader->info.Comp.LocalSize[i];
   2147          }
   2148       } else if (shader->info.Comp.LocalSizeVariable) {
   2149          if (gl_prog->info.cs.local_size[0] != 0) {
   2150             /* The ARB_compute_variable_group_size spec says:
   2151              *
   2152              *     If one compute shader attached to a program declares a
   2153              *     variable local group size and a second compute shader
   2154              *     attached to the same program declares a fixed local group
   2155              *     size, a link-time error results.
   2156              */
   2157             linker_error(prog, "compute shader defined with both fixed and "
   2158                          "variable local group size\n");
   2159             return;
   2160          }
   2161          gl_prog->info.cs.local_size_variable = true;
   2162       }
   2163    }
   2164 
   2165    /* Just do the intrastage -> interstage propagation right now,
   2166     * since we already know we're in the right type of shader program
   2167     * for doing it.
   2168     */
   2169    if (gl_prog->info.cs.local_size[0] == 0 &&
   2170        !gl_prog->info.cs.local_size_variable) {
   2171       linker_error(prog, "compute shader must contain a fixed or a variable "
   2172                          "local group size\n");
   2173       return;
   2174    }
   2175 }
   2176 
   2177 
   2178 /**
   2179  * Combine a group of shaders for a single stage to generate a linked shader
   2180  *
   2181  * \note
   2182  * If this function is supplied a single shader, it is cloned, and the new
   2183  * shader is returned.
   2184  */
   2185 struct gl_linked_shader *
   2186 link_intrastage_shaders(void *mem_ctx,
   2187                         struct gl_context *ctx,
   2188                         struct gl_shader_program *prog,
   2189                         struct gl_shader **shader_list,
   2190                         unsigned num_shaders,
   2191                         bool allow_missing_main)
   2192 {
   2193    struct gl_uniform_block *ubo_blocks = NULL;
   2194    struct gl_uniform_block *ssbo_blocks = NULL;
   2195    unsigned num_ubo_blocks = 0;
   2196    unsigned num_ssbo_blocks = 0;
   2197 
   2198    /* Check that global variables defined in multiple shaders are consistent.
   2199     */
   2200    glsl_symbol_table variables;
   2201    for (unsigned i = 0; i < num_shaders; i++) {
   2202       if (shader_list[i] == NULL)
   2203          continue;
   2204       cross_validate_globals(prog, shader_list[i]->ir, &variables, false);
   2205    }
   2206 
   2207    if (!prog->data->LinkStatus)
   2208       return NULL;
   2209 
   2210    /* Check that interface blocks defined in multiple shaders are consistent.
   2211     */
   2212    validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
   2213                                         num_shaders);
   2214    if (!prog->data->LinkStatus)
   2215       return NULL;
   2216 
   2217    /* Check that there is only a single definition of each function signature
   2218     * across all shaders.
   2219     */
   2220    for (unsigned i = 0; i < (num_shaders - 1); i++) {
   2221       foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
   2222          ir_function *const f = node->as_function();
   2223 
   2224          if (f == NULL)
   2225             continue;
   2226 
   2227          for (unsigned j = i + 1; j < num_shaders; j++) {
   2228             ir_function *const other =
   2229                shader_list[j]->symbols->get_function(f->name);
   2230 
   2231             /* If the other shader has no function (and therefore no function
   2232              * signatures) with the same name, skip to the next shader.
   2233              */
   2234             if (other == NULL)
   2235                continue;
   2236 
   2237             foreach_in_list(ir_function_signature, sig, &f->signatures) {
   2238                if (!sig->is_defined)
   2239                   continue;
   2240 
   2241                ir_function_signature *other_sig =
   2242                   other->exact_matching_signature(NULL, &sig->parameters);
   2243 
   2244                if (other_sig != NULL && other_sig->is_defined) {
   2245                   linker_error(prog, "function `%s' is multiply defined\n",
   2246                                f->name);
   2247                   return NULL;
   2248                }
   2249             }
   2250          }
   2251       }
   2252    }
   2253 
   2254    /* Find the shader that defines main, and make a clone of it.
   2255     *
   2256     * Starting with the clone, search for undefined references.  If one is
   2257     * found, find the shader that defines it.  Clone the reference and add
   2258     * it to the shader.  Repeat until there are no undefined references or
   2259     * until a reference cannot be resolved.
   2260     */
   2261    gl_shader *main = NULL;
   2262    for (unsigned i = 0; i < num_shaders; i++) {
   2263       if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
   2264          main = shader_list[i];
   2265          break;
   2266       }
   2267    }
   2268 
   2269    if (main == NULL && allow_missing_main)
   2270       main = shader_list[0];
   2271 
   2272    if (main == NULL) {
   2273       linker_error(prog, "%s shader lacks `main'\n",
   2274                    _mesa_shader_stage_to_string(shader_list[0]->Stage));
   2275       return NULL;
   2276    }
   2277 
   2278    gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
   2279    linked->Stage = shader_list[0]->Stage;
   2280 
   2281    /* Create program and attach it to the linked shader */
   2282    struct gl_program *gl_prog =
   2283       ctx->Driver.NewProgram(ctx,
   2284                              _mesa_shader_stage_to_program(shader_list[0]->Stage),
   2285                              prog->Name, false);
   2286    if (!gl_prog) {
   2287       prog->data->LinkStatus = linking_failure;
   2288       _mesa_delete_linked_shader(ctx, linked);
   2289       return NULL;
   2290    }
   2291 
   2292    _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
   2293 
   2294    /* Don't use _mesa_reference_program() just take ownership */
   2295    linked->Program = gl_prog;
   2296 
   2297    linked->ir = new(linked) exec_list;
   2298    clone_ir_list(mem_ctx, linked->ir, main->ir);
   2299 
   2300    link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
   2301    link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
   2302    link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
   2303    link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
   2304    link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
   2305 
   2306    if (linked->Stage != MESA_SHADER_FRAGMENT)
   2307       link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
   2308 
   2309    link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
   2310 
   2311    populate_symbol_table(linked, shader_list[0]->symbols);
   2312 
   2313    /* The pointer to the main function in the final linked shader (i.e., the
   2314     * copy of the original shader that contained the main function).
   2315     */
   2316    ir_function_signature *const main_sig =
   2317       _mesa_get_main_function_signature(linked->symbols);
   2318 
   2319    /* Move any instructions other than variable declarations or function
   2320     * declarations into main.
   2321     */
   2322    if (main_sig != NULL) {
   2323       exec_node *insertion_point =
   2324          move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
   2325                                linked);
   2326 
   2327       for (unsigned i = 0; i < num_shaders; i++) {
   2328          if (shader_list[i] == main)
   2329             continue;
   2330 
   2331          insertion_point = move_non_declarations(shader_list[i]->ir,
   2332                                                  insertion_point, true, linked);
   2333       }
   2334    }
   2335 
   2336    if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
   2337       _mesa_delete_linked_shader(ctx, linked);
   2338       return NULL;
   2339    }
   2340 
   2341    /* Make a pass over all variable declarations to ensure that arrays with
   2342     * unspecified sizes have a size specified.  The size is inferred from the
   2343     * max_array_access field.
   2344     */
   2345    array_sizing_visitor v;
   2346    v.run(linked->ir);
   2347    v.fixup_unnamed_interface_types();
   2348 
   2349    /* Link up uniform blocks defined within this stage. */
   2350    link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
   2351                        &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
   2352 
   2353    if (!prog->data->LinkStatus) {
   2354       _mesa_delete_linked_shader(ctx, linked);
   2355       return NULL;
   2356    }
   2357 
   2358    /* Copy ubo blocks to linked shader list */
   2359    linked->Program->sh.UniformBlocks =
   2360       ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
   2361    ralloc_steal(linked, ubo_blocks);
   2362    for (unsigned i = 0; i < num_ubo_blocks; i++) {
   2363       linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
   2364    }
   2365    linked->Program->info.num_ubos = num_ubo_blocks;
   2366 
   2367    /* Copy ssbo blocks to linked shader list */
   2368    linked->Program->sh.ShaderStorageBlocks =
   2369       ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
   2370    ralloc_steal(linked, ssbo_blocks);
   2371    for (unsigned i = 0; i < num_ssbo_blocks; i++) {
   2372       linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
   2373    }
   2374    linked->Program->info.num_ssbos = num_ssbo_blocks;
   2375 
   2376    /* At this point linked should contain all of the linked IR, so
   2377     * validate it to make sure nothing went wrong.
   2378     */
   2379    validate_ir_tree(linked->ir);
   2380 
   2381    /* Set the size of geometry shader input arrays */
   2382    if (linked->Stage == MESA_SHADER_GEOMETRY) {
   2383       unsigned num_vertices =
   2384          vertices_per_prim(gl_prog->info.gs.input_primitive);
   2385       array_resize_visitor input_resize_visitor(num_vertices, prog,
   2386                                                 MESA_SHADER_GEOMETRY);
   2387       foreach_in_list(ir_instruction, ir, linked->ir) {
   2388          ir->accept(&input_resize_visitor);
   2389       }
   2390    }
   2391 
   2392    if (ctx->Const.VertexID_is_zero_based)
   2393       lower_vertex_id(linked);
   2394 
   2395    if (ctx->Const.LowerCsDerivedVariables)
   2396       lower_cs_derived(linked);
   2397 
   2398 #ifdef DEBUG
   2399    /* Compute the source checksum. */
   2400    linked->SourceChecksum = 0;
   2401    for (unsigned i = 0; i < num_shaders; i++) {
   2402       if (shader_list[i] == NULL)
   2403          continue;
   2404       linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
   2405    }
   2406 #endif
   2407 
   2408    return linked;
   2409 }
   2410 
   2411 /**
   2412  * Update the sizes of linked shader uniform arrays to the maximum
   2413  * array index used.
   2414  *
   2415  * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
   2416  *
   2417  *     If one or more elements of an array are active,
   2418  *     GetActiveUniform will return the name of the array in name,
   2419  *     subject to the restrictions listed above. The type of the array
   2420  *     is returned in type. The size parameter contains the highest
   2421  *     array element index used, plus one. The compiler or linker
   2422  *     determines the highest index used.  There will be only one
   2423  *     active uniform reported by the GL per uniform array.
   2424 
   2425  */
   2426 static void
   2427 update_array_sizes(struct gl_shader_program *prog)
   2428 {
   2429    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   2430          if (prog->_LinkedShaders[i] == NULL)
   2431             continue;
   2432 
   2433       bool types_were_updated = false;
   2434 
   2435       foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
   2436          ir_variable *const var = node->as_variable();
   2437 
   2438          if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
   2439              !var->type->is_array())
   2440             continue;
   2441 
   2442          /* GL_ARB_uniform_buffer_object says that std140 uniforms
   2443           * will not be eliminated.  Since we always do std140, just
   2444           * don't resize arrays in UBOs.
   2445           *
   2446           * Atomic counters are supposed to get deterministic
   2447           * locations assigned based on the declaration ordering and
   2448           * sizes, array compaction would mess that up.
   2449           *
   2450           * Subroutine uniforms are not removed.
   2451           */
   2452          if (var->is_in_buffer_block() || var->type->contains_atomic() ||
   2453              var->type->contains_subroutine() || var->constant_initializer)
   2454             continue;
   2455 
   2456          int size = var->data.max_array_access;
   2457          for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
   2458                if (prog->_LinkedShaders[j] == NULL)
   2459                   continue;
   2460 
   2461             foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
   2462                ir_variable *other_var = node2->as_variable();
   2463                if (!other_var)
   2464                   continue;
   2465 
   2466                if (strcmp(var->name, other_var->name) == 0 &&
   2467                    other_var->data.max_array_access > size) {
   2468                   size = other_var->data.max_array_access;
   2469                }
   2470             }
   2471          }
   2472 
   2473          if (size + 1 != (int)var->type->length) {
   2474             /* If this is a built-in uniform (i.e., it's backed by some
   2475              * fixed-function state), adjust the number of state slots to
   2476              * match the new array size.  The number of slots per array entry
   2477              * is not known.  It seems safe to assume that the total number of
   2478              * slots is an integer multiple of the number of array elements.
   2479              * Determine the number of slots per array element by dividing by
   2480              * the old (total) size.
   2481              */
   2482             const unsigned num_slots = var->get_num_state_slots();
   2483             if (num_slots > 0) {
   2484                var->set_num_state_slots((size + 1)
   2485                                         * (num_slots / var->type->length));
   2486             }
   2487 
   2488             var->type = glsl_type::get_array_instance(var->type->fields.array,
   2489                                                       size + 1);
   2490             types_were_updated = true;
   2491          }
   2492       }
   2493 
   2494       /* Update the types of dereferences in case we changed any. */
   2495       if (types_were_updated) {
   2496          deref_type_updater v;
   2497          v.run(prog->_LinkedShaders[i]->ir);
   2498       }
   2499    }
   2500 }
   2501 
   2502 /**
   2503  * Resize tessellation evaluation per-vertex inputs to the size of
   2504  * tessellation control per-vertex outputs.
   2505  */
   2506 static void
   2507 resize_tes_inputs(struct gl_context *ctx,
   2508                   struct gl_shader_program *prog)
   2509 {
   2510    if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
   2511       return;
   2512 
   2513    gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
   2514    gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
   2515 
   2516    /* If no control shader is present, then the TES inputs are statically
   2517     * sized to MaxPatchVertices; the actual size of the arrays won't be
   2518     * known until draw time.
   2519     */
   2520    const int num_vertices = tcs
   2521       ? tcs->Program->info.tess.tcs_vertices_out
   2522       : ctx->Const.MaxPatchVertices;
   2523 
   2524    array_resize_visitor input_resize_visitor(num_vertices, prog,
   2525                                              MESA_SHADER_TESS_EVAL);
   2526    foreach_in_list(ir_instruction, ir, tes->ir) {
   2527       ir->accept(&input_resize_visitor);
   2528    }
   2529 
   2530    if (tcs) {
   2531       /* Convert the gl_PatchVerticesIn system value into a constant, since
   2532        * the value is known at this point.
   2533        */
   2534       foreach_in_list(ir_instruction, ir, tes->ir) {
   2535          ir_variable *var = ir->as_variable();
   2536          if (var && var->data.mode == ir_var_system_value &&
   2537              var->data.location == SYSTEM_VALUE_VERTICES_IN) {
   2538             void *mem_ctx = ralloc_parent(var);
   2539             var->data.location = 0;
   2540             var->data.explicit_location = false;
   2541             var->data.mode = ir_var_auto;
   2542             var->constant_value = new(mem_ctx) ir_constant(num_vertices);
   2543          }
   2544       }
   2545    }
   2546 }
   2547 
   2548 /**
   2549  * Find a contiguous set of available bits in a bitmask.
   2550  *
   2551  * \param used_mask     Bits representing used (1) and unused (0) locations
   2552  * \param needed_count  Number of contiguous bits needed.
   2553  *
   2554  * \return
   2555  * Base location of the available bits on success or -1 on failure.
   2556  */
   2557 static int
   2558 find_available_slots(unsigned used_mask, unsigned needed_count)
   2559 {
   2560    unsigned needed_mask = (1 << needed_count) - 1;
   2561    const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
   2562 
   2563    /* The comparison to 32 is redundant, but without it GCC emits "warning:
   2564     * cannot optimize possibly infinite loops" for the loop below.
   2565     */
   2566    if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
   2567       return -1;
   2568 
   2569    for (int i = 0; i <= max_bit_to_test; i++) {
   2570       if ((needed_mask & ~used_mask) == needed_mask)
   2571          return i;
   2572 
   2573       needed_mask <<= 1;
   2574    }
   2575 
   2576    return -1;
   2577 }
   2578 
   2579 
   2580 #define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
   2581 
   2582 /**
   2583  * Assign locations for either VS inputs or FS outputs
   2584  *
   2585  * \param mem_ctx       Temporary ralloc context used for linking
   2586  * \param prog          Shader program whose variables need locations assigned
   2587  * \param constants     Driver specific constant values for the program.
   2588  * \param target_index  Selector for the program target to receive location
   2589  *                      assignmnets.  Must be either \c MESA_SHADER_VERTEX or
   2590  *                      \c MESA_SHADER_FRAGMENT.
   2591  *
   2592  * \return
   2593  * If locations are successfully assigned, true is returned.  Otherwise an
   2594  * error is emitted to the shader link log and false is returned.
   2595  */
   2596 static bool
   2597 assign_attribute_or_color_locations(void *mem_ctx,
   2598                                     gl_shader_program *prog,
   2599                                     struct gl_constants *constants,
   2600                                     unsigned target_index)
   2601 {
   2602    /* Maximum number of generic locations.  This corresponds to either the
   2603     * maximum number of draw buffers or the maximum number of generic
   2604     * attributes.
   2605     */
   2606    unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
   2607       constants->Program[target_index].MaxAttribs :
   2608       MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
   2609 
   2610    /* Mark invalid locations as being used.
   2611     */
   2612    unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
   2613    unsigned double_storage_locations = 0;
   2614 
   2615    assert((target_index == MESA_SHADER_VERTEX)
   2616           || (target_index == MESA_SHADER_FRAGMENT));
   2617 
   2618    gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
   2619    if (sh == NULL)
   2620       return true;
   2621 
   2622    /* Operate in a total of four passes.
   2623     *
   2624     * 1. Invalidate the location assignments for all vertex shader inputs.
   2625     *
   2626     * 2. Assign locations for inputs that have user-defined (via
   2627     *    glBindVertexAttribLocation) locations and outputs that have
   2628     *    user-defined locations (via glBindFragDataLocation).
   2629     *
   2630     * 3. Sort the attributes without assigned locations by number of slots
   2631     *    required in decreasing order.  Fragmentation caused by attribute
   2632     *    locations assigned by the application may prevent large attributes
   2633     *    from having enough contiguous space.
   2634     *
   2635     * 4. Assign locations to any inputs without assigned locations.
   2636     */
   2637 
   2638    const int generic_base = (target_index == MESA_SHADER_VERTEX)
   2639       ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
   2640 
   2641    const enum ir_variable_mode direction =
   2642       (target_index == MESA_SHADER_VERTEX)
   2643       ? ir_var_shader_in : ir_var_shader_out;
   2644 
   2645 
   2646    /* Temporary storage for the set of attributes that need locations assigned.
   2647     */
   2648    struct temp_attr {
   2649       unsigned slots;
   2650       ir_variable *var;
   2651 
   2652       /* Used below in the call to qsort. */
   2653       static int compare(const void *a, const void *b)
   2654       {
   2655          const temp_attr *const l = (const temp_attr *) a;
   2656          const temp_attr *const r = (const temp_attr *) b;
   2657 
   2658          /* Reversed because we want a descending order sort below. */
   2659          return r->slots - l->slots;
   2660       }
   2661    } to_assign[32];
   2662    assert(max_index <= 32);
   2663 
   2664    /* Temporary array for the set of attributes that have locations assigned,
   2665     * for the purpose of checking overlapping slots/components of (non-ES)
   2666     * fragment shader outputs.
   2667     */
   2668    ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
   2669    unsigned assigned_attr = 0;
   2670 
   2671    unsigned num_attr = 0;
   2672 
   2673    foreach_in_list(ir_instruction, node, sh->ir) {
   2674       ir_variable *const var = node->as_variable();
   2675 
   2676       if ((var == NULL) || (var->data.mode != (unsigned) direction))
   2677          continue;
   2678 
   2679       if (var->data.explicit_location) {
   2680          var->data.is_unmatched_generic_inout = 0;
   2681          if ((var->data.location >= (int)(max_index + generic_base))
   2682              || (var->data.location < 0)) {
   2683             linker_error(prog,
   2684                          "invalid explicit location %d specified for `%s'\n",
   2685                          (var->data.location < 0)
   2686                          ? var->data.location
   2687                          : var->data.location - generic_base,
   2688                          var->name);
   2689             return false;
   2690          }
   2691       } else if (target_index == MESA_SHADER_VERTEX) {
   2692          unsigned binding;
   2693 
   2694          if (prog->AttributeBindings->get(binding, var->name)) {
   2695             assert(binding >= VERT_ATTRIB_GENERIC0);
   2696             var->data.location = binding;
   2697             var->data.is_unmatched_generic_inout = 0;
   2698          }
   2699       } else if (target_index == MESA_SHADER_FRAGMENT) {
   2700          unsigned binding;
   2701          unsigned index;
   2702          const char *name = var->name;
   2703          const glsl_type *type = var->type;
   2704 
   2705          while (type) {
   2706             /* Check if there's a binding for the variable name */
   2707             if (prog->FragDataBindings->get(binding, name)) {
   2708                assert(binding >= FRAG_RESULT_DATA0);
   2709                var->data.location = binding;
   2710                var->data.is_unmatched_generic_inout = 0;
   2711 
   2712                if (prog->FragDataIndexBindings->get(index, name)) {
   2713                   var->data.index = index;
   2714                }
   2715                break;
   2716             }
   2717 
   2718             /* If not, but it's an array type, look for name[0] */
   2719             if (type->is_array()) {
   2720                name = ralloc_asprintf(mem_ctx, "%s[0]", name);
   2721                type = type->fields.array;
   2722                continue;
   2723             }
   2724 
   2725             break;
   2726          }
   2727       }
   2728 
   2729       if (strcmp(var->name, "gl_LastFragData") == 0)
   2730          continue;
   2731 
   2732       /* From GL4.5 core spec, section 15.2 (Shader Execution):
   2733        *
   2734        *     "Output binding assignments will cause LinkProgram to fail:
   2735        *     ...
   2736        *     If the program has an active output assigned to a location greater
   2737        *     than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
   2738        *     an active output assigned an index greater than or equal to one;"
   2739        */
   2740       if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
   2741           var->data.location - generic_base >=
   2742           (int) constants->MaxDualSourceDrawBuffers) {
   2743          linker_error(prog,
   2744                       "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
   2745                       "with index %u for %s\n",
   2746                       var->data.location - generic_base, var->data.index,
   2747                       var->name);
   2748          return false;
   2749       }
   2750 
   2751       const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
   2752 
   2753       /* If the variable is not a built-in and has a location statically
   2754        * assigned in the shader (presumably via a layout qualifier), make sure
   2755        * that it doesn't collide with other assigned locations.  Otherwise,
   2756        * add it to the list of variables that need linker-assigned locations.
   2757        */
   2758       if (var->data.location != -1) {
   2759          if (var->data.location >= generic_base && var->data.index < 1) {
   2760             /* From page 61 of the OpenGL 4.0 spec:
   2761              *
   2762              *     "LinkProgram will fail if the attribute bindings assigned
   2763              *     by BindAttribLocation do not leave not enough space to
   2764              *     assign a location for an active matrix attribute or an
   2765              *     active attribute array, both of which require multiple
   2766              *     contiguous generic attributes."
   2767              *
   2768              * I think above text prohibits the aliasing of explicit and
   2769              * automatic assignments. But, aliasing is allowed in manual
   2770              * assignments of attribute locations. See below comments for
   2771              * the details.
   2772              *
   2773              * From OpenGL 4.0 spec, page 61:
   2774              *
   2775              *     "It is possible for an application to bind more than one
   2776              *     attribute name to the same location. This is referred to as
   2777              *     aliasing. This will only work if only one of the aliased
   2778              *     attributes is active in the executable program, or if no
   2779              *     path through the shader consumes more than one attribute of
   2780              *     a set of attributes aliased to the same location. A link
   2781              *     error can occur if the linker determines that every path
   2782              *     through the shader consumes multiple aliased attributes,
   2783              *     but implementations are not required to generate an error
   2784              *     in this case."
   2785              *
   2786              * From GLSL 4.30 spec, page 54:
   2787              *
   2788              *    "A program will fail to link if any two non-vertex shader
   2789              *     input variables are assigned to the same location. For
   2790              *     vertex shaders, multiple input variables may be assigned
   2791              *     to the same location using either layout qualifiers or via
   2792              *     the OpenGL API. However, such aliasing is intended only to
   2793              *     support vertex shaders where each execution path accesses
   2794              *     at most one input per each location. Implementations are
   2795              *     permitted, but not required, to generate link-time errors
   2796              *     if they detect that every path through the vertex shader
   2797              *     executable accesses multiple inputs assigned to any single
   2798              *     location. For all shader types, a program will fail to link
   2799              *     if explicit location assignments leave the linker unable
   2800              *     to find space for other variables without explicit
   2801              *     assignments."
   2802              *
   2803              * From OpenGL ES 3.0 spec, page 56:
   2804              *
   2805              *    "Binding more than one attribute name to the same location
   2806              *     is referred to as aliasing, and is not permitted in OpenGL
   2807              *     ES Shading Language 3.00 vertex shaders. LinkProgram will
   2808              *     fail when this condition exists. However, aliasing is
   2809              *     possible in OpenGL ES Shading Language 1.00 vertex shaders.
   2810              *     This will only work if only one of the aliased attributes
   2811              *     is active in the executable program, or if no path through
   2812              *     the shader consumes more than one attribute of a set of
   2813              *     attributes aliased to the same location. A link error can
   2814              *     occur if the linker determines that every path through the
   2815              *     shader consumes multiple aliased attributes, but implemen-
   2816              *     tations are not required to generate an error in this case."
   2817              *
   2818              * After looking at above references from OpenGL, OpenGL ES and
   2819              * GLSL specifications, we allow aliasing of vertex input variables
   2820              * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
   2821              *
   2822              * NOTE: This is not required by the spec but its worth mentioning
   2823              * here that we're not doing anything to make sure that no path
   2824              * through the vertex shader executable accesses multiple inputs
   2825              * assigned to any single location.
   2826              */
   2827 
   2828             /* Mask representing the contiguous slots that will be used by
   2829              * this attribute.
   2830              */
   2831             const unsigned attr = var->data.location - generic_base;
   2832             const unsigned use_mask = (1 << slots) - 1;
   2833             const char *const string = (target_index == MESA_SHADER_VERTEX)
   2834                ? "vertex shader input" : "fragment shader output";
   2835 
   2836             /* Generate a link error if the requested locations for this
   2837              * attribute exceed the maximum allowed attribute location.
   2838              */
   2839             if (attr + slots > max_index) {
   2840                linker_error(prog,
   2841                            "insufficient contiguous locations "
   2842                            "available for %s `%s' %d %d %d\n", string,
   2843                            var->name, used_locations, use_mask, attr);
   2844                return false;
   2845             }
   2846 
   2847             /* Generate a link error if the set of bits requested for this
   2848              * attribute overlaps any previously allocated bits.
   2849              */
   2850             if ((~(use_mask << attr) & used_locations) != used_locations) {
   2851                if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
   2852                   /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
   2853                    * 4.40 spec:
   2854                    *
   2855                    *    "Additionally, for fragment shader outputs, if two
   2856                    *    variables are placed within the same location, they
   2857                    *    must have the same underlying type (floating-point or
   2858                    *    integer). No component aliasing of output variables or
   2859                    *    members is allowed.
   2860                    */
   2861                   for (unsigned i = 0; i < assigned_attr; i++) {
   2862                      unsigned assigned_slots =
   2863                         assigned[i]->type->count_attribute_slots(false);
   2864                      unsigned assig_attr =
   2865                         assigned[i]->data.location - generic_base;
   2866                      unsigned assigned_use_mask = (1 << assigned_slots) - 1;
   2867 
   2868                      if ((assigned_use_mask << assig_attr) &
   2869                          (use_mask << attr)) {
   2870 
   2871                         const glsl_type *assigned_type =
   2872                            assigned[i]->type->without_array();
   2873                         const glsl_type *type = var->type->without_array();
   2874                         if (assigned_type->base_type != type->base_type) {
   2875                            linker_error(prog, "types do not match for aliased"
   2876                                         " %ss %s and %s\n", string,
   2877                                         assigned[i]->name, var->name);
   2878                            return false;
   2879                         }
   2880 
   2881                         unsigned assigned_component_mask =
   2882                            ((1 << assigned_type->vector_elements) - 1) <<
   2883                            assigned[i]->data.location_frac;
   2884                         unsigned component_mask =
   2885                            ((1 << type->vector_elements) - 1) <<
   2886                            var->data.location_frac;
   2887                         if (assigned_component_mask & component_mask) {
   2888                            linker_error(prog, "overlapping component is "
   2889                                         "assigned to %ss %s and %s "
   2890                                         "(component=%d)\n",
   2891                                         string, assigned[i]->name, var->name,
   2892                                         var->data.location_frac);
   2893                            return false;
   2894                         }
   2895                      }
   2896                   }
   2897                } else if (target_index == MESA_SHADER_FRAGMENT ||
   2898                           (prog->IsES && prog->data->Version >= 300)) {
   2899                   linker_error(prog, "overlapping location is assigned "
   2900                                "to %s `%s' %d %d %d\n", string, var->name,
   2901                                used_locations, use_mask, attr);
   2902                   return false;
   2903                } else {
   2904                   linker_warning(prog, "overlapping location is assigned "
   2905                                  "to %s `%s' %d %d %d\n", string, var->name,
   2906                                  used_locations, use_mask, attr);
   2907                }
   2908             }
   2909 
   2910             if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
   2911                /* Only track assigned variables for non-ES fragment shaders
   2912                 * to avoid overflowing the array.
   2913                 *
   2914                 * At most one variable per fragment output component should
   2915                 * reach this.
   2916                 */
   2917                assert(assigned_attr < ARRAY_SIZE(assigned));
   2918                assigned[assigned_attr] = var;
   2919                assigned_attr++;
   2920             }
   2921 
   2922             used_locations |= (use_mask << attr);
   2923 
   2924             /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
   2925              *
   2926              * "A program with more than the value of MAX_VERTEX_ATTRIBS
   2927              *  active attribute variables may fail to link, unless
   2928              *  device-dependent optimizations are able to make the program
   2929              *  fit within available hardware resources. For the purposes
   2930              *  of this test, attribute variables of the type dvec3, dvec4,
   2931              *  dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
   2932              *  count as consuming twice as many attributes as equivalent
   2933              *  single-precision types. While these types use the same number
   2934              *  of generic attributes as their single-precision equivalents,
   2935              *  implementations are permitted to consume two single-precision
   2936              *  vectors of internal storage for each three- or four-component
   2937              *  double-precision vector."
   2938              *
   2939              * Mark this attribute slot as taking up twice as much space
   2940              * so we can count it properly against limits.  According to
   2941              * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
   2942              * is optional behavior, but it seems preferable.
   2943              */
   2944             if (var->type->without_array()->is_dual_slot())
   2945                double_storage_locations |= (use_mask << attr);
   2946          }
   2947 
   2948          continue;
   2949       }
   2950 
   2951       if (num_attr >= max_index) {
   2952          linker_error(prog, "too many %s (max %u)",
   2953                       target_index == MESA_SHADER_VERTEX ?
   2954                       "vertex shader inputs" : "fragment shader outputs",
   2955                       max_index);
   2956          return false;
   2957       }
   2958       to_assign[num_attr].slots = slots;
   2959       to_assign[num_attr].var = var;
   2960       num_attr++;
   2961    }
   2962 
   2963    if (target_index == MESA_SHADER_VERTEX) {
   2964       unsigned total_attribs_size =
   2965          _mesa_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
   2966          _mesa_bitcount(double_storage_locations);
   2967       if (total_attribs_size > max_index) {
   2968          linker_error(prog,
   2969                       "attempt to use %d vertex attribute slots only %d available ",
   2970                       total_attribs_size, max_index);
   2971          return false;
   2972       }
   2973    }
   2974 
   2975    /* If all of the attributes were assigned locations by the application (or
   2976     * are built-in attributes with fixed locations), return early.  This should
   2977     * be the common case.
   2978     */
   2979    if (num_attr == 0)
   2980       return true;
   2981 
   2982    qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
   2983 
   2984    if (target_index == MESA_SHADER_VERTEX) {
   2985       /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS.  It can
   2986        * only be explicitly assigned by via glBindAttribLocation.  Mark it as
   2987        * reserved to prevent it from being automatically allocated below.
   2988        */
   2989       find_deref_visitor find("gl_Vertex");
   2990       find.run(sh->ir);
   2991       if (find.variable_found())
   2992          used_locations |= (1 << 0);
   2993    }
   2994 
   2995    for (unsigned i = 0; i < num_attr; i++) {
   2996       /* Mask representing the contiguous slots that will be used by this
   2997        * attribute.
   2998        */
   2999       const unsigned use_mask = (1 << to_assign[i].slots) - 1;
   3000 
   3001       int location = find_available_slots(used_locations, to_assign[i].slots);
   3002 
   3003       if (location < 0) {
   3004          const char *const string = (target_index == MESA_SHADER_VERTEX)
   3005             ? "vertex shader input" : "fragment shader output";
   3006 
   3007          linker_error(prog,
   3008                       "insufficient contiguous locations "
   3009                       "available for %s `%s'\n",
   3010                       string, to_assign[i].var->name);
   3011          return false;
   3012       }
   3013 
   3014       to_assign[i].var->data.location = generic_base + location;
   3015       to_assign[i].var->data.is_unmatched_generic_inout = 0;
   3016       used_locations |= (use_mask << location);
   3017 
   3018       if (to_assign[i].var->type->without_array()->is_dual_slot())
   3019          double_storage_locations |= (use_mask << location);
   3020    }
   3021 
   3022    /* Now that we have all the locations, from the GL 4.5 core spec, section
   3023     * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
   3024     * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
   3025     * as equivalent single-precision types.
   3026     */
   3027    if (target_index == MESA_SHADER_VERTEX) {
   3028       unsigned total_attribs_size =
   3029          _mesa_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
   3030          _mesa_bitcount(double_storage_locations);
   3031       if (total_attribs_size > max_index) {
   3032          linker_error(prog,
   3033                       "attempt to use %d vertex attribute slots only %d available ",
   3034                       total_attribs_size, max_index);
   3035          return false;
   3036       }
   3037    }
   3038 
   3039    return true;
   3040 }
   3041 
   3042 /**
   3043  * Match explicit locations of outputs to inputs and deactivate the
   3044  * unmatch flag if found so we don't optimise them away.
   3045  */
   3046 static void
   3047 match_explicit_outputs_to_inputs(gl_linked_shader *producer,
   3048                                  gl_linked_shader *consumer)
   3049 {
   3050    glsl_symbol_table parameters;
   3051    ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
   3052       { {NULL, NULL} };
   3053 
   3054    /* Find all shader outputs in the "producer" stage.
   3055     */
   3056    foreach_in_list(ir_instruction, node, producer->ir) {
   3057       ir_variable *const var = node->as_variable();
   3058 
   3059       if ((var == NULL) || (var->data.mode != ir_var_shader_out))
   3060          continue;
   3061 
   3062       if (var->data.explicit_location &&
   3063           var->data.location >= VARYING_SLOT_VAR0) {
   3064          const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
   3065          if (explicit_locations[idx][var->data.location_frac] == NULL)
   3066             explicit_locations[idx][var->data.location_frac] = var;
   3067       }
   3068    }
   3069 
   3070    /* Match inputs to outputs */
   3071    foreach_in_list(ir_instruction, node, consumer->ir) {
   3072       ir_variable *const input = node->as_variable();
   3073 
   3074       if ((input == NULL) || (input->data.mode != ir_var_shader_in))
   3075          continue;
   3076 
   3077       ir_variable *output = NULL;
   3078       if (input->data.explicit_location
   3079           && input->data.location >= VARYING_SLOT_VAR0) {
   3080          output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
   3081             [input->data.location_frac];
   3082 
   3083          if (output != NULL){
   3084             input->data.is_unmatched_generic_inout = 0;
   3085             output->data.is_unmatched_generic_inout = 0;
   3086          }
   3087       }
   3088    }
   3089 }
   3090 
   3091 /**
   3092  * Store the gl_FragDepth layout in the gl_shader_program struct.
   3093  */
   3094 static void
   3095 store_fragdepth_layout(struct gl_shader_program *prog)
   3096 {
   3097    if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
   3098       return;
   3099    }
   3100 
   3101    struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
   3102 
   3103    /* We don't look up the gl_FragDepth symbol directly because if
   3104     * gl_FragDepth is not used in the shader, it's removed from the IR.
   3105     * However, the symbol won't be removed from the symbol table.
   3106     *
   3107     * We're only interested in the cases where the variable is NOT removed
   3108     * from the IR.
   3109     */
   3110    foreach_in_list(ir_instruction, node, ir) {
   3111       ir_variable *const var = node->as_variable();
   3112 
   3113       if (var == NULL || var->data.mode != ir_var_shader_out) {
   3114          continue;
   3115       }
   3116 
   3117       if (strcmp(var->name, "gl_FragDepth") == 0) {
   3118          switch (var->data.depth_layout) {
   3119          case ir_depth_layout_none:
   3120             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
   3121             return;
   3122          case ir_depth_layout_any:
   3123             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
   3124             return;
   3125          case ir_depth_layout_greater:
   3126             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
   3127             return;
   3128          case ir_depth_layout_less:
   3129             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
   3130             return;
   3131          case ir_depth_layout_unchanged:
   3132             prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
   3133             return;
   3134          default:
   3135             assert(0);
   3136             return;
   3137          }
   3138       }
   3139    }
   3140 }
   3141 
   3142 /**
   3143  * Validate the resources used by a program versus the implementation limits
   3144  */
   3145 static void
   3146 check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
   3147 {
   3148    unsigned total_uniform_blocks = 0;
   3149    unsigned total_shader_storage_blocks = 0;
   3150 
   3151    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   3152       struct gl_linked_shader *sh = prog->_LinkedShaders[i];
   3153 
   3154       if (sh == NULL)
   3155          continue;
   3156 
   3157       if (sh->Program->info.num_textures >
   3158           ctx->Const.Program[i].MaxTextureImageUnits) {
   3159          linker_error(prog, "Too many %s shader texture samplers\n",
   3160                       _mesa_shader_stage_to_string(i));
   3161       }
   3162 
   3163       if (sh->num_uniform_components >
   3164           ctx->Const.Program[i].MaxUniformComponents) {
   3165          if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
   3166             linker_warning(prog, "Too many %s shader default uniform block "
   3167                            "components, but the driver will try to optimize "
   3168                            "them out; this is non-portable out-of-spec "
   3169                            "behavior\n",
   3170                            _mesa_shader_stage_to_string(i));
   3171          } else {
   3172             linker_error(prog, "Too many %s shader default uniform block "
   3173                          "components\n",
   3174                          _mesa_shader_stage_to_string(i));
   3175          }
   3176       }
   3177 
   3178       if (sh->num_combined_uniform_components >
   3179           ctx->Const.Program[i].MaxCombinedUniformComponents) {
   3180          if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
   3181             linker_warning(prog, "Too many %s shader uniform components, "
   3182                            "but the driver will try to optimize them out; "
   3183                            "this is non-portable out-of-spec behavior\n",
   3184                            _mesa_shader_stage_to_string(i));
   3185          } else {
   3186             linker_error(prog, "Too many %s shader uniform components\n",
   3187                          _mesa_shader_stage_to_string(i));
   3188          }
   3189       }
   3190 
   3191       total_shader_storage_blocks += sh->Program->info.num_ssbos;
   3192       total_uniform_blocks += sh->Program->info.num_ubos;
   3193 
   3194       const unsigned max_uniform_blocks =
   3195          ctx->Const.Program[i].MaxUniformBlocks;
   3196       if (max_uniform_blocks < sh->Program->info.num_ubos) {
   3197          linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
   3198                       _mesa_shader_stage_to_string(i),
   3199                       sh->Program->info.num_ubos, max_uniform_blocks);
   3200       }
   3201 
   3202       const unsigned max_shader_storage_blocks =
   3203          ctx->Const.Program[i].MaxShaderStorageBlocks;
   3204       if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
   3205          linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
   3206                       _mesa_shader_stage_to_string(i),
   3207                       sh->Program->info.num_ssbos, max_shader_storage_blocks);
   3208       }
   3209    }
   3210 
   3211    if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
   3212       linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
   3213                    total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
   3214    }
   3215 
   3216    if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
   3217       linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
   3218                    total_shader_storage_blocks,
   3219                    ctx->Const.MaxCombinedShaderStorageBlocks);
   3220    }
   3221 
   3222    for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
   3223       if (prog->data->UniformBlocks[i].UniformBufferSize >
   3224           ctx->Const.MaxUniformBlockSize) {
   3225          linker_error(prog, "Uniform block %s too big (%d/%d)\n",
   3226                       prog->data->UniformBlocks[i].Name,
   3227                       prog->data->UniformBlocks[i].UniformBufferSize,
   3228                       ctx->Const.MaxUniformBlockSize);
   3229       }
   3230    }
   3231 
   3232    for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
   3233       if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
   3234           ctx->Const.MaxShaderStorageBlockSize) {
   3235          linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
   3236                       prog->data->ShaderStorageBlocks[i].Name,
   3237                       prog->data->ShaderStorageBlocks[i].UniformBufferSize,
   3238                       ctx->Const.MaxShaderStorageBlockSize);
   3239       }
   3240    }
   3241 }
   3242 
   3243 static void
   3244 link_calculate_subroutine_compat(struct gl_shader_program *prog)
   3245 {
   3246    unsigned mask = prog->data->linked_stages;
   3247    while (mask) {
   3248       const int i = u_bit_scan(&mask);
   3249       struct gl_program *p = prog->_LinkedShaders[i]->Program;
   3250 
   3251       for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
   3252          if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
   3253             continue;
   3254 
   3255          struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
   3256 
   3257          if (!uni)
   3258             continue;
   3259 
   3260          int count = 0;
   3261          if (p->sh.NumSubroutineFunctions == 0) {
   3262             linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
   3263             continue;
   3264          }
   3265          for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
   3266             struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
   3267             for (int k = 0; k < fn->num_compat_types; k++) {
   3268                if (fn->types[k] == uni->type) {
   3269                   count++;
   3270                   break;
   3271                }
   3272             }
   3273          }
   3274          uni->num_compatible_subroutines = count;
   3275       }
   3276    }
   3277 }
   3278 
   3279 static void
   3280 check_subroutine_resources(struct gl_shader_program *prog)
   3281 {
   3282    unsigned mask = prog->data->linked_stages;
   3283    while (mask) {
   3284       const int i = u_bit_scan(&mask);
   3285       struct gl_program *p = prog->_LinkedShaders[i]->Program;
   3286 
   3287       if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
   3288          linker_error(prog, "Too many %s shader subroutine uniforms\n",
   3289                       _mesa_shader_stage_to_string(i));
   3290       }
   3291    }
   3292 }
   3293 /**
   3294  * Validate shader image resources.
   3295  */
   3296 static void
   3297 check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
   3298 {
   3299    unsigned total_image_units = 0;
   3300    unsigned fragment_outputs = 0;
   3301    unsigned total_shader_storage_blocks = 0;
   3302 
   3303    if (!ctx->Extensions.ARB_shader_image_load_store)
   3304       return;
   3305 
   3306    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   3307       struct gl_linked_shader *sh = prog->_LinkedShaders[i];
   3308 
   3309       if (sh) {
   3310          if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
   3311             linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
   3312                          _mesa_shader_stage_to_string(i),
   3313                          sh->Program->info.num_images,
   3314                          ctx->Const.Program[i].MaxImageUniforms);
   3315 
   3316          total_image_units += sh->Program->info.num_images;
   3317          total_shader_storage_blocks += sh->Program->info.num_ssbos;
   3318 
   3319          if (i == MESA_SHADER_FRAGMENT) {
   3320             foreach_in_list(ir_instruction, node, sh->ir) {
   3321                ir_variable *var = node->as_variable();
   3322                if (var && var->data.mode == ir_var_shader_out)
   3323                   /* since there are no double fs outputs - pass false */
   3324                   fragment_outputs += var->type->count_attribute_slots(false);
   3325             }
   3326          }
   3327       }
   3328    }
   3329 
   3330    if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
   3331       linker_error(prog, "Too many combined image uniforms\n");
   3332 
   3333    if (total_image_units + fragment_outputs + total_shader_storage_blocks >
   3334        ctx->Const.MaxCombinedShaderOutputResources)
   3335       linker_error(prog, "Too many combined image uniforms, shader storage "
   3336                          " buffers and fragment outputs\n");
   3337 }
   3338 
   3339 
   3340 /**
   3341  * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
   3342  * for a variable, checks for overlaps between other uniforms using explicit
   3343  * locations.
   3344  */
   3345 static int
   3346 reserve_explicit_locations(struct gl_shader_program *prog,
   3347                            string_to_uint_map *map, ir_variable *var)
   3348 {
   3349    unsigned slots = var->type->uniform_locations();
   3350    unsigned max_loc = var->data.location + slots - 1;
   3351    unsigned return_value = slots;
   3352 
   3353    /* Resize remap table if locations do not fit in the current one. */
   3354    if (max_loc + 1 > prog->NumUniformRemapTable) {
   3355       prog->UniformRemapTable =
   3356          reralloc(prog, prog->UniformRemapTable,
   3357                   gl_uniform_storage *,
   3358                   max_loc + 1);
   3359 
   3360       if (!prog->UniformRemapTable) {
   3361          linker_error(prog, "Out of memory during linking.\n");
   3362          return -1;
   3363       }
   3364 
   3365       /* Initialize allocated space. */
   3366       for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
   3367          prog->UniformRemapTable[i] = NULL;
   3368 
   3369       prog->NumUniformRemapTable = max_loc + 1;
   3370    }
   3371 
   3372    for (unsigned i = 0; i < slots; i++) {
   3373       unsigned loc = var->data.location + i;
   3374 
   3375       /* Check if location is already used. */
   3376       if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
   3377 
   3378          /* Possibly same uniform from a different stage, this is ok. */
   3379          unsigned hash_loc;
   3380          if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
   3381             return_value = 0;
   3382             continue;
   3383          }
   3384 
   3385          /* ARB_explicit_uniform_location specification states:
   3386           *
   3387           *     "No two default-block uniform variables in the program can have
   3388           *     the same location, even if they are unused, otherwise a compiler
   3389           *     or linker error will be generated."
   3390           */
   3391          linker_error(prog,
   3392                       "location qualifier for uniform %s overlaps "
   3393                       "previously used location\n",
   3394                       var->name);
   3395          return -1;
   3396       }
   3397 
   3398       /* Initialize location as inactive before optimization
   3399        * rounds and location assignment.
   3400        */
   3401       prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
   3402    }
   3403 
   3404    /* Note, base location used for arrays. */
   3405    map->put(var->data.location, var->name);
   3406 
   3407    return return_value;
   3408 }
   3409 
   3410 static bool
   3411 reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
   3412                                       struct gl_program *p,
   3413                                       ir_variable *var)
   3414 {
   3415    unsigned slots = var->type->uniform_locations();
   3416    unsigned max_loc = var->data.location + slots - 1;
   3417 
   3418    /* Resize remap table if locations do not fit in the current one. */
   3419    if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
   3420       p->sh.SubroutineUniformRemapTable =
   3421          reralloc(p, p->sh.SubroutineUniformRemapTable,
   3422                   gl_uniform_storage *,
   3423                   max_loc + 1);
   3424 
   3425       if (!p->sh.SubroutineUniformRemapTable) {
   3426          linker_error(prog, "Out of memory during linking.\n");
   3427          return false;
   3428       }
   3429 
   3430       /* Initialize allocated space. */
   3431       for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
   3432          p->sh.SubroutineUniformRemapTable[i] = NULL;
   3433 
   3434       p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
   3435    }
   3436 
   3437    for (unsigned i = 0; i < slots; i++) {
   3438       unsigned loc = var->data.location + i;
   3439 
   3440       /* Check if location is already used. */
   3441       if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
   3442 
   3443          /* ARB_explicit_uniform_location specification states:
   3444           *     "No two subroutine uniform variables can have the same location
   3445           *     in the same shader stage, otherwise a compiler or linker error
   3446           *     will be generated."
   3447           */
   3448          linker_error(prog,
   3449                       "location qualifier for uniform %s overlaps "
   3450                       "previously used location\n",
   3451                       var->name);
   3452          return false;
   3453       }
   3454 
   3455       /* Initialize location as inactive before optimization
   3456        * rounds and location assignment.
   3457        */
   3458       p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
   3459    }
   3460 
   3461    return true;
   3462 }
   3463 /**
   3464  * Check and reserve all explicit uniform locations, called before
   3465  * any optimizations happen to handle also inactive uniforms and
   3466  * inactive array elements that may get trimmed away.
   3467  */
   3468 static void
   3469 check_explicit_uniform_locations(struct gl_context *ctx,
   3470                                  struct gl_shader_program *prog)
   3471 {
   3472    prog->NumExplicitUniformLocations = 0;
   3473 
   3474    if (!ctx->Extensions.ARB_explicit_uniform_location)
   3475       return;
   3476 
   3477    /* This map is used to detect if overlapping explicit locations
   3478     * occur with the same uniform (from different stage) or a different one.
   3479     */
   3480    string_to_uint_map *uniform_map = new string_to_uint_map;
   3481 
   3482    if (!uniform_map) {
   3483       linker_error(prog, "Out of memory during linking.\n");
   3484       return;
   3485    }
   3486 
   3487    unsigned entries_total = 0;
   3488    unsigned mask = prog->data->linked_stages;
   3489    while (mask) {
   3490       const int i = u_bit_scan(&mask);
   3491       struct gl_program *p = prog->_LinkedShaders[i]->Program;
   3492 
   3493       foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
   3494          ir_variable *var = node->as_variable();
   3495          if (!var || var->data.mode != ir_var_uniform)
   3496             continue;
   3497 
   3498          if (var->data.explicit_location) {
   3499             bool ret = false;
   3500             if (var->type->without_array()->is_subroutine())
   3501                ret = reserve_subroutine_explicit_locations(prog, p, var);
   3502             else {
   3503                int slots = reserve_explicit_locations(prog, uniform_map,
   3504                                                       var);
   3505                if (slots != -1) {
   3506                   ret = true;
   3507                   entries_total += slots;
   3508                }
   3509             }
   3510             if (!ret) {
   3511                delete uniform_map;
   3512                return;
   3513             }
   3514          }
   3515       }
   3516    }
   3517 
   3518    struct empty_uniform_block *current_block = NULL;
   3519 
   3520    for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) {
   3521       /* We found empty space in UniformRemapTable. */
   3522       if (prog->UniformRemapTable[i] == NULL) {
   3523          /* We've found the beginning of a new continous block of empty slots */
   3524          if (!current_block || current_block->start + current_block->slots != i) {
   3525             current_block = rzalloc(prog, struct empty_uniform_block);
   3526             current_block->start = i;
   3527             exec_list_push_tail(&prog->EmptyUniformLocations,
   3528                                 &current_block->link);
   3529          }
   3530 
   3531          /* The current block continues, so we simply increment its slots */
   3532          current_block->slots++;
   3533       }
   3534    }
   3535 
   3536    delete uniform_map;
   3537    prog->NumExplicitUniformLocations = entries_total;
   3538 }
   3539 
   3540 static bool
   3541 should_add_buffer_variable(struct gl_shader_program *shProg,
   3542                            GLenum type, const char *name)
   3543 {
   3544    bool found_interface = false;
   3545    unsigned block_name_len = 0;
   3546    const char *block_name_dot = strchr(name, '.');
   3547 
   3548    /* These rules only apply to buffer variables. So we return
   3549     * true for the rest of types.
   3550     */
   3551    if (type != GL_BUFFER_VARIABLE)
   3552       return true;
   3553 
   3554    for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
   3555       const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
   3556       block_name_len = strlen(block_name);
   3557 
   3558       const char *block_square_bracket = strchr(block_name, '[');
   3559       if (block_square_bracket) {
   3560          /* The block is part of an array of named interfaces,
   3561           * for the name comparison we ignore the "[x]" part.
   3562           */
   3563          block_name_len -= strlen(block_square_bracket);
   3564       }
   3565 
   3566       if (block_name_dot) {
   3567          /* Check if the variable name starts with the interface
   3568           * name. The interface name (if present) should have the
   3569           * length than the interface block name we are comparing to.
   3570           */
   3571          unsigned len = strlen(name) - strlen(block_name_dot);
   3572          if (len != block_name_len)
   3573             continue;
   3574       }
   3575 
   3576       if (strncmp(block_name, name, block_name_len) == 0) {
   3577          found_interface = true;
   3578          break;
   3579       }
   3580    }
   3581 
   3582    /* We remove the interface name from the buffer variable name,
   3583     * including the dot that follows it.
   3584     */
   3585    if (found_interface)
   3586       name = name + block_name_len + 1;
   3587 
   3588    /* The ARB_program_interface_query spec says:
   3589     *
   3590     *     "For an active shader storage block member declared as an array, an
   3591     *     entry will be generated only for the first array element, regardless
   3592     *     of its type.  For arrays of aggregate types, the enumeration rules
   3593     *     are applied recursively for the single enumerated array element."
   3594     */
   3595    const char *struct_first_dot = strchr(name, '.');
   3596    const char *first_square_bracket = strchr(name, '[');
   3597 
   3598    /* The buffer variable is on top level and it is not an array */
   3599    if (!first_square_bracket) {
   3600       return true;
   3601    /* The shader storage block member is a struct, then generate the entry */
   3602    } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
   3603       return true;
   3604    } else {
   3605       /* Shader storage block member is an array, only generate an entry for the
   3606        * first array element.
   3607        */
   3608       if (strncmp(first_square_bracket, "[0]", 3) == 0)
   3609          return true;
   3610    }
   3611 
   3612    return false;
   3613 }
   3614 
   3615 static bool
   3616 add_program_resource(struct gl_shader_program *prog,
   3617                      struct set *resource_set,
   3618                      GLenum type, const void *data, uint8_t stages)
   3619 {
   3620    assert(data);
   3621 
   3622    /* If resource already exists, do not add it again. */
   3623    if (_mesa_set_search(resource_set, data))
   3624       return true;
   3625 
   3626    prog->data->ProgramResourceList =
   3627       reralloc(prog->data,
   3628                prog->data->ProgramResourceList,
   3629                gl_program_resource,
   3630                prog->data->NumProgramResourceList + 1);
   3631 
   3632    if (!prog->data->ProgramResourceList) {
   3633       linker_error(prog, "Out of memory during linking.\n");
   3634       return false;
   3635    }
   3636 
   3637    struct gl_program_resource *res =
   3638       &prog->data->ProgramResourceList[prog->data->NumProgramResourceList];
   3639 
   3640    res->Type = type;
   3641    res->Data = data;
   3642    res->StageReferences = stages;
   3643 
   3644    prog->data->NumProgramResourceList++;
   3645 
   3646    _mesa_set_add(resource_set, data);
   3647 
   3648    return true;
   3649 }
   3650 
   3651 /* Function checks if a variable var is a packed varying and
   3652  * if given name is part of packed varying's list.
   3653  *
   3654  * If a variable is a packed varying, it has a name like
   3655  * 'packed:a,b,c' where a, b and c are separate variables.
   3656  */
   3657 static bool
   3658 included_in_packed_varying(ir_variable *var, const char *name)
   3659 {
   3660    if (strncmp(var->name, "packed:", 7) != 0)
   3661       return false;
   3662 
   3663    char *list = strdup(var->name + 7);
   3664    assert(list);
   3665 
   3666    bool found = false;
   3667    char *saveptr;
   3668    char *token = strtok_r(list, ",", &saveptr);
   3669    while (token) {
   3670       if (strcmp(token, name) == 0) {
   3671          found = true;
   3672          break;
   3673       }
   3674       token = strtok_r(NULL, ",", &saveptr);
   3675    }
   3676    free(list);
   3677    return found;
   3678 }
   3679 
   3680 /**
   3681  * Function builds a stage reference bitmask from variable name.
   3682  */
   3683 static uint8_t
   3684 build_stageref(struct gl_shader_program *shProg, const char *name,
   3685                unsigned mode)
   3686 {
   3687    uint8_t stages = 0;
   3688 
   3689    /* Note, that we assume MAX 8 stages, if there will be more stages, type
   3690     * used for reference mask in gl_program_resource will need to be changed.
   3691     */
   3692    assert(MESA_SHADER_STAGES < 8);
   3693 
   3694    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   3695       struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
   3696       if (!sh)
   3697          continue;
   3698 
   3699       /* Shader symbol table may contain variables that have
   3700        * been optimized away. Search IR for the variable instead.
   3701        */
   3702       foreach_in_list(ir_instruction, node, sh->ir) {
   3703          ir_variable *var = node->as_variable();
   3704          if (var) {
   3705             unsigned baselen = strlen(var->name);
   3706 
   3707             if (included_in_packed_varying(var, name)) {
   3708                   stages |= (1 << i);
   3709                   break;
   3710             }
   3711 
   3712             /* Type needs to match if specified, otherwise we might
   3713              * pick a variable with same name but different interface.
   3714              */
   3715             if (var->data.mode != mode)
   3716                continue;
   3717 
   3718             if (strncmp(var->name, name, baselen) == 0) {
   3719                /* Check for exact name matches but also check for arrays and
   3720                 * structs.
   3721                 */
   3722                if (name[baselen] == '\0' ||
   3723                    name[baselen] == '[' ||
   3724                    name[baselen] == '.') {
   3725                   stages |= (1 << i);
   3726                   break;
   3727                }
   3728             }
   3729          }
   3730       }
   3731    }
   3732    return stages;
   3733 }
   3734 
   3735 /**
   3736  * Create gl_shader_variable from ir_variable class.
   3737  */
   3738 static gl_shader_variable *
   3739 create_shader_variable(struct gl_shader_program *shProg,
   3740                        const ir_variable *in,
   3741                        const char *name, const glsl_type *type,
   3742                        const glsl_type *interface_type,
   3743                        bool use_implicit_location, int location,
   3744                        const glsl_type *outermost_struct_type)
   3745 {
   3746    /* Allocate zero-initialized memory to ensure that bitfield padding
   3747     * is zero.
   3748     */
   3749    gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
   3750    if (!out)
   3751       return NULL;
   3752 
   3753    /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
   3754     * expect to see gl_VertexID in the program resource list.  Pretend.
   3755     */
   3756    if (in->data.mode == ir_var_system_value &&
   3757        in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
   3758       out->name = ralloc_strdup(shProg, "gl_VertexID");
   3759    } else if ((in->data.mode == ir_var_shader_out &&
   3760                in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
   3761               (in->data.mode == ir_var_system_value &&
   3762                in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
   3763       out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
   3764       type = glsl_type::get_array_instance(glsl_type::float_type, 4);
   3765    } else if ((in->data.mode == ir_var_shader_out &&
   3766                in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
   3767               (in->data.mode == ir_var_system_value &&
   3768                in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
   3769       out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
   3770       type = glsl_type::get_array_instance(glsl_type::float_type, 2);
   3771    } else {
   3772       out->name = ralloc_strdup(shProg, name);
   3773    }
   3774 
   3775    if (!out->name)
   3776       return NULL;
   3777 
   3778    /* The ARB_program_interface_query spec says:
   3779     *
   3780     *     "Not all active variables are assigned valid locations; the
   3781     *     following variables will have an effective location of -1:
   3782     *
   3783     *      * uniforms declared as atomic counters;
   3784     *
   3785     *      * members of a uniform block;
   3786     *
   3787     *      * built-in inputs, outputs, and uniforms (starting with "gl_"); and
   3788     *
   3789     *      * inputs or outputs not declared with a "location" layout
   3790     *        qualifier, except for vertex shader inputs and fragment shader
   3791     *        outputs."
   3792     */
   3793    if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
   3794        !(in->data.explicit_location || use_implicit_location)) {
   3795       out->location = -1;
   3796    } else {
   3797       out->location = location;
   3798    }
   3799 
   3800    out->type = type;
   3801    out->outermost_struct_type = outermost_struct_type;
   3802    out->interface_type = interface_type;
   3803    out->component = in->data.location_frac;
   3804    out->index = in->data.index;
   3805    out->patch = in->data.patch;
   3806    out->mode = in->data.mode;
   3807    out->interpolation = in->data.interpolation;
   3808    out->explicit_location = in->data.explicit_location;
   3809    out->precision = in->data.precision;
   3810 
   3811    return out;
   3812 }
   3813 
   3814 static bool
   3815 add_shader_variable(const struct gl_context *ctx,
   3816                     struct gl_shader_program *shProg,
   3817                     struct set *resource_set,
   3818                     unsigned stage_mask,
   3819                     GLenum programInterface, ir_variable *var,
   3820                     const char *name, const glsl_type *type,
   3821                     bool use_implicit_location, int location,
   3822                     bool inouts_share_location,
   3823                     const glsl_type *outermost_struct_type = NULL)
   3824 {
   3825    const glsl_type *interface_type = var->get_interface_type();
   3826 
   3827    if (outermost_struct_type == NULL) {
   3828       if (var->data.from_named_ifc_block) {
   3829          const char *interface_name = interface_type->name;
   3830 
   3831          if (interface_type->is_array()) {
   3832             /* Issue #16 of the ARB_program_interface_query spec says:
   3833              *
   3834              * "* If a variable is a member of an interface block without an
   3835              *    instance name, it is enumerated using just the variable name.
   3836              *
   3837              *  * If a variable is a member of an interface block with an
   3838              *    instance name, it is enumerated as "BlockName.Member", where
   3839              *    "BlockName" is the name of the interface block (not the
   3840              *    instance name) and "Member" is the name of the variable."
   3841              *
   3842              * In particular, it indicates that it should be "BlockName",
   3843              * not "BlockName[array length]".  The conformance suite and
   3844              * dEQP both require this behavior.
   3845              *
   3846              * Here, we unwrap the extra array level added by named interface
   3847              * block array lowering so we have the correct variable type.  We
   3848              * also unwrap the interface type when constructing the name.
   3849              *
   3850              * We leave interface_type the same so that ES 3.x SSO pipeline
   3851              * validation can enforce the rules requiring array length to
   3852              * match on interface blocks.
   3853              */
   3854             type = type->fields.array;
   3855 
   3856             interface_name = interface_type->fields.array->name;
   3857          }
   3858 
   3859          name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
   3860       }
   3861    }
   3862 
   3863    switch (type->base_type) {
   3864    case GLSL_TYPE_STRUCT: {
   3865       /* The ARB_program_interface_query spec says:
   3866        *
   3867        *     "For an active variable declared as a structure, a separate entry
   3868        *     will be generated for each active structure member.  The name of
   3869        *     each entry is formed by concatenating the name of the structure,
   3870        *     the "."  character, and the name of the structure member.  If a
   3871        *     structure member to enumerate is itself a structure or array,
   3872        *     these enumeration rules are applied recursively."
   3873        */
   3874       if (outermost_struct_type == NULL)
   3875          outermost_struct_type = type;
   3876 
   3877       unsigned field_location = location;
   3878       for (unsigned i = 0; i < type->length; i++) {
   3879          const struct glsl_struct_field *field = &type->fields.structure[i];
   3880          char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
   3881          if (!add_shader_variable(ctx, shProg, resource_set,
   3882                                   stage_mask, programInterface,
   3883                                   var, field_name, field->type,
   3884                                   use_implicit_location, field_location,
   3885                                   false, outermost_struct_type))
   3886             return false;
   3887 
   3888          field_location += field->type->count_attribute_slots(false);
   3889       }
   3890       return true;
   3891    }
   3892 
   3893    case GLSL_TYPE_ARRAY: {
   3894       /* The ARB_program_interface_query spec says:
   3895        *
   3896        *     "For an active variable declared as an array of basic types, a
   3897        *      single entry will be generated, with its name string formed by
   3898        *      concatenating the name of the array and the string "[0]"."
   3899        *
   3900        *     "For an active variable declared as an array of an aggregate data
   3901        *      type (structures or arrays), a separate entry will be generated
   3902        *      for each active array element, unless noted immediately below.
   3903        *      The name of each entry is formed by concatenating the name of
   3904        *      the array, the "[" character, an integer identifying the element
   3905        *      number, and the "]" character.  These enumeration rules are
   3906        *      applied recursively, treating each enumerated array element as a
   3907        *      separate active variable."
   3908        */
   3909       const struct glsl_type *array_type = type->fields.array;
   3910       if (array_type->base_type == GLSL_TYPE_STRUCT ||
   3911           array_type->base_type == GLSL_TYPE_ARRAY) {
   3912          unsigned elem_location = location;
   3913          unsigned stride = inouts_share_location ? 0 :
   3914                            array_type->count_attribute_slots(false);
   3915          for (unsigned i = 0; i < type->length; i++) {
   3916             char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
   3917             if (!add_shader_variable(ctx, shProg, resource_set,
   3918                                      stage_mask, programInterface,
   3919                                      var, elem, array_type,
   3920                                      use_implicit_location, elem_location,
   3921                                      false, outermost_struct_type))
   3922                return false;
   3923             elem_location += stride;
   3924          }
   3925          return true;
   3926       }
   3927       /* fallthrough */
   3928    }
   3929 
   3930    default: {
   3931       /* The ARB_program_interface_query spec says:
   3932        *
   3933        *     "For an active variable declared as a single instance of a basic
   3934        *     type, a single entry will be generated, using the variable name
   3935        *     from the shader source."
   3936        */
   3937       gl_shader_variable *sha_v =
   3938          create_shader_variable(shProg, var, name, type, interface_type,
   3939                                 use_implicit_location, location,
   3940                                 outermost_struct_type);
   3941       if (!sha_v)
   3942          return false;
   3943 
   3944       return add_program_resource(shProg, resource_set,
   3945                                   programInterface, sha_v, stage_mask);
   3946    }
   3947    }
   3948 }
   3949 
   3950 static bool
   3951 inout_has_same_location(const ir_variable *var, unsigned stage)
   3952 {
   3953    if (!var->data.patch &&
   3954        ((var->data.mode == ir_var_shader_out &&
   3955          stage == MESA_SHADER_TESS_CTRL) ||
   3956         (var->data.mode == ir_var_shader_in &&
   3957          (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
   3958           stage == MESA_SHADER_GEOMETRY))))
   3959       return true;
   3960    else
   3961       return false;
   3962 }
   3963 
   3964 static bool
   3965 add_interface_variables(const struct gl_context *ctx,
   3966                         struct gl_shader_program *shProg,
   3967                         struct set *resource_set,
   3968                         unsigned stage, GLenum programInterface)
   3969 {
   3970    exec_list *ir = shProg->_LinkedShaders[stage]->ir;
   3971 
   3972    foreach_in_list(ir_instruction, node, ir) {
   3973       ir_variable *var = node->as_variable();
   3974 
   3975       if (!var || var->data.how_declared == ir_var_hidden)
   3976          continue;
   3977 
   3978       int loc_bias;
   3979 
   3980       switch (var->data.mode) {
   3981       case ir_var_system_value:
   3982       case ir_var_shader_in:
   3983          if (programInterface != GL_PROGRAM_INPUT)
   3984             continue;
   3985          loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
   3986                                                   : int(VARYING_SLOT_VAR0);
   3987          break;
   3988       case ir_var_shader_out:
   3989          if (programInterface != GL_PROGRAM_OUTPUT)
   3990             continue;
   3991          loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
   3992                                                     : int(VARYING_SLOT_VAR0);
   3993          break;
   3994       default:
   3995          continue;
   3996       };
   3997 
   3998       if (var->data.patch)
   3999          loc_bias = int(VARYING_SLOT_PATCH0);
   4000 
   4001       /* Skip packed varyings, packed varyings are handled separately
   4002        * by add_packed_varyings.
   4003        */
   4004       if (strncmp(var->name, "packed:", 7) == 0)
   4005          continue;
   4006 
   4007       /* Skip fragdata arrays, these are handled separately
   4008        * by add_fragdata_arrays.
   4009        */
   4010       if (strncmp(var->name, "gl_out_FragData", 15) == 0)
   4011          continue;
   4012 
   4013       const bool vs_input_or_fs_output =
   4014          (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
   4015          (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
   4016 
   4017       if (!add_shader_variable(ctx, shProg, resource_set,
   4018                                1 << stage, programInterface,
   4019                                var, var->name, var->type, vs_input_or_fs_output,
   4020                                var->data.location - loc_bias,
   4021                                inout_has_same_location(var, stage)))
   4022          return false;
   4023    }
   4024    return true;
   4025 }
   4026 
   4027 static bool
   4028 add_packed_varyings(const struct gl_context *ctx,
   4029                     struct gl_shader_program *shProg,
   4030                     struct set *resource_set,
   4031                     int stage, GLenum type)
   4032 {
   4033    struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
   4034    GLenum iface;
   4035 
   4036    if (!sh || !sh->packed_varyings)
   4037       return true;
   4038 
   4039    foreach_in_list(ir_instruction, node, sh->packed_varyings) {
   4040       ir_variable *var = node->as_variable();
   4041       if (var) {
   4042          switch (var->data.mode) {
   4043          case ir_var_shader_in:
   4044             iface = GL_PROGRAM_INPUT;
   4045             break;
   4046          case ir_var_shader_out:
   4047             iface = GL_PROGRAM_OUTPUT;
   4048             break;
   4049          default:
   4050             unreachable("unexpected type");
   4051          }
   4052 
   4053          if (type == iface) {
   4054             const int stage_mask =
   4055                build_stageref(shProg, var->name, var->data.mode);
   4056             if (!add_shader_variable(ctx, shProg, resource_set,
   4057                                      stage_mask,
   4058                                      iface, var, var->name, var->type, false,
   4059                                      var->data.location - VARYING_SLOT_VAR0,
   4060                                      inout_has_same_location(var, stage)))
   4061                return false;
   4062          }
   4063       }
   4064    }
   4065    return true;
   4066 }
   4067 
   4068 static bool
   4069 add_fragdata_arrays(const struct gl_context *ctx,
   4070                     struct gl_shader_program *shProg,
   4071                     struct set *resource_set)
   4072 {
   4073    struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
   4074 
   4075    if (!sh || !sh->fragdata_arrays)
   4076       return true;
   4077 
   4078    foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
   4079       ir_variable *var = node->as_variable();
   4080       if (var) {
   4081          assert(var->data.mode == ir_var_shader_out);
   4082 
   4083          if (!add_shader_variable(ctx, shProg, resource_set,
   4084                                   1 << MESA_SHADER_FRAGMENT,
   4085                                   GL_PROGRAM_OUTPUT, var, var->name, var->type,
   4086                                   true, var->data.location - FRAG_RESULT_DATA0,
   4087                                   false))
   4088             return false;
   4089       }
   4090    }
   4091    return true;
   4092 }
   4093 
   4094 static char*
   4095 get_top_level_name(const char *name)
   4096 {
   4097    const char *first_dot = strchr(name, '.');
   4098    const char *first_square_bracket = strchr(name, '[');
   4099    int name_size = 0;
   4100 
   4101    /* The ARB_program_interface_query spec says:
   4102     *
   4103     *     "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
   4104     *     the number of active array elements of the top-level shader storage
   4105     *     block member containing to the active variable is written to
   4106     *     <params>.  If the top-level block member is not declared as an
   4107     *     array, the value one is written to <params>.  If the top-level block
   4108     *     member is an array with no declared size, the value zero is written
   4109     *     to <params>."
   4110     */
   4111 
   4112    /* The buffer variable is on top level.*/
   4113    if (!first_square_bracket && !first_dot)
   4114       name_size = strlen(name);
   4115    else if ((!first_square_bracket ||
   4116             (first_dot && first_dot < first_square_bracket)))
   4117       name_size = first_dot - name;
   4118    else
   4119       name_size = first_square_bracket - name;
   4120 
   4121    return strndup(name, name_size);
   4122 }
   4123 
   4124 static char*
   4125 get_var_name(const char *name)
   4126 {
   4127    const char *first_dot = strchr(name, '.');
   4128 
   4129    if (!first_dot)
   4130       return strdup(name);
   4131 
   4132    return strndup(first_dot+1, strlen(first_dot) - 1);
   4133 }
   4134 
   4135 static bool
   4136 is_top_level_shader_storage_block_member(const char* name,
   4137                                          const char* interface_name,
   4138                                          const char* field_name)
   4139 {
   4140    bool result = false;
   4141 
   4142    /* If the given variable is already a top-level shader storage
   4143     * block member, then return array_size = 1.
   4144     * We could have two possibilities: if we have an instanced
   4145     * shader storage block or not instanced.
   4146     *
   4147     * For the first, we check create a name as it was in top level and
   4148     * compare it with the real name. If they are the same, then
   4149     * the variable is already at top-level.
   4150     *
   4151     * Full instanced name is: interface name + '.' + var name +
   4152     *    NULL character
   4153     */
   4154    int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
   4155    char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
   4156    if (!full_instanced_name) {
   4157       fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
   4158       return false;
   4159    }
   4160 
   4161    snprintf(full_instanced_name, name_length, "%s.%s",
   4162             interface_name, field_name);
   4163 
   4164    /* Check if its top-level shader storage block member of an
   4165     * instanced interface block, or of a unnamed interface block.
   4166     */
   4167    if (strcmp(name, full_instanced_name) == 0 ||
   4168        strcmp(name, field_name) == 0)
   4169       result = true;
   4170 
   4171    free(full_instanced_name);
   4172    return result;
   4173 }
   4174 
   4175 static int
   4176 get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
   4177                char *interface_name, char *var_name)
   4178 {
   4179    /* The ARB_program_interface_query spec says:
   4180     *
   4181     *     "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
   4182     *     the number of active array elements of the top-level shader storage
   4183     *     block member containing to the active variable is written to
   4184     *     <params>.  If the top-level block member is not declared as an
   4185     *     array, the value one is written to <params>.  If the top-level block
   4186     *     member is an array with no declared size, the value zero is written
   4187     *     to <params>."
   4188     */
   4189    if (is_top_level_shader_storage_block_member(uni->name,
   4190                                                 interface_name,
   4191                                                 var_name))
   4192       return  1;
   4193    else if (field->type->is_unsized_array())
   4194       return 0;
   4195    else if (field->type->is_array())
   4196       return field->type->length;
   4197 
   4198    return 1;
   4199 }
   4200 
   4201 static int
   4202 get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
   4203                  const glsl_type *interface, const glsl_struct_field *field,
   4204                  char *interface_name, char *var_name)
   4205 {
   4206    /* The ARB_program_interface_query spec says:
   4207     *
   4208     *     "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
   4209     *     identifying the stride between array elements of the top-level
   4210     *     shader storage block member containing the active variable is
   4211     *     written to <params>.  For top-level block members declared as
   4212     *     arrays, the value written is the difference, in basic machine units,
   4213     *     between the offsets of the active variable for consecutive elements
   4214     *     in the top-level array.  For top-level block members not declared as
   4215     *     an array, zero is written to <params>."
   4216     */
   4217    if (field->type->is_array()) {
   4218       const enum glsl_matrix_layout matrix_layout =
   4219          glsl_matrix_layout(field->matrix_layout);
   4220       bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
   4221       const glsl_type *array_type = field->type->fields.array;
   4222 
   4223       if (is_top_level_shader_storage_block_member(uni->name,
   4224                                                    interface_name,
   4225                                                    var_name))
   4226          return 0;
   4227 
   4228       if (GLSL_INTERFACE_PACKING_STD140 ==
   4229           interface->
   4230              get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
   4231          if (array_type->is_record() || array_type->is_array())
   4232             return glsl_align(array_type->std140_size(row_major), 16);
   4233          else
   4234             return MAX2(array_type->std140_base_alignment(row_major), 16);
   4235       } else {
   4236          return array_type->std430_array_stride(row_major);
   4237       }
   4238    }
   4239    return 0;
   4240 }
   4241 
   4242 static void
   4243 calculate_array_size_and_stride(struct gl_context *ctx,
   4244                                 struct gl_shader_program *shProg,
   4245                                 struct gl_uniform_storage *uni)
   4246 {
   4247    int block_index = uni->block_index;
   4248    int array_size = -1;
   4249    int array_stride = -1;
   4250    char *var_name = get_top_level_name(uni->name);
   4251    char *interface_name =
   4252       get_top_level_name(uni->is_shader_storage ?
   4253                          shProg->data->ShaderStorageBlocks[block_index].Name :
   4254                          shProg->data->UniformBlocks[block_index].Name);
   4255 
   4256    if (strcmp(var_name, interface_name) == 0) {
   4257       /* Deal with instanced array of SSBOs */
   4258       char *temp_name = get_var_name(uni->name);
   4259       if (!temp_name) {
   4260          linker_error(shProg, "Out of memory during linking.\n");
   4261          goto write_top_level_array_size_and_stride;
   4262       }
   4263       free(var_name);
   4264       var_name = get_top_level_name(temp_name);
   4265       free(temp_name);
   4266       if (!var_name) {
   4267          linker_error(shProg, "Out of memory during linking.\n");
   4268          goto write_top_level_array_size_and_stride;
   4269       }
   4270    }
   4271 
   4272    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   4273       const gl_linked_shader *sh = shProg->_LinkedShaders[i];
   4274       if (sh == NULL)
   4275          continue;
   4276 
   4277       foreach_in_list(ir_instruction, node, sh->ir) {
   4278          ir_variable *var = node->as_variable();
   4279          if (!var || !var->get_interface_type() ||
   4280              var->data.mode != ir_var_shader_storage)
   4281             continue;
   4282 
   4283          const glsl_type *interface = var->get_interface_type();
   4284 
   4285          if (strcmp(interface_name, interface->name) != 0)
   4286             continue;
   4287 
   4288          for (unsigned i = 0; i < interface->length; i++) {
   4289             const glsl_struct_field *field = &interface->fields.structure[i];
   4290             if (strcmp(field->name, var_name) != 0)
   4291                continue;
   4292 
   4293             array_stride = get_array_stride(ctx, uni, interface, field,
   4294                                             interface_name, var_name);
   4295             array_size = get_array_size(uni, field, interface_name, var_name);
   4296             goto write_top_level_array_size_and_stride;
   4297          }
   4298       }
   4299    }
   4300 write_top_level_array_size_and_stride:
   4301    free(interface_name);
   4302    free(var_name);
   4303    uni->top_level_array_stride = array_stride;
   4304    uni->top_level_array_size = array_size;
   4305 }
   4306 
   4307 /**
   4308  * Builds up a list of program resources that point to existing
   4309  * resource data.
   4310  */
   4311 void
   4312 build_program_resource_list(struct gl_context *ctx,
   4313                             struct gl_shader_program *shProg)
   4314 {
   4315    /* Rebuild resource list. */
   4316    if (shProg->data->ProgramResourceList) {
   4317       ralloc_free(shProg->data->ProgramResourceList);
   4318       shProg->data->ProgramResourceList = NULL;
   4319       shProg->data->NumProgramResourceList = 0;
   4320    }
   4321 
   4322    int input_stage = MESA_SHADER_STAGES, output_stage = 0;
   4323 
   4324    /* Determine first input and final output stage. These are used to
   4325     * detect which variables should be enumerated in the resource list
   4326     * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
   4327     */
   4328    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   4329       if (!shProg->_LinkedShaders[i])
   4330          continue;
   4331       if (input_stage == MESA_SHADER_STAGES)
   4332          input_stage = i;
   4333       output_stage = i;
   4334    }
   4335 
   4336    /* Empty shader, no resources. */
   4337    if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
   4338       return;
   4339 
   4340    struct set *resource_set = _mesa_set_create(NULL,
   4341                                                _mesa_hash_pointer,
   4342                                                _mesa_key_pointer_equal);
   4343 
   4344    /* Program interface needs to expose varyings in case of SSO. */
   4345    if (shProg->SeparateShader) {
   4346       if (!add_packed_varyings(ctx, shProg, resource_set,
   4347                                input_stage, GL_PROGRAM_INPUT))
   4348          return;
   4349 
   4350       if (!add_packed_varyings(ctx, shProg, resource_set,
   4351                                output_stage, GL_PROGRAM_OUTPUT))
   4352          return;
   4353    }
   4354 
   4355    if (!add_fragdata_arrays(ctx, shProg, resource_set))
   4356       return;
   4357 
   4358    /* Add inputs and outputs to the resource list. */
   4359    if (!add_interface_variables(ctx, shProg, resource_set,
   4360                                 input_stage, GL_PROGRAM_INPUT))
   4361       return;
   4362 
   4363    if (!add_interface_variables(ctx, shProg, resource_set,
   4364                                 output_stage, GL_PROGRAM_OUTPUT))
   4365       return;
   4366 
   4367    if (shProg->last_vert_prog) {
   4368       struct gl_transform_feedback_info *linked_xfb =
   4369          shProg->last_vert_prog->sh.LinkedTransformFeedback;
   4370 
   4371       /* Add transform feedback varyings. */
   4372       if (linked_xfb->NumVarying > 0) {
   4373          for (int i = 0; i < linked_xfb->NumVarying; i++) {
   4374             if (!add_program_resource(shProg, resource_set,
   4375                                       GL_TRANSFORM_FEEDBACK_VARYING,
   4376                                       &linked_xfb->Varyings[i], 0))
   4377             return;
   4378          }
   4379       }
   4380 
   4381       /* Add transform feedback buffers. */
   4382       for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
   4383          if ((linked_xfb->ActiveBuffers >> i) & 1) {
   4384             linked_xfb->Buffers[i].Binding = i;
   4385             if (!add_program_resource(shProg, resource_set,
   4386                                       GL_TRANSFORM_FEEDBACK_BUFFER,
   4387                                       &linked_xfb->Buffers[i], 0))
   4388             return;
   4389          }
   4390       }
   4391    }
   4392 
   4393    /* Add uniforms from uniform storage. */
   4394    for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
   4395       /* Do not add uniforms internally used by Mesa. */
   4396       if (shProg->data->UniformStorage[i].hidden)
   4397          continue;
   4398 
   4399       uint8_t stageref =
   4400          build_stageref(shProg, shProg->data->UniformStorage[i].name,
   4401                         ir_var_uniform);
   4402 
   4403       /* Add stagereferences for uniforms in a uniform block. */
   4404       bool is_shader_storage =
   4405         shProg->data->UniformStorage[i].is_shader_storage;
   4406       int block_index = shProg->data->UniformStorage[i].block_index;
   4407       if (block_index != -1) {
   4408          stageref |= is_shader_storage ?
   4409             shProg->data->ShaderStorageBlocks[block_index].stageref :
   4410             shProg->data->UniformBlocks[block_index].stageref;
   4411       }
   4412 
   4413       GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
   4414       if (!should_add_buffer_variable(shProg, type,
   4415                                       shProg->data->UniformStorage[i].name))
   4416          continue;
   4417 
   4418       if (is_shader_storage) {
   4419          calculate_array_size_and_stride(ctx, shProg,
   4420                                          &shProg->data->UniformStorage[i]);
   4421       }
   4422 
   4423       if (!add_program_resource(shProg, resource_set, type,
   4424                                 &shProg->data->UniformStorage[i], stageref))
   4425          return;
   4426    }
   4427 
   4428    /* Add program uniform blocks. */
   4429    for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
   4430       if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
   4431           &shProg->data->UniformBlocks[i], 0))
   4432          return;
   4433    }
   4434 
   4435    /* Add program shader storage blocks. */
   4436    for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
   4437       if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
   4438           &shProg->data->ShaderStorageBlocks[i], 0))
   4439          return;
   4440    }
   4441 
   4442    /* Add atomic counter buffers. */
   4443    for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
   4444       if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
   4445                                 &shProg->data->AtomicBuffers[i], 0))
   4446          return;
   4447    }
   4448 
   4449    for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
   4450       GLenum type;
   4451       if (!shProg->data->UniformStorage[i].hidden)
   4452          continue;
   4453 
   4454       for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
   4455          if (!shProg->data->UniformStorage[i].opaque[j].active ||
   4456              !shProg->data->UniformStorage[i].type->is_subroutine())
   4457             continue;
   4458 
   4459          type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
   4460          /* add shader subroutines */
   4461          if (!add_program_resource(shProg, resource_set,
   4462                                    type, &shProg->data->UniformStorage[i], 0))
   4463             return;
   4464       }
   4465    }
   4466 
   4467    unsigned mask = shProg->data->linked_stages;
   4468    while (mask) {
   4469       const int i = u_bit_scan(&mask);
   4470       struct gl_program *p = shProg->_LinkedShaders[i]->Program;
   4471 
   4472       GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
   4473       for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
   4474          if (!add_program_resource(shProg, resource_set,
   4475                                    type, &p->sh.SubroutineFunctions[j], 0))
   4476             return;
   4477       }
   4478    }
   4479 
   4480    _mesa_set_destroy(resource_set, NULL);
   4481 }
   4482 
   4483 /**
   4484  * This check is done to make sure we allow only constant expression
   4485  * indexing and "constant-index-expression" (indexing with an expression
   4486  * that includes loop induction variable).
   4487  */
   4488 static bool
   4489 validate_sampler_array_indexing(struct gl_context *ctx,
   4490                                 struct gl_shader_program *prog)
   4491 {
   4492    dynamic_sampler_array_indexing_visitor v;
   4493    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   4494       if (prog->_LinkedShaders[i] == NULL)
   4495          continue;
   4496 
   4497       bool no_dynamic_indexing =
   4498          ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
   4499 
   4500       /* Search for array derefs in shader. */
   4501       v.run(prog->_LinkedShaders[i]->ir);
   4502       if (v.uses_dynamic_sampler_array_indexing()) {
   4503          const char *msg = "sampler arrays indexed with non-constant "
   4504                            "expressions is forbidden in GLSL %s %u";
   4505          /* Backend has indicated that it has no dynamic indexing support. */
   4506          if (no_dynamic_indexing) {
   4507             linker_error(prog, msg, prog->IsES ? "ES" : "",
   4508                          prog->data->Version);
   4509             return false;
   4510          } else {
   4511             linker_warning(prog, msg, prog->IsES ? "ES" : "",
   4512                            prog->data->Version);
   4513          }
   4514       }
   4515    }
   4516    return true;
   4517 }
   4518 
   4519 static void
   4520 link_assign_subroutine_types(struct gl_shader_program *prog)
   4521 {
   4522    unsigned mask = prog->data->linked_stages;
   4523    while (mask) {
   4524       const int i = u_bit_scan(&mask);
   4525       gl_program *p = prog->_LinkedShaders[i]->Program;
   4526 
   4527       p->sh.MaxSubroutineFunctionIndex = 0;
   4528       foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
   4529          ir_function *fn = node->as_function();
   4530          if (!fn)
   4531             continue;
   4532 
   4533          if (fn->is_subroutine)
   4534             p->sh.NumSubroutineUniformTypes++;
   4535 
   4536          if (!fn->num_subroutine_types)
   4537             continue;
   4538 
   4539          /* these should have been calculated earlier. */
   4540          assert(fn->subroutine_index != -1);
   4541          if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
   4542             linker_error(prog, "Too many subroutine functions declared.\n");
   4543             return;
   4544          }
   4545          p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
   4546                                             struct gl_subroutine_function,
   4547                                             p->sh.NumSubroutineFunctions + 1);
   4548          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
   4549          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
   4550          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
   4551             ralloc_array(p, const struct glsl_type *,
   4552                          fn->num_subroutine_types);
   4553 
   4554          /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
   4555           * GLSL 4.5 spec:
   4556           *
   4557           *    "Each subroutine with an index qualifier in the shader must be
   4558           *    given a unique index, otherwise a compile or link error will be
   4559           *    generated."
   4560           */
   4561          for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
   4562             if (p->sh.SubroutineFunctions[j].index != -1 &&
   4563                 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
   4564                linker_error(prog, "each subroutine index qualifier in the "
   4565                             "shader must be unique\n");
   4566                return;
   4567             }
   4568          }
   4569          p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
   4570             fn->subroutine_index;
   4571 
   4572          if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
   4573             p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
   4574 
   4575          for (int j = 0; j < fn->num_subroutine_types; j++)
   4576             p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
   4577          p->sh.NumSubroutineFunctions++;
   4578       }
   4579    }
   4580 }
   4581 
   4582 static void
   4583 set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
   4584 {
   4585    assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
   4586 
   4587    foreach_in_list(ir_instruction, node, ir) {
   4588       ir_variable *const var = node->as_variable();
   4589 
   4590       if (var == NULL || var->data.mode != io_mode)
   4591          continue;
   4592 
   4593       /* Don't set always active on builtins that haven't been redeclared */
   4594       if (var->data.how_declared == ir_var_declared_implicitly)
   4595          continue;
   4596 
   4597       var->data.always_active_io = true;
   4598    }
   4599 }
   4600 
   4601 /**
   4602  * When separate shader programs are enabled, only input/outputs between
   4603  * the stages of a multi-stage separate program can be safely removed
   4604  * from the shader interface. Other inputs/outputs must remain active.
   4605  */
   4606 static void
   4607 disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
   4608 {
   4609    unsigned first, last;
   4610    assert(prog->SeparateShader);
   4611 
   4612    first = MESA_SHADER_STAGES;
   4613    last = 0;
   4614 
   4615    /* Determine first and last stage. Excluding the compute stage */
   4616    for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
   4617       if (!prog->_LinkedShaders[i])
   4618          continue;
   4619       if (first == MESA_SHADER_STAGES)
   4620          first = i;
   4621       last = i;
   4622    }
   4623 
   4624    if (first == MESA_SHADER_STAGES)
   4625       return;
   4626 
   4627    for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
   4628       gl_linked_shader *sh = prog->_LinkedShaders[stage];
   4629       if (!sh)
   4630          continue;
   4631 
   4632       /* Prevent the removal of inputs to the first and outputs from the last
   4633        * stage, unless they are the initial pipeline inputs or final pipeline
   4634        * outputs, respectively.
   4635        *
   4636        * The removal of IO between shaders in the same program is always
   4637        * allowed.
   4638        */
   4639       if (stage == first && stage != MESA_SHADER_VERTEX)
   4640          set_always_active_io(sh->ir, ir_var_shader_in);
   4641       if (stage == last && stage != MESA_SHADER_FRAGMENT)
   4642          set_always_active_io(sh->ir, ir_var_shader_out);
   4643    }
   4644 }
   4645 
   4646 static void
   4647 link_and_validate_uniforms(struct gl_context *ctx,
   4648                            struct gl_shader_program *prog)
   4649 {
   4650    update_array_sizes(prog);
   4651    link_assign_uniform_locations(prog, ctx);
   4652 
   4653    link_assign_atomic_counter_resources(ctx, prog);
   4654    link_calculate_subroutine_compat(prog);
   4655    check_resources(ctx, prog);
   4656    check_subroutine_resources(prog);
   4657    check_image_resources(ctx, prog);
   4658    link_check_atomic_counter_resources(ctx, prog);
   4659 }
   4660 
   4661 static bool
   4662 link_varyings_and_uniforms(unsigned first, unsigned last,
   4663                            struct gl_context *ctx,
   4664                            struct gl_shader_program *prog, void *mem_ctx)
   4665 {
   4666    /* Mark all generic shader inputs and outputs as unpaired. */
   4667    for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
   4668       if (prog->_LinkedShaders[i] != NULL) {
   4669          link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
   4670       }
   4671    }
   4672 
   4673    unsigned prev = first;
   4674    for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
   4675       if (prog->_LinkedShaders[i] == NULL)
   4676          continue;
   4677 
   4678       match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
   4679                                        prog->_LinkedShaders[i]);
   4680       prev = i;
   4681    }
   4682 
   4683    if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
   4684                                             MESA_SHADER_VERTEX)) {
   4685       return false;
   4686    }
   4687 
   4688    if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
   4689                                             MESA_SHADER_FRAGMENT)) {
   4690       return false;
   4691    }
   4692 
   4693    prog->last_vert_prog = NULL;
   4694    for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
   4695       if (prog->_LinkedShaders[i] == NULL)
   4696          continue;
   4697 
   4698       prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
   4699       break;
   4700    }
   4701 
   4702    if (!link_varyings(prog, first, last, ctx, mem_ctx))
   4703       return false;
   4704 
   4705    link_and_validate_uniforms(ctx, prog);
   4706 
   4707    if (!prog->data->LinkStatus)
   4708       return false;
   4709 
   4710    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   4711       if (prog->_LinkedShaders[i] == NULL)
   4712          continue;
   4713 
   4714       const struct gl_shader_compiler_options *options =
   4715          &ctx->Const.ShaderCompilerOptions[i];
   4716 
   4717       if (options->LowerBufferInterfaceBlocks)
   4718          lower_ubo_reference(prog->_LinkedShaders[i],
   4719                              options->ClampBlockIndicesToArrayBounds,
   4720                              ctx->Const.UseSTD430AsDefaultPacking);
   4721 
   4722       if (i == MESA_SHADER_COMPUTE)
   4723          lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
   4724 
   4725       lower_vector_derefs(prog->_LinkedShaders[i]);
   4726       do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
   4727    }
   4728 
   4729    return true;
   4730 }
   4731 
   4732 static void
   4733 linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
   4734                          unsigned stage)
   4735 {
   4736       if (ctx->Const.GLSLOptimizeConservatively) {
   4737          /* Run it just once. */
   4738          do_common_optimization(ir, true, false,
   4739                                 &ctx->Const.ShaderCompilerOptions[stage],
   4740                                 ctx->Const.NativeIntegers);
   4741       } else {
   4742          /* Repeat it until it stops making changes. */
   4743          while (do_common_optimization(ir, true, false,
   4744                                        &ctx->Const.ShaderCompilerOptions[stage],
   4745                                        ctx->Const.NativeIntegers))
   4746             ;
   4747       }
   4748 }
   4749 
   4750 void
   4751 link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
   4752 {
   4753    prog->data->LinkStatus = linking_success; /* All error paths will set this to false */
   4754    prog->data->Validated = false;
   4755 
   4756    /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
   4757     *
   4758     *     "Linking can fail for a variety of reasons as specified in the
   4759     *     OpenGL Shading Language Specification, as well as any of the
   4760     *     following reasons:
   4761     *
   4762     *     - No shader objects are attached to program."
   4763     *
   4764     * The Compatibility Profile specification does not list the error.  In
   4765     * Compatibility Profile missing shader stages are replaced by
   4766     * fixed-function.  This applies to the case where all stages are
   4767     * missing.
   4768     */
   4769    if (prog->NumShaders == 0) {
   4770       if (ctx->API != API_OPENGL_COMPAT)
   4771          linker_error(prog, "no shaders attached to the program\n");
   4772       return;
   4773    }
   4774 
   4775 #ifdef ENABLE_SHADER_CACHE
   4776    /* If transform feedback used on the program then compile all shaders. */
   4777    bool skip_cache = false;
   4778    if (prog->TransformFeedback.NumVarying > 0) {
   4779       for (unsigned i = 0; i < prog->NumShaders; i++) {
   4780          _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true);
   4781       }
   4782       skip_cache = true;
   4783    }
   4784 
   4785    if (!skip_cache && shader_cache_read_program_metadata(ctx, prog))
   4786       return;
   4787 #endif
   4788 
   4789    void *mem_ctx = ralloc_context(NULL); // temporary linker context
   4790 
   4791    prog->ARB_fragment_coord_conventions_enable = false;
   4792 
   4793    /* Separate the shaders into groups based on their type.
   4794     */
   4795    struct gl_shader **shader_list[MESA_SHADER_STAGES];
   4796    unsigned num_shaders[MESA_SHADER_STAGES];
   4797 
   4798    for (int i = 0; i < MESA_SHADER_STAGES; i++) {
   4799       shader_list[i] = (struct gl_shader **)
   4800          calloc(prog->NumShaders, sizeof(struct gl_shader *));
   4801       num_shaders[i] = 0;
   4802    }
   4803 
   4804    unsigned min_version = UINT_MAX;
   4805    unsigned max_version = 0;
   4806    for (unsigned i = 0; i < prog->NumShaders; i++) {
   4807       min_version = MIN2(min_version, prog->Shaders[i]->Version);
   4808       max_version = MAX2(max_version, prog->Shaders[i]->Version);
   4809 
   4810       if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
   4811          linker_error(prog, "all shaders must use same shading "
   4812                       "language version\n");
   4813          goto done;
   4814       }
   4815 
   4816       if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
   4817          prog->ARB_fragment_coord_conventions_enable = true;
   4818       }
   4819 
   4820       gl_shader_stage shader_type = prog->Shaders[i]->Stage;
   4821       shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
   4822       num_shaders[shader_type]++;
   4823    }
   4824 
   4825    /* In desktop GLSL, different shader versions may be linked together.  In
   4826     * GLSL ES, all shader versions must be the same.
   4827     */
   4828    if (prog->Shaders[0]->IsES && min_version != max_version) {
   4829       linker_error(prog, "all shaders must use same shading "
   4830                    "language version\n");
   4831       goto done;
   4832    }
   4833 
   4834    prog->data->Version = max_version;
   4835    prog->IsES = prog->Shaders[0]->IsES;
   4836 
   4837    /* Some shaders have to be linked with some other shaders present.
   4838     */
   4839    if (!prog->SeparateShader) {
   4840       if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
   4841           num_shaders[MESA_SHADER_VERTEX] == 0) {
   4842          linker_error(prog, "Geometry shader must be linked with "
   4843                       "vertex shader\n");
   4844          goto done;
   4845       }
   4846       if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
   4847           num_shaders[MESA_SHADER_VERTEX] == 0) {
   4848          linker_error(prog, "Tessellation evaluation shader must be linked "
   4849                       "with vertex shader\n");
   4850          goto done;
   4851       }
   4852       if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
   4853           num_shaders[MESA_SHADER_VERTEX] == 0) {
   4854          linker_error(prog, "Tessellation control shader must be linked with "
   4855                       "vertex shader\n");
   4856          goto done;
   4857       }
   4858 
   4859       /* Section 7.3 of the OpenGL ES 3.2 specification says:
   4860        *
   4861        *    "Linking can fail for [...] any of the following reasons:
   4862        *
   4863        *     * program contains an object to form a tessellation control
   4864        *       shader [...] and [...] the program is not separable and
   4865        *       contains no object to form a tessellation evaluation shader"
   4866        *
   4867        * The OpenGL spec is contradictory. It allows linking without a tess
   4868        * eval shader, but that can only be used with transform feedback and
   4869        * rasterization disabled. However, transform feedback isn't allowed
   4870        * with GL_PATCHES, so it can't be used.
   4871        *
   4872        * More investigation showed that the idea of transform feedback after
   4873        * a tess control shader was dropped, because some hw vendors couldn't
   4874        * support tessellation without a tess eval shader, but the linker
   4875        * section wasn't updated to reflect that.
   4876        *
   4877        * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
   4878        * spec bug.
   4879        *
   4880        * Do what's reasonable and always require a tess eval shader if a tess
   4881        * control shader is present.
   4882        */
   4883       if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
   4884           num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
   4885          linker_error(prog, "Tessellation control shader must be linked with "
   4886                       "tessellation evaluation shader\n");
   4887          goto done;
   4888       }
   4889 
   4890       if (prog->IsES) {
   4891          if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
   4892              num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
   4893             linker_error(prog, "GLSL ES requires non-separable programs "
   4894                          "containing a tessellation evaluation shader to also "
   4895                          "be linked with a tessellation control shader\n");
   4896             goto done;
   4897          }
   4898       }
   4899    }
   4900 
   4901    /* Compute shaders have additional restrictions. */
   4902    if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
   4903        num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
   4904       linker_error(prog, "Compute shaders may not be linked with any other "
   4905                    "type of shader\n");
   4906    }
   4907 
   4908    /* Link all shaders for a particular stage and validate the result.
   4909     */
   4910    for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
   4911       if (num_shaders[stage] > 0) {
   4912          gl_linked_shader *const sh =
   4913             link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
   4914                                     num_shaders[stage], false);
   4915 
   4916          if (!prog->data->LinkStatus) {
   4917             if (sh)
   4918                _mesa_delete_linked_shader(ctx, sh);
   4919             goto done;
   4920          }
   4921 
   4922          switch (stage) {
   4923          case MESA_SHADER_VERTEX:
   4924             validate_vertex_shader_executable(prog, sh, ctx);
   4925             break;
   4926          case MESA_SHADER_TESS_CTRL:
   4927             /* nothing to be done */
   4928             break;
   4929          case MESA_SHADER_TESS_EVAL:
   4930             validate_tess_eval_shader_executable(prog, sh, ctx);
   4931             break;
   4932          case MESA_SHADER_GEOMETRY:
   4933             validate_geometry_shader_executable(prog, sh, ctx);
   4934             break;
   4935          case MESA_SHADER_FRAGMENT:
   4936             validate_fragment_shader_executable(prog, sh);
   4937             break;
   4938          }
   4939          if (!prog->data->LinkStatus) {
   4940             if (sh)
   4941                _mesa_delete_linked_shader(ctx, sh);
   4942             goto done;
   4943          }
   4944 
   4945          prog->_LinkedShaders[stage] = sh;
   4946          prog->data->linked_stages |= 1 << stage;
   4947       }
   4948    }
   4949 
   4950    /* Here begins the inter-stage linking phase.  Some initial validation is
   4951     * performed, then locations are assigned for uniforms, attributes, and
   4952     * varyings.
   4953     */
   4954    cross_validate_uniforms(prog);
   4955    if (!prog->data->LinkStatus)
   4956       goto done;
   4957 
   4958    unsigned first, last, prev;
   4959 
   4960    first = MESA_SHADER_STAGES;
   4961    last = 0;
   4962 
   4963    /* Determine first and last stage. */
   4964    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   4965       if (!prog->_LinkedShaders[i])
   4966          continue;
   4967       if (first == MESA_SHADER_STAGES)
   4968          first = i;
   4969       last = i;
   4970    }
   4971 
   4972    check_explicit_uniform_locations(ctx, prog);
   4973    link_assign_subroutine_types(prog);
   4974 
   4975    if (!prog->data->LinkStatus)
   4976       goto done;
   4977 
   4978    resize_tes_inputs(ctx, prog);
   4979 
   4980    /* Validate the inputs of each stage with the output of the preceding
   4981     * stage.
   4982     */
   4983    prev = first;
   4984    for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
   4985       if (prog->_LinkedShaders[i] == NULL)
   4986          continue;
   4987 
   4988       validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
   4989                                        prog->_LinkedShaders[i]);
   4990       if (!prog->data->LinkStatus)
   4991          goto done;
   4992 
   4993       cross_validate_outputs_to_inputs(ctx, prog,
   4994                                        prog->_LinkedShaders[prev],
   4995                                        prog->_LinkedShaders[i]);
   4996       if (!prog->data->LinkStatus)
   4997          goto done;
   4998 
   4999       prev = i;
   5000    }
   5001 
   5002    /* The cross validation of outputs/inputs above validates explicit locations
   5003     * but for SSO programs we need to do this also for the inputs in the
   5004     * first stage and outputs of the last stage included in the program, since
   5005     * there is no cross validation for these.
   5006     */
   5007    if (prog->SeparateShader)
   5008       validate_sso_explicit_locations(ctx, prog,
   5009                                       (gl_shader_stage) first,
   5010                                       (gl_shader_stage) last);
   5011 
   5012    /* Cross-validate uniform blocks between shader stages */
   5013    validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
   5014    if (!prog->data->LinkStatus)
   5015       goto done;
   5016 
   5017    for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
   5018       if (prog->_LinkedShaders[i] != NULL)
   5019          lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
   5020    }
   5021 
   5022    /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
   5023     * it before optimization because we want most of the checks to get
   5024     * dropped thanks to constant propagation.
   5025     *
   5026     * This rule also applies to GLSL ES 3.00.
   5027     */
   5028    if (max_version >= (prog->IsES ? 300 : 130)) {
   5029       struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
   5030       if (sh) {
   5031          lower_discard_flow(sh->ir);
   5032       }
   5033    }
   5034 
   5035    if (prog->SeparateShader)
   5036       disable_varying_optimizations_for_sso(prog);
   5037 
   5038    /* Process UBOs */
   5039    if (!interstage_cross_validate_uniform_blocks(prog, false))
   5040       goto done;
   5041 
   5042    /* Process SSBOs */
   5043    if (!interstage_cross_validate_uniform_blocks(prog, true))
   5044       goto done;
   5045 
   5046    /* Do common optimization before assigning storage for attributes,
   5047     * uniforms, and varyings.  Later optimization could possibly make
   5048     * some of that unused.
   5049     */
   5050    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   5051       if (prog->_LinkedShaders[i] == NULL)
   5052          continue;
   5053 
   5054       detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
   5055       if (!prog->data->LinkStatus)
   5056          goto done;
   5057 
   5058       if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
   5059          lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
   5060       }
   5061 
   5062       if (ctx->Const.LowerTessLevel) {
   5063          lower_tess_level(prog->_LinkedShaders[i]);
   5064       }
   5065 
   5066       /* Call opts before lowering const arrays to uniforms so we can const
   5067        * propagate any elements accessed directly.
   5068        */
   5069       linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
   5070 
   5071       /* Call opts after lowering const arrays to copy propagate things. */
   5072       if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
   5073          linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
   5074 
   5075       propagate_invariance(prog->_LinkedShaders[i]->ir);
   5076    }
   5077 
   5078    /* Validation for special cases where we allow sampler array indexing
   5079     * with loop induction variable. This check emits a warning or error
   5080     * depending if backend can handle dynamic indexing.
   5081     */
   5082    if ((!prog->IsES && prog->data->Version < 130) ||
   5083        (prog->IsES && prog->data->Version < 300)) {
   5084       if (!validate_sampler_array_indexing(ctx, prog))
   5085          goto done;
   5086    }
   5087 
   5088    /* Check and validate stream emissions in geometry shaders */
   5089    validate_geometry_shader_emissions(ctx, prog);
   5090 
   5091    store_fragdepth_layout(prog);
   5092 
   5093    if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
   5094       goto done;
   5095 
   5096    /* Linking varyings can cause some extra, useless swizzles to be generated
   5097     * due to packing and unpacking.
   5098     */
   5099    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   5100       if (prog->_LinkedShaders[i] == NULL)
   5101          continue;
   5102 
   5103       optimize_swizzles(prog->_LinkedShaders[i]->ir);
   5104    }
   5105 
   5106    /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
   5107     * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
   5108     * anything about shader linking when one of the shaders (vertex or
   5109     * fragment shader) is absent. So, the extension shouldn't change the
   5110     * behavior specified in GLSL specification.
   5111     *
   5112     * From OpenGL ES 3.1 specification (7.3 Program Objects):
   5113     *     "Linking can fail for a variety of reasons as specified in the
   5114     *     OpenGL ES Shading Language Specification, as well as any of the
   5115     *     following reasons:
   5116     *
   5117     *     ...
   5118     *
   5119     *     * program contains objects to form either a vertex shader or
   5120     *       fragment shader, and program is not separable, and does not
   5121     *       contain objects to form both a vertex shader and fragment
   5122     *       shader."
   5123     *
   5124     * However, the only scenario in 3.1+ where we don't require them both is
   5125     * when we have a compute shader. For example:
   5126     *
   5127     * - No shaders is a link error.
   5128     * - Geom or Tess without a Vertex shader is a link error which means we
   5129     *   always require a Vertex shader and hence a Fragment shader.
   5130     * - Finally a Compute shader linked with any other stage is a link error.
   5131     */
   5132    if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
   5133        num_shaders[MESA_SHADER_COMPUTE] == 0) {
   5134       if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
   5135          linker_error(prog, "program lacks a vertex shader\n");
   5136       } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
   5137          linker_error(prog, "program lacks a fragment shader\n");
   5138       }
   5139    }
   5140 
   5141 done:
   5142    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
   5143       free(shader_list[i]);
   5144       if (prog->_LinkedShaders[i] == NULL)
   5145          continue;
   5146 
   5147       /* Do a final validation step to make sure that the IR wasn't
   5148        * invalidated by any modifications performed after intrastage linking.
   5149        */
   5150       validate_ir_tree(prog->_LinkedShaders[i]->ir);
   5151 
   5152       /* Retain any live IR, but trash the rest. */
   5153       reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
   5154 
   5155       /* The symbol table in the linked shaders may contain references to
   5156        * variables that were removed (e.g., unused uniforms).  Since it may
   5157        * contain junk, there is no possible valid use.  Delete it and set the
   5158        * pointer to NULL.
   5159        */
   5160       delete prog->_LinkedShaders[i]->symbols;
   5161       prog->_LinkedShaders[i]->symbols = NULL;
   5162    }
   5163 
   5164    ralloc_free(mem_ctx);
   5165 }
   5166